河外伽马射线背景研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
河外伽马射线背景起源是一个重要但是没有解决的问题,它可能是由一些真正的弥散源所贡献,也可能是一些未被分解的点源所贡献。真正弥散源包括暗物质湮灭或衰变所辐射的伽马光子,或宇宙大尺度结构形成过程中激波所加速的高能粒子的辐射等。费米伽马射线太空望远镜上天后,尽管其灵敏度、角分辨率和有效面积相比以前的仪器有着革命性的提高,探测到了更多的河外点源,但是这些点源总的流量只是河外伽马射线背景的一小部分,距离直接分解河外伽马射线背景还有很大的距离。
     图像叠加法是一种可以大大提高图像信噪比,从而充分利用现有数据的方法。我们利用此方法对一些可能的、还未被直接探测到的伽马射线点源样本叠加,然后利用最大似然法求其总流量,从而得出它们对河外伽马射线背景的贡献。
     我们首先对AT20G样本进行叠加,发现其对河外伽马射线背景贡献为8.4%,小于由射电流量和伽马射线流量相关关系得到的比例。但是我们的方法更加直接。这表明由某类天体其它波段流量(或光度)和伽马射线流量(或光度)相关关系来得到其对河外伽马射线背景贡献有很大的不确定性。
     然后我们对FIRST进行叠加,此样本对河外伽马射线背景贡献为61.4%.但是其低射电流量的子样本的伽马射线流量不可忽略。考虑到FIRST样本为一流量限样本且在低流量处并不完备,则可以预期,如果此样本流量限更低且更加完备,则样本对河外伽马射线背景的贡献将会更大。但是具体贡献值则很难确定,这依赖于更暗源的数密度分布以及射电、伽马射线流量关系,然而两者目前都不确定。但是考虑到一些不能被FIRST示踪类型源,例如普通星系、射电宁静类星体等也可以贡献一部分河外伽马射线背景,可以认为点源即使不能完贡献全部也可也贡献绝大部分的河外伽马射线背景,标准天体物理模型可以解释全部的河外伽马射线背景起源。
The origin of the extragalactic gamma-ray background (EGB) is one of thefundamental unsolved problems in astrophysics. The EGB could originate fromeither truly difuse processes or from unresolved point sources. Truly difuseemission can arise from some processes such as the annihilation of dark matter,the emission of high energy particles accelerated by intergalactic shocks which areproduced during large scale structure formation, etc. Now, only a small fractionof the extragalactic gamma-ray emission is resolved into point sources.
     For a sample of possible γ-ray point sources that have not been detected bythe Fermi due to their faint fuxes or soft spectra, we can stack a large numberof them to improve the statistics. If their fuxes are not too faint, we can derivetheir mean fux and photon index by a maximum likelihood method.
     Applying the method to the Australia Telescope20GHz Survey sourcesundetected by the LAT, we found that these sources contribute about8.4%ofthe EGB. which are much smaller than the result (17%) of Ghirlanda et al.[51].But our method is more directly.
     Then, we use the method of image stacking to FIRST sources, and fnd thatthe FIRST sources undetected by the LAT can contribute about61.4%of theEGB. Considering the fux limit and incompleteness of the sample at the faintlimit, and the contribution of the fainter radio subsample to the EGB cannotbe ignored, we think that the point sources must contribute most of the EGB.The main contributor of the EGB maybe blazars, non-blazars AGNs, starburstgalaxies, and the sources cannot traced by the FIRST survey (including normalgalaxies and radio-quiet AGNs). Even though it is difcult to derive the fractionof each population contributing to the EGB using ours method alone, it is clearthat standard astrophysical scenarios can be invoked to explain the EGB.
引文
[1] Abdo, A. A., et al. Fermi/Large Area Telescope Bright Gamma-Ray SourceList. ApJs,2009(183):46–66
    [2] Abdo, A. A., et al. Detection of Gamma-Ray Emission from the StarburstGalaxies M82and NGC253with the Large Area Telescope on Fermi. ApJ,2010(709): L152–L157
    [3] Abdo, A. A., et al. The First Catalog of Active Galactic Nuclei Detectedby the Fermi Large Area Telescope. ApJ,2009(715):429–457
    [4] Abdo, A. A., et al. The Fermi-LAT High-Latitude Survey: Source Coun-t Distributions and the Origin of the Extragalactic Difuse Background.ApJ(720):435–453
    [5] Abdo, A. A., et al. Fermi Large Area Telescope Observations of MisalignedActive Galactic Nuclei. ApJ,2010(720):912–922
    [6] Abdo, A. A., et al. Fermi Large Area Telescope First Source Catalog. ApJs,2010(188):405–436
    [7] Abdo, A. A., et al. Spectrum of the Isotropic Difuse Gamma-Ray EmissionDerived from First-Year Fermi Large Area Telescope Data. Physical ReviewLetters,2010(104):101101
    [8] Nolan, P. L., et al. Fermi Large Area Telescope Second Source Catalog.ApJs,2012(199):31–77
    [9] Ackermann, M., et al. The Second Catalog of Active Galactic Nuclei De-tected by the Fermi Large Area Telescope. ApJ,2011(743):171–208
    [10] Aharonian, F., et al. Is the giant radio galaxy M87a TeV gamma-rayemitter? A&A,2003(403): L1–L4
    [11] Ahn, E. J., et al. Impact of astrophysical processes on the gamma-ray back-ground from dark matter annihilations. Phys. Rev. D,2007(76):023517
    [12] Ando, S.,&Kusenko, A. Evidence for Gamma-ray Halos Around ActiveGalactic Nuclei and the First Measurement of Intergalactic Magnetic Field-s. ApJ,2010(722): L39–L44
    [13] Angel, J. R. P., Stockman, H. S. Optical and infrared polarization of activeextragalactic objects. ARA&A,1980(18):321–361
    [14] Anton, S.,&Browne, I. W. A. The recognition of blazars and the blazarspectral sequence. MNRAS,2005(356):225–231
    [15] Arbeiter, C., Pohl, M., Schlickeiser, R. The infuence of dust on the inverseCompton emission from jets in Active Galactic Nuclei. A&A,2002(386):415–426
    [16] Atwood, W. B., et al. The Large Area Telescope on the Fermi Gamma-RaySpace Telescope Mission. ApJ,2009(697):1071–1102
    [17] Bai, J. M.&Lee, Myung Gyoon. New Evidence for the Unifed Scheme ofBL Lacertae Objects and FR I Radio Galaxies. ApJ,1994(548):244–248
    [18] Bai, J. M.&Lee, Myung Gyoon. Are Centaurus A and M87TEV Gamma-Ray Sources? ApJ,2001(549): L173–L177
    [19] Bassani, L., Landi, R., Malizia, A., et al. IGR J22517+2218=MG3J225155+2217: A New Gamma-Ray Lighthouse in the Distant Universe.ApJ,2007(669): L1–L4
    [20] Becker, R. H., White, R. L.,&Helfand, D. J. The FIRST Survey: FaintImages of the Radio Sky at Twenty Centimeters. ApJ,1995(450):559
    [21] Belikov, A. V.,&Hooper, D. Contribution of inverse Compton scatteringto the difuse extragalactic gamma-ray background from annihilating darkmatter. Phys. Rev. D,2010(81):043505
    [22] Bhattacharya, D., Sreekumar, P.,&Mukherjee, R. Contribution from un-resolved discrete sources to the extragalactic gamma-ray background (E-GRB). RAA,2009(9):1205–1214
    [23] Bhattacharya, D.,&Sreekumar, P. Contribution from normal and star-burst galaxies to the extragalactic gamma-ray background (EGRB). RAA,2009(9):509–519
    [24] Blandford, R. D.,&KAonigl, A. Relativistic jets as compact radio sources.ApJ,1979(232):34–48
    [25] Blandford, R. D.,&Levinson, A. Pair cascades in extragalactic jets.1:Gamma rays. ApJ,1995(441):79–95
    [26] Blandford, R. D.,&Payne, D. G. Hydromagnetic fows from accretion discsand the production of radio jets. MNRAS,1982(199):883–903
    [27] Blandford, R. D.,&Rees, M. J. A’twin-exhaust’ model for double radiosources. MNRAS,1974(169):395–415
    [28] Blandford, R. D.,&Rees, M. J. Extended and compact extragalactic radiosources Interpretation and theory. PhyS,1978(17):265–274
    [29] Bloom S. D.,&Marscher A. P. An Analysis of the Synchrotron Self-Compton Model for the Multi Wave Band Spectra of Blazars. ApJ,1996(461):657–663
    [30] Bondi, M., et al. Intermediate BL Lac objects. MNRAS,2001(325):1109-1123
    [31] Bottcher, M. Leptonic Jet Models of Blazars: Broadband Spectra andSpectral Variability, In American Institute of Physics Conference Series,2000(515):31
    [32] Browne, I. W. A. Is it possible to turn an elliptical radio galaxy into a BLLac object? MNRAS,1983(204):23–27
    [33] Camenzind, M. Centrifugally driven MHD-winds in active galactic nuclei,A&A,1986(156):137–151
    [34] Cao, X. W.,&Bai, J. M. How Many Radio-loud Quasars Can Be Detectedby the Gamma-Ray Large Area Space Telescope? ApJ,2008(673): L131—L134
    [35] Chiang, J. Fermi-LAT Observations of Blazars. TeV Particle astrophysics,2009, July13-17, California.[http://www-conf.slac.stanford.edu/tevpa09/]
    [36] Cuoco, A., Sellerholm, A., Conrad, J.,&Hannestad, S. Anisotropies in thedifuse gamma-ray background from dark matter with Fermi LAT: a closerlook. MNRAS,2010(414):2040–2054
    [37] Dermer, C. D. Statistics of Cosmological Black Hole Jet Sources: BlazarPredictions for the Gamma-Ray Large Area Space Telescope. ApJ,2007(659):958–975
    [38] Dermer, C. D., Sturner, S. J., Schlickeiser, R. Nonthermal Comptonand Synchrotron Processes in the Jets of Active Galactic Nuclei. ApJs,1997(109):103–137
    [39] Dermer, C. D., et al. High-energy gamma radiation from extragalactic radiosources. A&A,1992(256): L27–L30
    [40] Dermer, C. D.&Schlickeiser, R. Model for the High-Energy Emission fromBlazars. ApJ,1993(416):458–484
    [41] Dobler, G., Cholis, I., Weiner, N. The Fermi Gamma-Ray Haze from DarkMatter Annihilations and Anisotropic Difusion. ApJ,2011(741):25–+
    [42] Esposito, J. A., et al. EGRET Observations of Radio-bright SupernovaRemnants. ApJ,1996(461):820–+
    [43] Fichtel, C. E., et al. High-energy gamma-ray results from the second smallastronomy satellite. ApJ,1975(198):163–182
    [44] Fields, B. D., Pavlidou, V., Prodanovi′c, T. Cosmic Gamma-ray Back-ground from Star-forming Galaxies. ApJ,2010(722), L199–L203
    [45] Foschini, L. et al. XMM-Newton observations of a sample of γ-ray loudactive galactic nuclei. A&A,2006(453):829–838
    [46] Fossati, G., Maraschi, L., Celotti, A., Comastri, A.,&Ghisellini, G. Aunifying view of the spectral energy distributions of blazars. MNRAS,1998(299):433–448
    [47] Gabici, S.,&Blasi, P. The gamma ray background from large scale struc-ture formation. APh,2003(19):679–689
    [48] Gao, X. Y., Wang J. C., Zhou, M. External photon felds in Fermi brightblazars. RAA,2011(11):902–908
    [49] Gehrels, N., et al. The Compton Gamma-Ray Observatory. Scientifc Amer-ican,1993(269):68–+
    [50] Ghirlanda, G., et al. Correlation of Fermi Large Area Telescope sourceswith the20-GHz Australia Telescope Compact Array radio survey. MN-RAS,2010a(407):791–803
    [51] Ghirlanda, G., et al.The radio-γ-ray connection in Fermi blazars. MNRAS,2010b(413):852–862
    [52] Ghisellini, G., et al. A theoretical unifying scheme for gamma-ray brightblazars, MNRAS,1998(301):451–468
    [53] Ghisellini, G.,&Tavecchio, F. The blazar sequence: a new perspective.MNRAS,2008(387):1669–1680
    [54] Ghisellini, G.,&Tavecchio, F. Canonical high-power blazars. MNRAS,2009(397):985–1002
    [55] Giommi, P., Massaro, E., Padovani, P., et al. ROXA J081009.9+384757.0:a1047ergs1blazar with hard X-ray synchrotron peak or a new type ofradio loud AGN? A&A,2007(468):97–101
    [56] Halpern, J. P., et al. PSR J2229+6114: Discovery of an Energetic YoungPulsar in the Error Box of the EGRET Source3EG J2227+6122. ApJ,2001(552): L125–L128
    [57] Halpern, J. P., et al. The Next Geminga: Deep Multiwavelength Observa-tions of a Neutron Star Identifed with3EG J1835+5918. ApJ,2002(573):L41–L44
    [58] Hartman, R. C., et al. The Third EGRET Catalog of High-Energy Gamma-Ray Sources. ApJs,1999(123):79–202
    [59] Hunter, S. D., et al. EGRET Observations of the Difuse Gamma-RayEmission from the Galactic Plane. ApJ,1997(481):205–+
    [60] Inoue, Y. Contribution of Gamma-Ray-loud Radio Galaxies’ Core Emis-sions to the Cosmic MeV and GeV Gamma-Ray Background Radiation.ApJ,2011(733):66
    [61] Inoue, Y., Totani, T.,&Ueda, Y. The Cosmic MeV Gamma-Ray Back-ground and Hard X-Ray Spectra of Active Galactic Nuclei: Implicationsfor the Origin of Hot AGN Coronae. ApJ,2008(672): L5–L8
    [62] Inoue, Y.,&Totani T. The Blazar Sequence and the Cosmic Gamma-rayBackground Radiation in the Fermi Era. ApJ,2009(702):523–536
    [63] Ivezi′c,Zˇ., et al. Optical and Radio Properties of Extragalactic SourcesObserved by the FIRST Survey and the Sloan Digital Sky Survey. AJ,2002(124):2364–2400
    [64] Kaaret, P.,&Cottam, J. Do the Unidentifed EGRET Sources Lie in Star-forming Regions? ApJ,1996(462): L35–+
    [65] Kneiske, T.M. Gamma-Ray Background: A Review. ChJAS,2011(8):219–225
    [66] Kneiske, T. M.&Mannheim, K. BL Lacertae contribution to the extra-galactic gamma-ray background. A&A,2008(479):41–47
    [67] Kollgaard, R.I., Palma, C., Laurent-Muehleisen, S.A., Feigelson, E.D. Ra-dio Constraints on Relativistic Beaming Models of BL Lacertae Objects.ApJ,1996(465):115–126
    [68] Kramer, M., et al. The Parkes Multibeam Pulsar Survey-III. Young pul-sars and the discovery and timing of200pulsars. MNRAS,2003(342):1299–1324
    [69] Krawczynski, H., Hughes, S., Horan, D., et al. Multiwavelength Observa-tions of Strong Flares from the TeV Blazar1ES1959+650. ApJ,2004(601):151–164
    [70] Lacki, B. C., et al. On the GeV and TeV Detections of the StarburstGalaxies M82and NGC253. ApJ,2011(734):107
    [71] Li, F.,&Cao, X. BL Lacertae objects and the extragalactic γ-ray back-ground. RAA,2011(11):879–887
    [72] Makiya, Ryu., Totani, Tomonori., Kobayashi, Masakazu A. R. Contribu-tion from Star-forming Galaxies to the Cosmic Gamma-ray BackgroundRadiation. ApJ,2011(728):158
    [73] Dmitry, Malyshev.,&David, W. Hogg. Statistics of Gamma-Ray PointSources below the Fermi Detection Limit. ApJ,2011(738):181
    [74] Mannheim, K. γ-rays and neutrinos from a powerful cosmic accelerator.PhRvD,1993(48):2408–2414
    [75] Mannheim, K., Biermann, P. L.,&Kruells, W. M. A novel mechanism fornonthermal X-ray emission. A&A,1991(251):723–731
    [76] Mannheim, K.,&Biermann, P. L. Gamma-ray faring of3C279—A proton-initiated cascade in the jet? A&A,1992(253): L21–L24
    [77] Maraschi, L., et al. A jet model for the gamma-ray emitting blazar3C279.ApJ,1992(397): L5–L9
    [78] Marscher, A. P. Spontaneous formation of knots in relativistic fows—Amodel for variability in compact synchrotron sources. ApJ,1980(239):296–304
    [79] Marscher A. P.,&Gear W. K. Models for high-frequency radio outburstsin extra-galactic sources, with application to the early1983millimeter-to-infrared fare of3C273. ApJ,1985(298):114–127
    [80] Mattox J. R., et al. The Likelihood Analysis of EGRET Data. ApJ,1996(461):396
    [81] Mirabal, N.,&Halpern, J. P. A Neutron Star Identifcation for the High-Energy Gamma-Ray Source3EG J1835+5918Detected in the ROSAT All-Sky Survey. ApJ,2001(547): L137–L140
    [82] Moskalenko, I. V.,&Strong, A. W.2005, in AIP Conf. Proc.801, Proc. Int.Conf. on Astrophysical Sources of High Energy Particles and Radiation, ed.T. Bulik, et al.(New York: AIP),57
    [83] Mu¨cke, A,&Protheroe, R. J. Modeling the April1997fare of Mkn501. InB. L. Dingus, M. H. Salamon,&D. B. Kieda, editor, American Instituteof Physics Conference Series, volume515of American Institute of PhysicsConference Series, pages149–153, June2000.
    [84] Mu¨cke, A,&Protheroe, R. J. A proton synchrotron blazar model for faringin Markarian501. Astroparticle Physics,2001(15):121–136
    [85] Murphy, T., at al. The Australia Telescope20GHz Survey: the sourcecatalogue. MNRAS,2010(402):2403–2423
    [86] Narumoto, T.,&Totani, T. Gamma-Ray Luminosity Function of Blazarsand the Cosmic Gamma-Ray Background: Evidence for the Luminosity-Dependent Density Evolution. ApJ,2006(643):81–91
    [87] Neronov, A., Semikoz, D. V., Tinyakov, P. G., Tkachev, I. I.No evidence forgamma-ray halos around active galactic nuclei resulting from intergalacticmagnetic felds. A&A,2011(526):90–+
    [88] Nieppola, E., Tornikoski, M.,&Valtaoja, E. Spectral energy distributionsof a large sample of BL Lacertae objects. A&A,2006(445):441–450
    [89] Nieppola, E. Blazar sequence–an artefact of Doppler boosting. A&A,2008(488):867–872
    [90] Orr, M. J. L.&Browne, I. W. A. Relativistic beaming and quasar statistics.MNRAS,1982(200):1067–1080
    [91] Padovani, P. The blazar sequence: validity and predictions. Ap&ss,2007(309):63–71
    [92] Padovani, P., et al. The connection between x-ray and radio-selected BLLacertae objects. ApJ,1995(444):567–581
    [93] Padovani, P., Giommi, P.,&Fiore, F. Are the X-ray spectra of fat-spectrum radio quasars and BL Lacertae objects diferent? MNRAS,1997(284):569–575
    [94] Padovani, P., Perlman, E. S., Landt, H., Giommi, P.,&Perri, M. WhatTypes of Jets Does Nature Make? A New Population of Radio Quasars.ApJ,2003(588):128–142
    [95] Padovani, P.,&Urry, C. M. Fanarof-Riley I galaxies as the parent popu-lation of BL Lacertae objects. I-X-ray constraints. ApJ,1990(356):75–82
    [96] Paredes, J. M., Mart′, J., Rib′o, M.,&Massi, M. Discovery of a High-Energy Gamma-Ray-Emitting Persistent Microquasar. Science2000(288):2340–2342
    [97] Pinzke, A., Pfrommer, C., Bergstro¨m, L. Prospects of detecting gamma-rayemission from galaxy clusters: Cosmic rays and dark matter annihilations.PhRvD,2011(84):123509–+
    [98] Proga, D., et al. Line-driven disc wind models with an improved line force.MNRAS,1998(310):476–482
    [99] Protassov, R., van Dyk, D. A., Connors, A., Kashyap, V. L.,&Siemigi-nowska, A. Statistics, Handle with Care: Detecting Multiple Model Com-ponents with the Likelihood Ratio Test. ApJ,2002(571):545–559
    [100] Protheroe, R. J.&Biermann, P. L. Photon-photon absorption above amolecular cloud torus in blazars, APh,1997(6):293–300
    [101] Quinn, J., et al. The Flux Variability of Markarian501in Very High EnergyGamma Rays. ApJ,1999(518):693–698
    [102] Reimer, O., et al. Multifrequency studies of the enigmatic gamma-raysource3EG J1835+5918. MNRAS,2001(324):772–780
    [103] Roberts, M. S. E., Romani, R. W.,&Kawai, N. The ASCA Catalog ofPotential X-Ray Counterparts of GEV Sources. ApJS,2001(133):451–465
    [104] Romero, G. E., et al. Unidentifed3EG gamma-ray sources at low galacticlatitudes. A&A,1999(348):868–876
    [105] Sambruna, R.M., Maraschi, L.,&Urry, C. M. On the Spectral EnergyDistributions of Blazars. ApJ,1996(463):444–465
    [106] Sikora, M., et al. Comptonization of difuse ambient radiation by a relativis-tic jet: The source of gamma rays from blazars. ApJ,1994(421):153–162
    [107] Sikora, M., Stawarz, L., Moderski, R., Nalewajko, K., Madejski, G. M. Con-straining Emission Models of Luminous Blazar Sources. ApJ,2009(704):38–50
    [108] Sreekumar, P. et al. EGRET Observations of the Extragalactic Gamma-Ray Emission., ApJ,1998(494):523–+
    [109] Stecker, F.W.,&Salamon, M. H. The Gamma-Ray Background fromBlazars: A New Look. ApJ,1996(464):600
    [110] Strong,A.W.,Moskalenko, I.V.,Reimer,O.,Digel, S.,&Diehl,R. The distri-bution of cosmic-ray sources in the Galaxy, γ-rays and the gradient in theCO-to-H2relation. A&A,2004(422): L47–L50
    [111] Strong, A. W., Moskalenko, I. V., Reimer, O. A New Determination of theExtragalactic Difuse Gamma-Ray Background from EGRET Data. ApJ,2004(613):956-961
    [112] Sturner, S. J.,&Dermer, C. D. Association of unidentifed, low latitudeEGRET sources with supernova remnants. A&A,1995(293): L17–L18
    [113] Tavani, M., et al. The Variable Gamma-Ray Source2CG135+01. ApJ,1998(497): L89–+
    [114] Tavani, M., et al. The AGILE space mission. Nucl. Instr. Meth. Phys. Res.A,2008(588):52–+
    [115] Tavecchio, F., Maraschi, L., Sambruna, R. M., Urry, C. M. The X-Ray Jetof PKS0637-752: Inverse Compton Radiation from the Cosmic MicrowaveBackground? ApJ,2000(544): L23–L26
    [116] Thompson, D. J., et al. Calibration of the Energetic Gamma-Ray Experi-ment Telescope (EGRET) for the Compton Gamma-Ray Observatory. ApJ,1993(86):629–656
    [117] Thompson, T. A., Quataert, E.,&Waxman, E. The Starburst Contributionto the Extragalactic γ-Ray Background. ApJ,2007(654):219–225
    [118] Urry, C. M. BL Lac Objects and Blazars: Past, Present and Future. ASPC,1999(159):3-19
    [119] Urry, C. M., Padovani, P. Unifed Schemes for Radio-Loud Active GalacticNuclei. PASP,1995(107):803–845
    [120] Vertongen, G., Weniger, C. Hunting dark matter gamma-ray lines with theFermi LAT. CJAC,2011(5):27–+
    [121] Wardle, J. F. C., Moore, R. L.,&Angel, J. R. P. The radio morphologyof blazars and relationships to optical polarization and to normal radiogalaxies. ApJ,1984(279):93–98
    [122] Weber, Edmund, J.&Davis, Leverett, J. The Angular Momentum of theSolar Wind. ApJ,1967(148):217–227
    [123] White, R. L., Becker, R. H., Helfand, D. J.,&Gregg, M. D. A Catalog of1.4GHz Radio Sources from the FIRST Survey. ApJ,1997(475):479
    [124] Wilks, S. S. The Large-Sample Distribution of the Likelihood Ratio forTesting Composite Hypotheses. Ann. Math. Stat.1938(9):60–62
    [125] Winkler, C., et al. The INTEGRAL mission. A&A,2003(411): L1–L6
    [126]曹新伍.活动星系核中的喷流形成.天文学进展,2002(20):95–100

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700