冻融条件下水泥及石灰路基改良土的动静力特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国季节性冻土分布广泛,路基填料暴露于自然环境下,每年都要经历至少一次冻融作用,在强烈的冻结和融化作用下,路基易出现翻浆冒泥、沉陷、强度弱化等病害现象,严重影响铁路的正常运营和行车安全。同时,随着铁路大提速和多条高速铁路在季节性冻土地区的兴建,对路基整体稳定性、路基面平顺以及路基填料的抗冻融能力的要求不断提高。因此,寻求抗冻融性能良好的路基填料,减少优质填料的大量外运而造成的工程成本增加,扩大改良填料的应用范围已经成为一个急需解决的问题。
     本文以铁道部科技研究开发计划项目“寒区铁路工程冻胀特点与防治措施研究(2006G011-B-2)”为依托,结合季节性冻土地区高速铁路建设大发展,以东北地区路基素填土及其改良土为研究对象,在总结国内外研究现状的基础上,通过路基冻害调查、室内试验等手段,研究了冻融循环作用下路基改良填料的强度和变形特性。研究结果将为季节性冻土地区路基填料改良方法与掺入比的选择提供指导;将为路基土力学指标的确定提供参考;将为路基土抗冻融性能指标提供依据。主要研究成果包括以下几个方面:
     (1)在总结和分析国内外研究现状的基础上,指出其不足之处,认为改良方法单一,且针对冻融作用下改良土的力学特性研究较少,研究结果具有重要的实际意义。
     (2)在对内蒙古、东北境内既有铁路和秦沈客运专线路基冻害进行调研的基础上,总结了季节性冻土地区铁路路基的冻害特点,并从土质、水分、环境温度和外界附加荷载几方面入手分析了冻害产生的原因。
     (3)通过冻胀特性试验研究,得出所取土样的冻胀性能较弱,且素土经改良后冻胀性很弱,具有较好的抗冻胀性能;冻胀导致的病害除了变形外,另一重要原因是冻融作用对路基土体强度的弱化。
     (4)通过静三轴试验,发现冻融循环次数、冷却温度和试验围压对水泥及石灰改良土的应力应变关系和强度特性具有显著的影响,研究了冻融作用下改良土的应力应变、静强度、弹性模量和抗剪强度指标的变化规律,建立了上述力学参数与物理状态指标间的关系模型。
     (5)对循环荷载作用下改良土的累积塑性变形特性进行了研究,其累积变形特性因土体类型不同而有所不同。分析了动应力幅值、冻融次数、冷却温度和围压对累积塑性变形的影响规律,以Monismith指数模型为基础,采用归一化和修正的思路,建立了累积塑性变形的预测模型。
     (6)对改良土的临界动应力进行了分析,并引入冻融衰减系数,将其应用到高速铁路路基改良土掺入比设计中,以更好地指导工程实践。
     (7)在前人研究的基础上,引入冻融损失度的概念,建立了水泥及石灰改良土的动回弹模量损失模型,可以更好地评估季节性冻土区路基改良填料的使用寿命。同时,采用Hardin-Drnevich的双曲线模型对改良土的动应力应变关系进行了分析和研究。
Seasonal frost soil is widely distributed in China, subgrade fillings exposed to natural environment will experience at least one freeze-thaw cycle every year. Under such strong freezing and thawing conditions, the diseases such as mud pumping, subsidence and strength reduction will arise, which would affect the normal operation and driving safety of railway. Meanwhile, along with the speedup of railway and construction of highspeed railway in seasonal frost area, the standard on overall stability of subgrade, smooth of subgade and anti-frozen ability continues to improve. Therefore, searching for good quality fillings, reducing the engineering costs and enlarge the applied range of modified soil has already become an important problem for solving.
     With the support of the Ministry Science & Technology Research Planning Project, in this dissertation, with the coming of Highspeed Railway construction in seasonal frost area, clay soil and modified soil was taken as the study object. Based on a review of status quo of research at home and abro, a series of tests were conducted, and the strength and deformation properties of modified-soil subjected to freezing and thawing were analyzed to investigate the freezing and thawing mechanism, to offer guidelines for the choice of improved method and blend ratio, to offer references for confirming the mechanical index of subgrade soil, to provide basis for freezing and thawing resistance index. Some achievements are as follows:
     (1) According to the result and shortage of previous research, the dynamical properties of modified soil subjected to freezing and thawing had been regarded to be short of systematic research, which had great meaning in theory and in practice.
     (2) Based on the frost damages investigation of Inner Monqolia railway, Northeast railway and Qin-Shen Passenger Line, the frost damage characteristic of subgrade in seasonally frost area was summarized. Meanwhile, the creative reason of frost damages was analyzed from the kind of soil, amount of water, temperature as well as the loading style.
     (3) The frost heave properties of clay soil were weak by means of frost heave tests, and the frost heave properties of modified soil were weaker, which had better anti-frost properties. The frost damage was not only frost heave deformation, but also the strength reduction of subgrade soil subjected to freezing and thawing.
     (4) By means of static triaxial test, the influences of freeze-thaw cycles, cooling temperature, and confining pressure on stress-strain relationship and strength properties of cement- and lime-modified soils were apprehended. The change rules of stress-strain, static strength, elastic modulus and shear strength index influenced by freezing and thawing were obtained. Moreover, several prediction models about the relationship between these indices and blend ratio and freeze-thaw cycles were established.
     (5) The cumulative plastic strain of modified soil, which mightbe change according to soil types, with varied cyclic loading and soil physical states were studied. The effect of dynamic stress amplitude, freeze-thaw cycles, cooling temperature, and confining pressure on cumulative plastic strain had been analyzed. Furthermore, based on the exponential model of Monismith, the line of normalization and modificatory was adopted to established the predition model about the cumulative plastic strain.
     (6) The critical dynamic stress of modified soils was analyzed, and the freeze-thaw attenuation coefficient was introduced and applied to the blend ratio design of modified soils for Highspeed Railway, which could better serve for the engineering practices.
     (7) Based on the previous research, the damage degree was introduced to establish the damage model about resilient modulus for cement- and lime-modified soil, which could better evaluate the service life of modified soils in seseanol frost area. Meanwhile, the relationship of between dynamic stress and strain was analyzed and studied by the hyperbola model of Hardin-Drnevich.
引文
[1]刘建坤,童长江,房建宏.寒区岩土工程引论[M].北京:中国铁道出版社,2005.
    [2]陈肖柏,刘建坤,刘鸿绪等.土的冻结作用与地基[M].北京:科学出版社,2006.
    [3]徐学祖,王家澄,张立新.冻土物理学[M].北京:科学出版社,2001.4.
    [4]王志胜.长春市道路冻胀翻浆模型研究[D].吉林:吉林大学,2006.
    [5]Zhang D F, Wang S. Mechanism of freeze-thaw action in the process of soil salinization in northeast China[J]. Environmental Geology.2001,41.96-100.
    [6]Yarbasi N, Kalkan E, Akbulut S. Modification of the geotechnical properties, as influenced by freeze-thaw, of granular soils with waste additives[J]. Cold Regions Science and Technology.2007, 48(1):44-54.
    [7]赵建军,董金梅,王沛等.正冻土中的水热耦合模型[J].天津城市建设学院学报,2001,7(1),47-52.
    [8]彭丽云.正融粉质黏土的强度和变形特性研究[D].北京:北京交通大学.2009.
    [9]王秋枝.季节性冻土地区铁路路基冻害及其防治措施[J].铁道勘察,2009,3,22-25.
    [10]倪铁山.季冻区铁路路基冻害原因分析与整治措施研究[D].吉林:吉林大学.2009.
    [11]屈振学.季节性冻土区铁路客运专线路基的冻胀特性分析与措施[J].铁道标准设计,2009,12,8-11.
    [12]徐学祖.中国冻胀研究进展[J].地球科学进展,1994,9(5)13-19.
    [13]戴惠民,乐鹏飞等.季冻区公路路基土冻胀性的研究[J].中国公路学报,1994,7(2)1-8.
    [14]刘铁良.从贝阿干线中段路基病害的发生机理看其未来的变化[J].路基工程,1998,3(78)21-27.
    [15]张小军,何志平等.道路的冻胀与防治措施[J].路基工程,2002(7)20-21.
    [16]李治平.多年冻土地区道路病害及其防治对策[J].东北公路,2003,26(4)69-70.
    [17]王思银,倪秀丽.强夯法消除地基土冻胀性的应用[J].基础工程,2002,5(4)48-49.
    [18]朱光宇,江凯.辽西季节性冻土地区道路冻害及其防治[J].辽宁工程技术大学学报,2006,25(增),118-120.
    [19]中华人民共和国铁道部.《铁路“十一五”规划》[M].北京.2006.10.
    [20]周神根等.高速铁路路基设计技术条件研究[R].北京:铁道部科技研究院铁道建筑研究所,1995.
    [21]曹振虎.路基工作势在加强[J].路基工程,1995,62(5):1-5.
    [22]魏海斌.冻融循环对粉煤灰十动力特性影响的理论与试验研究[D].吉林:吉林大学,2007.
    [23]宋永军,吴连海.铁路客运专线基床水泥改良土填筑压实检测及其时效性研究[J].铁道勘察,2005,31(1):33-35.
    [24]中华人民共和国交通部标准.公路工程无机结合料稳定材料试验规程(JTJ057-94)[S].北京:人民交通出版社,1994.
    [25]周易平.高速铁路路基填料改良技术的研究[D].北京:铁道部科学研究院,2000.
    [26]覃应华.填料改良及其力学特性的试验研究[D].北京:铁道部科学研究院,1997.
    [27]段相生.场拌法石灰改良膨胀土施工技术[J].安徽建筑,2005,2:61-62.
    [28]日本铁道施设协会.《建造物设计标准解说》(土构造物)[M].1978.
    [29]铁道部标准计量研究所.国外高速铁路标准及规程汇编/德国铁路土工建筑物规范(DS836),1995.
    [30]Catton M D. "Soil-cement technology-A resume." Research and Development Laboratories of the Portland Cement Association:Bulletin 136. Reprinted from the Journal of PCA Research and Development Laboratories,1962,4(1),13-21.
    [31]Dupas J M, Pecker A. Static and dynamic properties of sand-cement[J]. Geotechnical Engineering Div,1979,105(3),419-436.
    [32]Ingles O G., Metcalf J B. Soil stabilization-Principles and practice[M]. Butterworths, Australia,1972.
    [33]Porbaha A, Shibuya S, Kishida T. State of the art in deep mixing technology. Part Ⅲ: Geomaterial characterization. Ground Improvement[J], Journal ISSMGE,2000,4(3),91-110.
    [34]Thome A, Donato M, Consoli N C, et al. Circular footings on a cemented layer above weak foundation soil[J]. Journal of Canadian Geotechnical,2005,42,1569-1584.
    [35]Croft J B. The influence of soil mineralogical composition on cement stabilization[J]. Geotechnique,1967,17,119-135.
    [36]Basma A A, Tuncer E R. Effect of lime on volume change and compressibility of expansive clays[J]. Transportation Research Board, Washington DC, TRR No.1296,1991,54-61.
    [37]Bell F G. Lime stabilization of clay minerals and soils[J]. Engineering Geology, 1996,42,223-237.
    [38]Sherpwood P T. Soil stabilization with cement and lime:state of the art review[M]. Transport Reseach Laboratory,1993.
    [39]Thompson M R. Lime reacitivity of Illinois soils[J]. Journal of the Soil Mechanics and Foundations Division,1966,92(5),67-92.
    [40]Ouhadi V R, Yong R N. The role of clay fraction of marly soils on their post stabilization failure[J]. Engineering Geology,2003,70(3-4),365-375.
    [41]Arabi M, Wild S. Property changes induced in clay soils when using lime stabilization[J]. Municipal Engineering,1989,6,85-99.
    [42]Diamond S, Kinter E B. Mechanisms of soil-lime stabilization[R]. Highway Research Record, 1965,92,83-102.
    [43]郭绍影.铁路路基填料改良前后物理、化学性质变化分析[J].铁道建筑技术,2006,5,69-76.
    [44]Pedarla A, Chitttoori S, Puppala A J, et al. Influence of lime dosage on stabilization effectiveness of Montmorillonite dominant clays[J]. Advances in Analysis, Modeling & Design,2010,199,767-776.
    [45]Chen F H. Foundation on expansive soils[M]. Elsevier Science Publishing Company, New York,1975.
    [46]Kezdi A. Stabilized earth roads[M]. Elsevier Scientific Publishing Company, Amsterdam, 1979.
    [47]Aiban S A, Al-Ahmadi H M, Asi I M, et al. Effect of geotextile and cement on the performance of sabkha subgrade[J]. Building and Environment.2006,41(6),807-820.
    [48]Al-Rawas A A, Hago A W, Al-Sarmi H. Effect of lime, cement and saroj (artificial pozzolan) on the swelling potential of an expansive soil from Oman[J]. Building and Environment,2005,40,681-687.
    [49]Bahar R, Benazzoug M, Kenai S. Performance of compacted cement-stabilized soil[J]. Cement and Concrete Composites,2004,26(7),812-820.
    [50]Yong R N, Ouhadi V R, Mohamed A M O. Physico-chemical evaluation of failure of stabilized marl soil[J].49th Canadian Geotechnical Conference Frontiers in Geotechnology,1966, 2,769-776.
    [51]Prisinski J R, Bhattacharja S. Effectiveness of Portland cement and lime in stabilizing clay soils[C].7th International Conference on Low-Volume Roads, Tansport Research Report NO.1652, 1999,1,215-227.
    [52]张登良.加固土原理[M].北京,人民交通出版社,1990.
    [53]高国瑞,李俊才.水泥加固软十地基的研究[J].工程地质学报,1996,4(1),45-52.
    [54]Kitazume M, Nakamura T, Terashi M, et al. Laboratory tests on long-term strength of cement treated soil[J]. Grouting and Ground Treatment, ASCE,2003,586-597.
    [55]Terashi M, Tanaka H, Mitsumoto T, et al. Fundamental properties of lime and cement treated soils[R]. Report of the Port and Harbour Research Institute,1983,22(1),69-96.
    [56]Terashi M, Kitazume M. An investigation of the long-term strength of a lime treated marine clay[J]. Technical Note of the Port and Harbour Research Institute,1992,732.
    [57]Xing H, Yang X, Xu C, et al. Strength characteristics and mechanisms of salt-rich soil-cement[J]. Engineering Geology,2009,103,33-38.
    [58]Mohamed A M O. The role of clay minerals in marly soils on its stability [J]. Engineering Geology,2000,57(3-4),193-203.
    [59]Yong R N, Ouhadi V R. Experimental study on instability of bases on natural and lime/cement-stabilized clayey soil[J]. Applied Clay Science,2007,35(3-4),238-249.
    [60]王清,陈慧娥,蔡可易.水泥土微观结构特征的定量评价[J].岩土力学,2003,24(增1),12-16.
    [61]宁宝宽,陈四利,刘斌.水泥十的环境侵蚀效应与破裂过程分析[J].岩石力学与工程学报,2005,24(10),1778-1782.
    [62]顾明芬,刘松玉,洪振舜等.水泥土结构特性的定量化研究[J].岩土力学,2005,26(11),1862-1866.
    [63]Little D. Stabilization of pavement subgrades and base courses with lime[M]. Kendall Hunt Publishing Company,1995.
    [64]Evans P. Update on lime stabilization[R]. QMR Technology Transfer Seminar,1997,1-18.
    [65]Parsons R L, Johnson C P, Cross S A. Evaluation of field mixing and construction procedures for lime modified subgrade[C].80th Annual Meeting Transportation Research Board,2001,01-03, 11.
    [66]徐勇,张婉琴,宫全美等.石灰土作为铁路路基填料的研究[J].岩石力学与工程学报,2001,20(增1),1015-1017.
    [67]周卓强.裂土灰土动力特性试验研究[J].路基工程,1998,79(4),29-35.
    [68]高亚成,郑建青.水泥土的室内试验研究[J].河海大学学报,1999,27(5),103-106.
    [69]肖林,王春义,郭汉生.建筑材料水泥土[M].水利电力出版社,1985.
    [70]韩文斌,王元汉.京沪高速铁路路基基床填料改良试验研究[J].岩石力学与工程学报,2001,20(增),1910-1916.
    [71]杨广庆,苟国利.高速铁路路基改良土的有关问题[J].铁道标准设计,2003,5,15-16.
    [72]Nelson J D, Miller J D. Expansive soils:problems and practice in foundation and pavement engineering[M]. New York, Wiley,1992.
    [73]王毅敏,梁波,马学宁等.水泥改良黄土在高速铁路路基中的试验研究[J].兰州交通大学学报(自然科学版),2005,24(4),28-31.
    [74]杨忠诚,王毅敏,封志军.水泥改良黄土程特性的试验研究[J].路基工程,2006,125(2),57-59.
    [75]Khattab S A A, Al-Mukhtar, Fleureau J M. Long-term stability characteristics of a lime-treated plastic soil[J]. Journal of Materials in Civil Engineering,2007,19(4),358-366.
    [76]Borderick G P, Daniel D E. Stabilizing compacted clay against chemical attack[J]. Journal of Geotechnical Engineering,1990,116(10),1549-1567.
    [77]Kolias S, Kasselouri-Rigopoulou V, Karahalios A. Stabilisation of clayey soil with high calcium fly ash and cement[J]. Cement& Concrete Composites,2005,27,301-313.
    [78]Li C, Lin D F. Stabilization treatment of soft subgrade soil by sewage sludge ash and cement[J]. Journal of Hazardous Materials,2009,162,321-327.
    [79]Little D L. Evaluation of structural properties of lime stabilized soils an aggregates, Mixture design and testing protocol for lime stabilized soils Vol.3, National Lime Association Report, http://www.lime. org/soil3.pdf,2000.
    [80]Qubain B S, Seksinsky E J and Li J. Incorporating subgrade lime stabilization into pavement design[R]. Transportation Research Record, National Research Council, Washington D C, 2000,1721,3-8.
    [81]王海俊,余湘娟,殷宗泽等.粉十用作路堤填料的试验研究[J].防灾减灾工程学报,2006,26(4),468-472.
    [82]夏琼,杨有海,耿炕.粉煤灰与石灰、水泥改良黄土填料的试验研究[J].兰州交通大学学报,2008,27(3),40-43.
    [83]孙立川,韩杰.水泥加固土无侧限抗压强度影响因素分析及预测[J].地基处理,1994,5(4),31-37.
    [84]黄鹤,张俐,杨晓强.水泥土材料力学性能的试验研究[J].太原理工大学学报,2000,31(6),705-709.
    [85]Liu E L, Shen Z J. Experimental study on the mechanical behavior and destructured process of artificially structured soils in triaxial compression [J]. Gound Modification and Seismic Mitigation, 2006,152,57-64.
    [86]Sariosseiri F, Muhunthan B. Effect of cement treatment on geotechnical properties of some Washington state soils[J]. Engineering Geology,2009,104,119-125.
    [87]Sangrey D A. Naturally cemented sensitive soils[J]. Geotechnique,1972,22(1),139-152.
    [88]Pillai V S, Muhunthan B. Landslides in cemented and normally consolidated soils:a review of failure mechanism using stress-path[C]. Proceeding of 13th annual Vancouver Geotechnical Society Symposium, Vancouver, British Columbia,1999.
    [89]梁爱华,王建华,赵明龙.水泥改良十剪切波速与压缩强度关系的试验研究[J].铁道建筑设计,2005,1,41-44.
    [90]Lin D, Lin K, Hung M, et al. Sludge ash/hydrated lime on the geotechnical properties of soft soil[J]. Journal of Hazardous Materials,2007,145,58-64.
    [91]Bozbey I, Garaisayev S. Effects of soil pulverization quality on lime stabilization of an expansive clay[J]. Environmental Earth Science,2009.
    [92]曹晓娟,孙明智,孟宪勇.改良土静强度试验及结果分析[J].工程地质学报,2004,12(1),109-112.
    [93]王建华,高玉琴,唐剑潇.路基填料石灰改良土弹性波速与压缩强度的相关性[J].天津大学学报,2007,40(4),399-404.
    [94]雷胜友,惠会清.膨胀土及其改良土静动力特性对比分析[J].岩石力学与工程学报,2004,23(17),3003-3008.
    [95]Bouazza A, Kwan P S, Chapman G. Strength properties of cement treated coode island silt by the mixing method[J]. Geotechnical Engineering for Transportation Projects ASCE,2004,1421-1428.
    [96]Hermandez-Martinez F G, Al-Tabbaa A. Laboratory strength correlations for cement-treated peat[J]. Geotechnical Engineering for Transportation Projects,2004,1403-1411.
    [97]Nilo C C, Francisco D R, Anderson F. Plate load tests on cemented soil layers overlaying weaker soil[J]. Journal of Geotechnical and Geoenviromental Engineering, 2009,135(12),1846-1856.
    [98]Vesic A S. "Section 3:Bearing capacity of shallow foundations." Foudation engineering handbook[M]. Winterkorn H F, Fang H Y and Van Nostrand Reinhold, New York,121-147,1975.
    [99]王炳龙,方卫民,周顺华等.高速铁路路基填料改良离心试验研究[J].上海铁道大学学报,1999,20(10),22-26.
    [100]Murthy R, Nazarian S, Picornell M. Dynamic properties of naturally-cemented soils[J]. Geotechnical Earthquake Engineering and Soil Dynamics IV,2008,181,1-7.
    [101]Baig S, Picornell M, Nazarian S. Low strain shear moduli of cemented sands[J]. Journal of Geotechnical and Geornvironmental Engineering,1997,123(6),540-545.
    [102]Chiang Y C, Chae Y S. Dynamic properties of cement-treated soils[R]. Highway Research record No.379, Highway Research Board,1972,39-51.
    [103]Acar Y B, El-Tahir E A. Low strain dynamic properties of artificially cemented sand[J]. Journal of Geotechnical Engineering, ASCE,1986,112(11),1001-1005.
    [104]Saxena S K, Avramidis A S, Reddy K R. Dynamic moduli and damping ratios for cemented sands at low strains[J]. Journal of Candian Geotechnical,1988,25(2),353-368.
    [105]郭大进,王旭东.水泥十动态模量试验的分析[J].公路交通科技,2000,17(5),18-20.
    [106]王建华,冯十伦.水泥粉质粘土的疲劳强度及失水程度的影响[C].第六届全国土动力学学术会议论文集,北京,中国建筑工业出版社,2002,114-117.
    [107]杨广庆.水泥改良十的动力特性试验研究[J].岩石力学与工程学报,2003,22(7),1156-1160.
    [108]杨广庆,管振样.高速铁路路基改良填料的试验研究[J].岩土工程学报,2001,21(6),682-686.
    [109]段俊彪.水泥及石灰改良土填料动力特性试验分析[J].铁道勘察,2006,39-41.
    [110]孙明智.改良土的临界动应力及动静比[J].路基工程,2004,2,30-32.
    [111]He J Q, Zhang J S, Yang J S. Experimental study on dynamic properties of lime treated soil[J]. Ground modification and seismic mitigation,2006,152,81-88.
    [112]贺建清,张家生.石灰土填料动力特性试验研究[J].湖南科技大学学报(自然科学版),2005,20(4),58-63.
    [113]李继祥,贺建清,张家生.石灰土填料在动载作用下弹性模量的试验研究[J].岩石力学与工程学报,2005,24(增1),4715-4719.
    [114]Akoto B K A, Singh G. Behavior of lime-stabilized laterite under repeated loading[J]. Australian Road Reaearch,1986,16(4),259-267.
    [115]Bhattacharya P G. Fatigue test set-up for lime soil mixtures[J]. Journal of the Institution of Engineering Part CI:Civil Engineering Division,1987,68(3),130-135.
    [116]Fahoum K, Aggour M S, Amini F. Dynamic prosperity of cohesive soils treated with lime[J]. Journal of Geotechnical Engineering,1996,122(5),382-389.
    [117]Au W C, Chae Y S. Dynamic shear modulus of treated expansive soils[J]. Journal of Soil Mechanics and Foundation Engineering Division,1980,106(3),255-273.
    [118]Bahrekazemi M, Bodare A. Effects of lime-cement soil stabilization against train induced ground vibrations[J]. Grouting and ground treatment,2003,563-574.
    [119]Vatsala B A, Nova R, Srinivasa Murthy B R. Elastoplastic model for cemented soils[J]. Journal of Geotechnical and Geoenviromental Engineering,2001,679-681.
    [120]Nagaraj T S, Srinivasa Murthy B R, Vatsala B A. Prediction of soil behavior-part3-cemented saturated soils[J]. Journal of Indian Geotechnical,1991,21(2),169-186.
    [121]Rinaldi V A, Capdevila J A. Effect of cement and saturation on the stress-strain behavior of a slity clay[J]. Unsaturated Soils, ASCE,2006,1157-1168.
    [122]Denhaan E J, Jansen H L, Koehorst B AN, et al. Evaluation of test embankment on organic soil reinforced by cement-stabilized soil columns-Hoeksche Waard, Netherlands[J]. Soft Ground Technology.445-459.
    [123]Camusso M, Barla M. Microparameters calibration for loose and cemented soil when using particle methods[J]. International Journal of Geomechanics,2009,9(5),217-229.
    [124]童小东,龚晓南,蒋永生.水泥加固十的弹塑性损伤模型[J].工程力学,2002,19(6),33-38.
    [125]陈四利,宁宝宽等.水泥十细观破裂过程的损伤本构模型[J].岩土力学,2007,28(1),93-96.
    [126]陈善民,王立忠,李挺等.水泥十动力特性室内试验及复合地基抗震特性分析[J].浙江大学学报,2000,4,398-403.
    [127]唐剑潇,王建华,赵明龙.重载路基水泥填料十的动应力应变关系[J].低温建筑技术,2007,116(2),76-78.
    [128]曾阳生,张佩知,顾琦.石灰膨胀上的动力特性[J].长沙铁道学院学报,1992,10(3), 9-14.
    [129]Chamberlain E J, Gow A J. Effect of freezing and thawing on the permeability and structure of soils[J]. Engineering Geology,1979,13,73-92.
    [130]Eigenbord K D. Effects of cyclic freezing and thawing on volume changes and permeabilities of soft fine-grained soils[J]. Canadian Geotechnical Journal,1996,33(4),529-537.
    [131]Kim W, Daniel DE. Effects of freezing on hydraulic conductivity of compacted clay[J]. Journal of Geotechnical Engineering,1992,118(7),1083-1097.
    [132]Eigenbrod K D, Knutsson S, Sheng D. Pore-water pressures in freezing and thawing fine-grained soils[J]. Journal of Cold Regions Engineering.1996,10(2),77-92.
    [133]Benson C H, Abichou T H, Olson M A, et al. Winter effects on hydraulic conductivity of compacted clay[J]. Journal of Geotechnical Engineering,1995,121(1),69-79.
    [134]Qi J, Ma W, Song C. Influence of freeze-thaw on engineering properties of a silty soil[J]. Cold Regions Science and Technology,2008,53(3),397-404.
    [135]杨成松,何平,程国栋等.冻融作用对土体干容重和含水量影响的试验研究[J].岩石力学与工程学报,2003,22(增2),2695-2699.
    [136]Konard J M. Physical process during freeze-thaw cycles in clayey soils[J]. Cold Regions Science and Technology,1989,16,291-303.
    [137]Viklander P. Permeability and volume changes in till due to cyclic freeze-thaw[J]. Canadian Geotechnical Journal,1998,35,471-477.
    [138]王家澄,程国栋,张宏鼎等.饱水砂土反复冻融时成冰条件的试验研究[J].冰川冻土,1992,14(2),101-106.
    [139]Zhang D, Wang S. Mechanism of freeze-thaw action in the process of soil salinization in northeast China[J]. Enviromental Geology,2001,41,96-100.
    [140]李述训,程国栋.冻融十中的水热输运问题[M].兰州,兰州大学出版社,1995.
    [141]李述训,南卓铜,赵林.冻融作用对系统与能量间能量交换的影响[J].冰川冻十,2002,24(2),109-115.
    [142]郑琦宏,张殿发,宣亮.冻融条件下封闭体系中十壤水分运移规律模拟研究[J].宁波大学学报(理工版),2006,19(1),81-84.
    [143]Chamberlain E J, Cole D M, Johnson T C. Resilient modulus and Poisson's ratio for frozen and thawed silt and clay subgrade materials[A]. ASCE, Special Conf. Appl. Of Soil Dyn in Cold Reg., San Francisco, Preprint 1977, No.3011.
    [144]Cole D M, Bently D, Durell G et al. Resilient modulus of freeze-thaw affected granular soils for pavement design and evaluation [J]. USA Cold Regions Research and Engineering Laboratory,1986,84-86.
    [145]Johnson T C, Cole D M, Chamberlain E J. Influence of freezing and thawing on the resilient properties of a silt beneath an asphalt concrete pavement[J]. USA Cold Regions Research and Engineering Laboratory, CRREL Report,1978,78-23.
    [146]Johnson T C, Cole D M, Chamberlain E J. Effects of freeze-thaw cycles on resilient properties of fine-grained soils[J]. Engeering Geology,1979,13,247-276.
    [147]Berg L, Bigl S R, Stark J A, et al. Resilient modulus testing of materials from Mn/ROAD[J]. Phase 1,USA Cold Regions Research and Engineering Laboratory, CRREL Report9, 1996,6-19.
    [148]Fredlund D G, Bergan A T, Sauer E K. Deformation characterization of subgrade soils for highways in northern environments[J]. Journal of Canadian Geotechnical,1975,12,213-223.
    [149]Lee W, Bohra N C, Altschaeffl A G, et al. Resilient modulus of cohesive soil and the effect of freeze-thaw[J]. Journal of Canadian Geotechnical,1995,32,559-568.
    [150]Simonsen E, Janoo V C, Isacsson U. Resilient properties of unbound road materials during seasonal frost conditions [J]. Journal of Cold Regions Engineering,2002,16(1),28-50.
    [151]Yong R N, Boonsinsuk P, Yin C W P. Alternation of soil behavior after cyclic freezing and thawing[A]. In Proceedings of 4th International Symposium on Ground Freezing[C]. Rotterdam, the Netherlands A A, Balkema,1985,187-195.
    [152]Borms B B, Yao L YC. Shear strength of a soil after freezing and thawing[J]. Journal of the Soil Mechanics and Foundations Division,1964,90(4),1-26.
    [153]Swan C, Greene C. Freeze-thaw effects on Boston Blue clay[J]. Journal of Engineering and Applied Science, Soil Improvement for Big Digs,1998,81,161-176.
    [154]Aoyama K, Ogawa S, Fukuda M. Temperature dependencies of mechanical properties of soils subjected to freezing and thawing[A]. In Proceedings of the 4th International Symposium on Ground Freezing[C]. Rotterdam, the Netherlands A A, Balkema,1985,217-222.
    [155]齐吉琳,张建明,朱元林.冻融作用对土结构性影响的土力学意义[J].岩石力学与工程学报,2003,22(增2),2690-2694.
    [156]齐吉琳,马巍.冻融作用对超固结土强度的影响[J].岩土工程学报,2006,28(12),2082-2086.
    [157]Ogata N, Kataoka T, Komiya A. Effect of freezing thawing on the mechanical properties of soil[A]. In Proceedings of the 4th International Symposium on Ground Freezing[C]. Rotterdam, the Netherlands A A, Balkema.1985,201-207.
    [158]Wang D, Ma W, Niu F, et al. Effects of cyclic freezing and thawing on mechanical properties of Qinghai-Tibet clay[J]. Cold Regions Science and Technology.2007,48,34-43.
    [159]和礼红.粉质黏土在冻融循环下的力学效应及其结构性研究[D].湖北:中国科学院武汉岩十力学研究所,2004.
    [160]冯勇,何建新,刘亮等.冻融循环作用下细粒十抗剪强度特性试验研究[J].冰川冻土,2008,30(6),1013-1017.
    [161]孙红,葛修润,牛富俊等.上海粉质粘土的三轴CT实时细观试验[J].岩石力学与工程学报,2005,24(24),4559-4564.
    [162]Sunil A, Ahmet H.A. Class f fly-ash-amended soils as highway base materials[J]. Journal of Materials in Civil Engineering.2005,17 (6),640-649.
    [163]Parsons R L, Milburn J P. Engineering behavior of stabilized soils[C]. Proc.82nd Annual Meeting, Transportation Research Board.2003.
    [164]Shihata S A, Baghdadi Z A. Simplified method to assess freeze-thaw durability of soil cement[J]. Journal of Materials in Civil Engineering.2001,4(13),243-247.
    [165]Thompson M R, Dempsey B J. Autogeneous healing of lime soil mixture[R]. Highway Research Record No.263,1969,1-7.
    [166]Janoo V C, Firicano A J, Barna L A, et al. Field testing of stabilized soil[J]. Journal of Cold Regions Engineering,1999,13(1),37-53.
    [167]马巍,徐学祖,张立新.冻融循环对石灰粉土剪切强度特性的影响[J].岩十工程学报,1999,21(2),158-160.
    [168]宁宝宽,陈四利,刘斌.冻融循环对水泥土力学性质影响的研究[J].低温建筑技术,2004,101(5),10-12.
    [169]徐实,杨有海,耿煊等.石灰改性黄土的强度特性试验研究[J].兰州交通大学学报(自然科学版),2006,25(6),97-100.
    [170]Sauer E K, Weimer N F. Deformation of lime modified clay after freeze-thaw[J]. Transportation Engineering Journal,1978,104(2),201-212.
    [171]Blanchard D, Fremond M. Mecannique des sols et milieux poreux[J]. C.R. Acad. Sci. Paris,1985a,14,637-642.
    [172]Blanchard D, Fremond M. Soils frost heaving and thaw settlement[C]. Proc.4th Int. Symp. on Gound Freezing, 1985b,1-8.
    [173]Neaupane K M, Yamabe T, Yoshinaka R. Simulation of a fully coupled thermo-hydro-mechanical system in freezing and thawing rock[J]. Int. Journal of Rock Mechanical Min. Sci,1999,36,563-580.
    [174]Exadaktylos G E. Freezing-thawing model for soils and rocks[J]. Journal of Materials in Civil Engineering,2006,18(2),241-249.
    [175]Simonsen E, Janoo V C, Isacsson U. Prediction of pavement response during freezing and thawing using a finite element approach[J]. ASCE, Cold Regions Engineering,1997,11 (4),308-324.
    [176]Simonsen E, Janoo V C, Isacsson U. Prediction of temperature and moisture changes in pavement structures[J]. ASCE, Cold Regions Engineering,1997,11 (4),291-307.
    [177]戴文亭,魏海斌,刘寒冰等.冻融循环下粉质黏土的动力损失模型[J].吉林大学学报(工学版),2007,37(4),790-793.
    [178]陈湘生,濮家骝,殷昆亭等.地基冻-融循环离心模型试验研究[J].清华大学学报(自然科学版),2002,42(4),531-534.
    [179]Seed HB, Chan CK, Monismith CL. Effects of repeated loading on the strength and deformation of compacted clay[J]. Highway Research Record,1955,34:541-558.
    [180]Seed HB, Chan CK, Lee CE. Resilience Characteristics of Subgrade Soils and Their Relation to Fatigue Failure in Asphalt Pavement[A].Proc, International Conference on Structural Design of Asphalt Pavement[C]. University of Michigan,1962,611-636.
    [181]Chen DH, Zaman MM, Laguro JG. Resilient moduli of aggregate materials variability due to testing procedure and aggregate type[J].Transportation Research Record No 1462, Transportation Research Board, National Research Council,1994,57-64.
    [182]叶阳升.饱和软黏土在单向循环荷载作用下变形特性的研究[D].北京:铁道部科学研究院,1996.
    [183]郭莹,贺林.振动频率对饱和砂土液化强度的影响[J].防灾减灾工程学报,2009,29(6),618-623.
    [184]Lee K L. Cyclic strength of a sensitive clay of eastern Canada[J]. Canadian Geotechnical Journal,1979,16(1),163-176.
    [185]Hyodo M, Yasuhara K, Hirao K. Prediction of clay behaviour in undrained and partially drained cyclic triaxial tests[J]. Soils and Foundations,1992,32(4),117-127.
    [186]陈颖平,黄博,陈云敏.循环荷载作用下结构性软粘土的变形和强度特性[J].岩十工程学报,2005,27(9),1065-1071.
    [187]Heath D L, Shenton M J, et al. Design of conventional rail track foundation[J]. Proc. Inst. Civil Engineering,1972,51,251-267.
    [188]铁道部科学研究院铁道建筑研究所.路基土动力特性的试验研究[R].北京:铁道部科学研究院铁道建筑研究所,1986.
    [189]蔡英,曹新文.重复加载下路基填土的临界动应力和永久变形初探[J].西南交通大学学报,1996,31(1):1-5.
    [190]Zaman M M, Naji K N. Effect of freeze-thaw cycles on class C fly ash stabilized aggregate base [C]. Proc,82nd Annual Meeting, Transportation Research Board.2003.
    [191]Ishihara K, Towhata I. Sand response to cyclic rotation of principal stress directions as induced by wave loads[J]. Soils and Foundations,1983,23(4):11-26.
    [192]Ishihara K. Soil response in cyclic loading induced by earthquakes, traffic and waves[A]. Proceedings of the 7th Asian Regional Conference on Soil Mechanics and Foundation Engineering[C], Haifa, Israel,1983,2:42-66.
    [193]王常晶.列车移动荷载作用下地基的动应力及饱和软粘土特性研究[D].杭州:浙江大学,2006.
    [194]刘建坤.路基工程[M].北京:中国建筑工业出版社,2006.
    [195]Mohammad, L. N., Titi, H. H., and Herath, A.2002. Effect of moisture content and dry unit weight on the resilient modulus of subgrade soils predicted by cone penetration test. Louisiana Transportation Research Center Rep. No. FHWA/LA-00/355, Federal Highway Administration, Texas A&M Univ., College Station, Tex.
    [196]Miller, G. A. and S. Azad.2000. Influence of soil type on stabilization with cement kiln dust. Construction and Building Materials 14:89-97.
    [197]韩自立,张千里.既有线提速路基的对策研究[J].中国铁道科学,2002,23(2):53-58.
    [198]Simth W S, Nair K. Development of procedure for characterization of untreated granular base coarse and asphalt-treated base coarse materials[J]. Rep. No. FHWA-RD-74-61, Federal Highway Administration, Washington, D C.1973.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700