交直流电力系统仿真方法与动态特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于高压直流输电系统在远距离大容量输电和非同步联网方面具有诸多优势,近几年来在我国的应用日益广泛,远距离高压直流输电工程已成为国家实施“西电东送、南北互供、全国联网”战略中投资和经营的重点。随着高压直流输电线路及其传输容量在系统中所占的比例越来越大,研究交直流系统的仿真方法和动态特性变得非常重要。
     在电力系统暂态仿真分析时通常有机电暂态仿真和电磁暂态仿真。在交直流系统动态特性研究中,需要根据不同研究目的选择不同的暂态仿真方法。本文首先对机电暂态仿真和电磁暂态仿真的适用范围进行了探讨。通过算例仿真揭示二者在模拟直流系统动态特性、换相失败以及交流系统暂态稳定性方面的差异,确定了进行直流系统动态特性分析、大规模交直流系统暂态稳定性分析时应采用的仿真方法。
     研究直流系统的动态特性应采用电磁暂态仿真。因受仿真规模和计算速度的制约,建立大规模交直流系统的完整电磁暂态仿真模型以实现直流系统动态特性的准确模拟是不现实的。对此,本文提出一种新的交流系统动态等值方法,既完整保留直流系统又大量缩减交流系统的规模。并对所提方法进行了验证,其动态等值系统能够较好地反映原系统的动态特性。
     在交流系统动态等值基础上,建立了交直流电力系统电磁暂态仿真模型,研究了交直流电力系统在各种故障情况下直流系统的动态特性。重点分析换流站交流母线故障后直流系统本身的动态特性,精确模拟换相失败、直流控制系统的动态调节过程以及故障后直流系统的恢复过程。仿真结果表明:逆变侧交流系统故障更容易导致直流换相失败;在控制系统的作用下,该模型直流系统能够恢复正常运行。
     最后,以宁东直流输电系统为例,从交流系统故障对直流系统的影响和直流系统故障对交流系统的影响,探讨了交直流系统间的相互作用和暂态稳定性问题。仿真分析表明:逆变侧交流系统故障大部分会导致直流换相失败,且换相失败时间与故障线路距离换流站电气距离密切相关;直流换相失败可能导致交流系统的电压失稳,故障切除时间、无功储备也是重要影响因素;直流单极闭锁导致受端电网有功功率缺额,但没有引发频率和暂态电压稳定问题。
As HVDC systems have many advantages in long-distance bulk power transmission and non-synchronous network, in recent years they have been used widely in China. Long-distance HVDC transmission projects have become the investment and business focus in implementation of national strategy that is "west to east, north and south for each other, the national network". With the increasing proportion of HVDC transmission lines and capacities in the system, the research on simulation methods and dynamic performances of AC/DC power system becomes very important.
     In transient simulation analysis of AC/DC power system, there are electromechanical transient simulation and electromagnetic transient simulation. It needs select different methods for different purposes when the dynamic performances of AC/DC system are researched. This thesis firstly discusses the validity of electromechanical transient simulation and electromagnetic transient simulation. The differences between the two transient simulation methods on dynamic performance and commutation failure of DC system and transient stability of AC system are revealed by an example simulation. Then, the methods of researching dynamic performance of DC system and transient stability of large-scale AC/DC system are determined.
     Electromagnetic transient simulation model should be used for researching dynamic performance of DC system. Conditioned by the scale and speed of simulation, it is not realistic to establish the complete electromagnetic transient simulation model of large-scale AC/DC system and simulate accurately dynamic performance of DC system. On this, a new equivalent method is presented in this paper, which focuses on how to reserve DC system and reduce AC system while maintaining dynamic performance of AC and DC system. The original system and the equivalent system are simulated respectively. The result shows that the equivalent system can preserve the main dynamic characteristics of the original system well.
     Based on dynamic equivalent in AC system, electromagnetic transient simulation models of AC/DC system are set up, by which the dynamic performances of HVDC are studied under some kinds of AC system faults and DC system faults. The dynamic performances of the DC system itself are analyzed under the faults of converter station AC buses. Commutation failure and the dynamic process of DC control system and the recovery process of DC system are accurately simulated. The results show that the faults at the inverter side AC system are more likely to cause commutation failure than that at the rectifier side AC system. DC system of the model can recover normal operation state under the action of HVDC control.
     Finally, taking NingDong DC transmission system as an example, the interaction between AC and DC systems and the transient stability are analyzed. The simulation results show that most of the faults at the inverter side AC system will lead to commutation failure, and commutation failure time is closely related to the distance from the fault line to the converter station. Commutation failure will affect the voltage stability of AC system. In addition, fault clearing time and reactive power reserves are also important factors. The active power shortfalls in AC system near inverter station are caused by DC block, which doesn't trigger transient frequency and voltage stability problem.
引文
[1]徐政.交直流电力系统动态行为分析[M].北京:机械工业出版社,2004.
    [2]浙江大学发电教研组直流输电科研组.直流输电[M].北京:中国电力出版社,1982.
    [3]赵畹君.高压直流输电工程技术[M].北京:中国电力出版社,2004.
    [4]J.阿律莱加[新西兰],高压直流输电.任震等译.重庆:重庆大学出版社,1987.
    [5]Kundur P. Power System Stability and Control, McGraw-Hill Inc.1993.
    [6]蔡邠.混合输电中交直流系统间的相互影响[J].电网技术,1990,5(2):1-6.
    [7]BuiLX, et al. Dynamic Interactions Between HVDC Systems Connected to AC Buses in Close Proximity. IEEE Transactions on Power Delivery,1991,6(1):223-230.
    [8]Report of a Panel Discussion Sponsored by the IEEE Special Stability Controls Working Group and the Dynamic Performance and Modeling of DC Systems Joint Working Group, HVDC Controls for System Dynamic performance, IEEE Transactions on Power Systems, 1991,6(2):743-753.
    [9]Reeve J, Lane-Smith S P. Multi-infeed HVDC Transient Response and Recovery Strategies. IEEE Transactions on Power Delivery,1993,8(4):1995-2001.
    [10]郭剑波,姚国灿,徐征雄等.我国未来大区电网互联可能出现或应该注意的若干问题[J].电网技术,1998,22(6):63-67.
    [11]杨卫东,徐政等.多馈入交直流电力系统研究中的相关问题[J].电网技术,2000,24(8):13-17.
    [12]王成祥,李建设.南方电网交直流联网运行特性分析[J].电力系统自动化,2003,27(16):84-86.
    [13]齐旭,曾德文等.特高压直流输电对系统安全稳定影响研究[J].电网技术,2006,30(2):1-6.
    [14]董俊,束洪春等.特高压远距离大容量云电送余粤中的稳定问题研究[J].电网技术,2006,30(24):10-15.
    [15]孙景强,郭小江等.多馈入直流输电系统受端电网动态特性[J].电网技术,2009,33(4):57-60.
    [16]王晶芳,王智冬,李新年等.含特高压直流的多馈入交直流系统动态特性仿真[J].电 力系统自动化,2007,31(11):97-102.
    [17]欧开健,任震,荆勇等.直流输电系统换相失败的研究(一)[J].电力自动化设备,2003,23(5):5-25.
    [18]任震,欧开健,荆勇等.直流输电系统换相失败的研究(二)[J].电力自动化设备,2003,23(6):6-9.
    [19]杨汾艳,徐政.直流输电系统典型暂态响应特性分析[J].电工技术学报,2005,20(3):46-52.
    [20]潘丽珠.高压直流输电对交流系统电压稳定影响的研究[D].北京,华北电力大学,2006.
    [21]吴娜.高压直流输电系统分析与控制初探[D].云南,昆明理工大学,2005.
    [22]Kristmundsson G M, Carroll D P. The Effect of AC Systems Frequency Spectrum on Commutation Failure in HVDC Inverter. IEEE Transaction on Power Delivery,1990,5(2): 1121-1128.
    [23]Thio C V, Davies J B, Kent K L. Commutation Failures in HVDC Transmission Systems. IEEE Transaction on Power Delivery,1996,11(2):946-957.
    [24]荆勇.交直流并联系统相互作用和运行安全特性的研究[D].广州:华南理工大学,2003.
    [25]Working Group on Dynamic Performance and Modeling of DC System and Power Electronics for Transmission Systems. Report on Test Systems for AC/DC Interactions Studies. IEEE Transactions on Power Delivery,1995,10(4):2027-2033.
    [26]Karlecik-Maier F. A new closed loop control method for HVDC transmission [J]. IEEE Transactions on power Delivery,1996,11(4):1955-1960.
    [27]周长春,徐政.联于弱交流系统的HVDC故障恢复特性仿真分析[J].电网技术,2003,27(11):18-21.
    [28]王智冬,李隽.多回特高压直流输电集中落点稳定性研究[J].现代电力,2008,25(1):13-18.
    [29]蔡泽祥,朱浩骏,白雪峰.多馈入直流输电系统的动态特性及稳定控制与分析[J].华北电力大学学报,2004,31(5):1-8.
    [30]王晓晖,杨增辉等.特高压直流接入对华东受端交流系统稳定性影响的研究[J].华东电力,2009,37(1):86-90.
    [31]王志滨,李爱民,周全.基于EMTDC的直流线路故障特征的仿真分析[J].南方电网技术,2009,3:45-48.
    [32]朱韬析,欧开健.高压直流输电系统线路接地故障过程研究[J].广东电力,2008,21(10):53-57.
    [33]王海军,吕鹏飞.贵广直流输电工程直流线路故障重启动功能研究[J].电网技术,2006,30(23):32-35.
    [34]周红阳,刘映尚等.直流输电系统再启动功能改进措施[J].电力系统自动化,2008,32(19):104-107.
    [35]任达勇,杨泽明,李爱民等.高压直流输电线路故障特征影响因素分析[J].高压电器,2010,46(11):70-73.
    [36]白岩,陈辉祥,王仲鸿.直流双极闭锁故障下提高暂态电压稳定性策略探讨[J].电力系统自动化,2006,30(15):93-96.
    [37]杨卫东,薛禹胜,荆勇.直流系统的控制策略对南方电网暂态稳定性的影响[J].电力系统自动化,2003,27(18):57-60.
    [38]李爱民,蔡泽祥,任达勇等.高压直流输电控制与保护对线路故障的动态响应特性分析[J].电力系统自动化,2009,33(11):72-75.
    [39]张建设.直流系统控制方式对大扰动后交直流混合系统电压和功率恢复的影响[J].电力科学与工程,2007,23(3):24-26.
    [40]束洪春,董俊,孙士云等.直流调制对南方电网交直流混联输电系统暂态稳定裕度的影响[J].电网技术,2006,30(20):29-33.
    [41]董寒冰.直流无功控制对交流系统电压调整的影响分析[J].电力生产与管理,2008,1
    [42]夏道止,《电力系统分析》(下册),西安交通大学,1995年11月.
    [43]汤涌,电力系统数字仿真技术的现状与发展[J].电力系统自动化,2002,26(17):66-70.
    [44]徐政,蔡哗,刘国平.大规模交直流电力系统仿真计算的相关问题[J].电力系统自动化,2002,26(25):4-8.
    [45]吴红斌,丁明,李生虎.基于直流输电模型和调节方式对暂态稳定影响的统计研究[J].中国电机工程学报,2003,23(10):32-37.
    [46]岳程燕.电力系统电磁暂态和机电暂态混合实时仿真的研究[D].北京:中国电力科学研究院,2004.
    [47]B Kulicke. NETOMAC Digital program for simulating electromechanical and electromagnetic transient phenomena in AC systems. Elektrizitatswirtschaft Heft 1,1979:18-23.
    [48]Heffernan M D, Turner K S, Arrillaga J, et al:Computation of AC-DC system disturbances-Parts Ⅰ. Interactive coordination of generator and convertor transient models [J].IEEE Trans on Power Apparatus and Systems,1981, PAS-100(11):4341-4348.
    [49]Turner K S, Heffernan M D, Arnold C P, et al:Computation of AC-DC system disturbances-Parts Ⅱ. Derivation of power frequency variables from convertor transient response[J].IEEE Trans on Power Apparatus and Systems,1981, PAS-100(11):4349-4355.
    [50]Turner K S, Heffernan M D, Arnold C P, et al:Computation of AC-DC system disturbances-Part Ⅲ. Transient stability assessment[J].IEEE Trans on Power Apparatus and Systems,1981, PAS-100(11):4356-4363.
    [51]Reeve J, Adapa K. A new approach to dynamic analysis of AC networks incorporating detailed modeling of DC systems. Part Ⅰ:principles and implementation[J].IEEE Trans on Power Delivery,1988,3(4):2005-2011.
    [52]Reeve J, Adapa K. A new approach to dynamic analysis of AC networks incorporating detailed modeling of DC systems. Part Ⅱ:application to interaction of DC and weak AC systems[J].IEEE Trans on Power Delivery,1988,3(4):2012-2019.
    [53]Anderson G W J, Watson N R. A new hybrid algorithm for analysis of HVDC and FACTS systems [J].IEEE Energy Management and Power Delivery,1995,2(21-23):462-467.3.
    [54]岳程燕,田芳,周孝信等.电力系统电磁暂态—机电暂态混合仿真接口实现[J].电网技术,2006,30(4):6-10.
    [55]宋新立,汤涌等.大电网安全分析的全过程动态仿真技术[J].电网技术,2008,32(22):23-28.
    [56]倪以信,陈寿孙,张宝霖.动态电力系统的理论和分析[M].北京:清华大学出版社,2002.
    [57]毛晓明,张艳等.高压直流建模研究的相关问题[J].电力自动化设备,2007,27(12):14-17.
    [58]黄志龙,杨卫东等.大受端电网内交直流相互影响研究[J].华东电力,2009,37(10):1650-1655.
    [59]杨靖萍.基于同调机群识别的动态等值方法的工程应用[J].电网技术,2005,29(17):68-71.
    [60]赵良,李蓓,卜广全.云南-广东±800kV直流输电系统动态等值研究[J].电网技术, 2006,30(16):6-10.
    [61]徐政,杨靖萍,段慧.一种适用于电磁暂态仿真的等值简约方法[J].南方电网技术,2007,1(1):37-40.
    [62]中国电力科学研究院.电力系统分析综合程序用户手册[M].北京:中国电力科学研究院,2002.
    [63]DL755-2001.电力系统安全稳定导则[S].

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700