电液伺服系统位置与压力控制转换过程的加减速算法与仿真
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着机械加工自动化程度和机械加工精度的提高,电液伺服系统需要进行位置控制与压力控制切换的场合越来越多。研究位置与压力切换的控制过程至关重要。
     本文以连铸机液压控制系统为例,对该伺服系统位置控制和压力控制各个环节进行分析和建模,建立伺服系统的位置控制模型和压力控制模型,并在simulink中进行仿真,为分析位置控制与压力控制的特点提供依据。
     针对位置控制与压力控制的特点,仔细分析了位置控制系统与压力控制系统进行切换的系统耦合方式,并介绍了不同耦合方式的特点和国内外研究状况,并参考力士乐公司轴运动控制器HNC100介绍了各种位置和压力切换的方式,在此基础上,提出了基于并联耦合方式的变加减速算法,据此算法得到的S曲线可以用于位置与压力控制的平稳切换,解决切换的冲击问题。
     本文基于变加减速算法给出了S曲线的推导过程,建立了变加减速算法的通用公式,并在simulink中建立变加减速算法的模型,对该模型进行仿真以验证算法的可行性。在仿真过程中,根据并联耦合方式将位置控制系统与压力控制系统进行耦合,将变加减速控制算法加入到位置和压力耦合的控制系统中,建立包含切换过程的系统模型,借助于仿真软件Matlab6.5/SIMULINK对所建立的系统模型进行仿真。
     仿真结果表明,在进行位置控制向压力控制切换时采用变加减速算法可以很好地实现执行元件在切换过程中压力和位置平滑切换,达到切换过程无冲击的要求,证实了本文提出的变加减速算法的可行性和正确性。
With the increase of machining automation and machining accuracy ,the occasions of using switch between position control and pressure control of Electro-hydraulic servo system is also getting more and more,So the research on switch control process of position control and pressure control is very important.
     Based on the hydraulic control system of continuous casting machine, this paper analyzed and modeled each link of position control and pressure control servo system , it also established the models of position control and pressure control servo system ,and simulateed those modles in simulink software, and provided the basis for analyzing the characteristics of Position control and pressure control.
     According to characteristic of position control system and pressure control system, this paper analyzed the coupling way of switching system of position control system and pressure control system carefully, and introduced the characteristics of different coupling way and research progress of domestic and abroad, it also introduced various switch modes of position and pressure referring to rexroth axis motion controller HNC100 , this paper provided a changing acceleration and deceleration algorithmve based on parallel coupling manner, and obtained the S-curve algorithm which can be used to achieve a smooth switch between position and pressure control and solved the impact problem while switching.
     In this paper, it deduced the process of the S-curve algorithm based on changing acceleration and deceleration algorithmve, and established the universal formula of changing acceleration and deceleration algorithmve, and created the model of acceleration and deceleration algorithm in the simulink software, then simulated the model to validate the feasibility of the algorithm. In the simulation process, according to the parallel coupling way to couple the position control system and pressure control system, it added changing acceleration and deceleration control algorithm to the position and pressure coupled control system to build the system model of the switching process , is also simulated the established model by mean of simulation software of matla6.5/simulink.
     Simulation results showed that using changing acceleration and deceleration algorithm can achieve smoothly switch of position and pressure during the switch proces of position control convert to pressure control, which confirmed that the proposed changing acceleration and deceleration algorithm is feasible and correct.
引文
[1]黄人豪.关于中国工业液压和控制技术的发展的一些思考和建议.液压气动与密封(J).2009,(1):5-8.
    [2]GaoFengYang. Single pressure compensative of non-symmetric cylinder electro-hydraulic servo system[J]. Shenyang Jianzhu Daxe Xuebao,2005,21(4):403-406.
    [3]吴晓明,栾海英,张强,王益群.热轧带钢地下卷取机踏步系统的应用研究.液压与气动(J).2003,(10):46-48
    [4]权龙,许小庆等.电液伺服位置、压力复合控制原理的仿真及实验.机械工程学报(J).2008,44,(9):100-105.
    [5]QuanLong,XuXiaoQing.Simulation and test of electro-hydraulic servo position and pressure hybrid control principle[J]. Jixie Gongcheng Xuebao,2008,44(9):100-105.
    [6]BOES C.Hydraulische Achsantriebe im digitalen Regelkreis[D].Aachen:RWTH,1995.
    [7]Murrenhoff H.Servohydraulik Umdruck zu Vorlesung[M].Aachen:RWTH,1995.
    [8]王益群,吴晓明等.热连轧卷取机电液伺服控制系统的设计.液压气动与密封(J).2002,(5):1-3.
    [9]刘左东.热轧地下卷取机助卷系统仿真分析[D].河北:河北理工大学,2006.
    [10]童朝南,黄国强.液压伺服双环控制系统的在线仿真.计算机仿真(J).2007,24,(11):304-307.
    [11]于建均等.基于双闭环的液压伺服系统控制[J].北京工业大学学报,2007,3.
    [12]张翼南.电液轴控制系统在压机中的应用.液压气封及密封[J].2005,(2):39-41.
    [13]YuJin,LiYuan.Simulation on electro-hydraulic proportional position control system under pressure boundary conditions[J]. Advanced Materials Research,2011,186:21-25.
    [14]ZhaoYanNan.Position control of hydraulic servo sysrem based on state observer and feedforward[J].Proc- IEEE Int. Conf. Intelligent Comput. Intelligent Syst,2009,4:136-140.
    [15]Zhang,ZhuXin.Position-velocity based force feedback scheme of master-slave hydraulic servo control system[J].WCICA,2010.
    [16]朱晓春,屈波.S曲线加减速控制方法研究.中国制造业信息化:学术版.2006,35(12):38-40.
    [17]郭新贵,李从心.S曲线加减速算法研究.机床与液压[J].2002,(5):60-62.
    [18]商允舜.CNC数控系统加减速控制方法研究及实现[D].浙江:浙江大学硕士论文,2006.
    [19]许良元,桂贵生.加速度连续可变的加减速控制规律.组合机床及自动化加工技术[J].2005(3)
    [20]张振华.数控系统加减速算法及定位技术研究[D].辽宁:大连理工大学硕士论文,2007.
    [21]严彩忠,舒志兵.变加减速算法在位置伺服系统中的应用与分析.机械制造(J).2007,45(1):26-28.
    [22]陶磊.结晶器调宽油缸性能分析及其试验台设计[D].辽宁:东北大学硕士论文,2007.
    [23]YangBo. Position servo control of industrial heavy-load hydraulic system[J]. Kong Zhi Li Lun Yu Ying Yong ,2010,27(1):121-125.
    [24]许益民.电液比例控制系统分析与设计[M].北京:机械工业出版社,2005.
    [25]梁利华.液压传动与电液伺服系统.哈尔滨:哈尔滨工程大学出版社,2005.
    [26]李洪人.非对称缸电液伺服系统分析和设计.机床与液压.2008.
    [27]叶湘滨等.传感器与测试技术.北京:国防工业出版社,2007
    [28]童诗白,华成英.模拟电子技术基础(第三版)[M].北京:高等教育出版社,2003.
    [29] Merritt H E.Hydraulic control systems.New York:Jhon Wiley,1986:36~45.
    [30]路甬祥,胡大紘.电液比例控制技术[M].北京:机械工业出版社,1988.
    [31]吴根茂等.新编实用电液比例技术[M].杭州:浙江大学出版社,2006,9.
    [32]WangJinHua.Experimental study of the pressure discharge process for the hydraulic control rod drive system stepped cylinder[J].Journal of nuclear science and technology,2002,39(12)1294-1298
    [33]BaiYangLong,Quan Long.Control strategy of the electro-hydraulic position and speed hybrid servo system[J].Jixie Gongcheng Xuebao,2010,48(24):150-155.
    [34]王春行.液压控制系统[M].北京:机械工业出版社,2006.
    [35]胡寿松.自动控制原理.北京:国防工业出版社,1984.
    [36]Gene F. Franklin, J. David Powell, Abbas Emami-Naeini.自动控制原理与设计.北京:人民邮电出版社,2007.
    [37]张旺.自动控制原理.北京.北京理工大学出版社,1994.
    [38]REXROTH.Propotional and Serve technology.The Hydraulic Trainer Volume2. REXROTH,2003.
    [39]宁振雷,权龙.钢坯修磨机压下系统仿真及实验研究.液压气动与密封(J).2009,(4):25-28.
    [40]杨叔子,杨克冲等.机械工程控制基础[M].武汉:华中科技大学出版社,2002,1.
    [41]李海涛,邓樱.MATALAB程序设计教程.北京:高等教育出版社,2004.
    [42]薛定宇,陈阳泉.基于MATALAB/SIMULINK的系统仿真技术与应用.北京:清华大学出版社,2002.
    [43]李海涛,邓樱.MATLAB程序设计教程[M].北京:高等教育出版社,2002.
    [44]刘白雁,陈新元,傅连东.机电系统动态仿真[M].北京:机械工业出版社,2005.
    [45]张若青,罗学科,王民.控制工程基础及MATLAB实践[M].北京:高等教育出版社,2008.
    [46]YangJunHua.Experimental research on hydraulic system pressure surge of high speed forging hydraulic press[J]. Journal of Fire Sciences,1995,13(4):14-16.
    [47]Peter D.Hydraulic control systems design and analysis of theirdynamics.New York: Spnnger Verlag,1986:34~45.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700