小麦抗白粉病种质遗传背景鉴定及分子标记辅助选择研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦(Triticum aestivam)是世界主要粮食作物之一,白粉病(Blumeria graminisf.sp.tritici)是世界小麦产区的主要病害,严重影响产量和品质。选育和推广抗白粉病的新品种是防治白粉病的有效而安全的途径。从小麦近缘物种中转移抗白粉病基因到小麦遗传背景中,创建新的抗白粉病材料是抗病育种的一个重要内容。同时,筛选与抗白粉病基因连锁的分子标记并应用于新品种、新材料选育中,对提高优良性状聚合效率和加快抗病育种进程具有重要意义。
     1.选育并鉴定了一个新型的小麦6V/6B异代换系010714
     贵农21是多抗优良的小麦品系,尤其是对白粉病免疫。它是普通小麦-簇毛麦的6V/6A异代换系,其6V染色体来自于簇毛麦(Haynadia villosa)。硬偏麦六倍体(Hexaploid of Ae.ventricosa-T.durum)来自于硬粒小麦(Triticum durum)与偏凸山羊草(Aegilops ventricosa)杂交的后代。二者均有稳定而卓越的抗白粉病性。抗病种质010714为贵农21和硬偏麦六倍体杂交后连续自交,在F_7代选出的能稳定遗传、具优良抗白粉病性,且农艺性状接近于育种目标的株系。
     对抗病种质010714的遗传背景进行细胞学鉴定,分别以簇毛麦和偏凸山羊草的基因组总DNA为探针,中国春基因组总DNA为封阻剂,对010714根尖细胞分裂中期相的染色体组进行原位杂交,结果表明010714染色体组中有1对染色体能与簇毛麦基因组DNA探针杂交,010714染色体组与偏凸山羊草基因组DNA探针无杂交信号。说明010714带有一对来自于簇毛麦的染色体,没有来自偏凸山羊草的M~V染色体或染色体大片段。核型分析结果表明,010714中来自簇毛麦的染色体臂比值为1.20,与簇毛麦6V染色体臂比值1.12类似。同时在010714中只有一对臂比值为1.85的随体染色体,与1B染色体类似,缺少臂比值大于2.10的6B随体染色体。C-带分析表明,能与簇毛麦基因组DNA杂交的染色体带型特征与簇毛麦6V染色体C-带带型一致,普通小麦染色体不具有这一带型。因此可推断,010714为一个6V/6B代换系,是一个不同于贵农21的6V/6A异代换系的新型育种材料。010714的优良抗白粉病性与6V染色体有关。
     2.获得了与010714抗白粉病基因连锁的RAPD分子标记RM874
     C050S具有温光敏核不育性和优良的农艺性状,但不抗白粉病。本研究以C050S作为母本,将010714作为父本,进行杂交,在后代中进行抗白粉病基因标记筛选和转化,并利用所得分子标记进行分子标记辅助选择,以便真正将010714的抗白粉病基因应用于小麦新材料新品种选育中。以010714为父本与C050S杂交的F_1代植株表现为抗病,说明010714所携带的抗白粉病性状为显性遗传。F_1自交得到的F_2分离群体,其抗病:感病植株比例为139:96。010714的抗白粉病性呈单基因显性遗传模式,其抗白粉病基因与6V染色体有关,由于6V在普通小麦遗传背景下传递率低于50%,致使C050S×010714的F_2群体出现偏离孟德尔模式3:1的分离比例。由引物S2018扩增出的长度为874bp的特异标记RM874可以作为010714、贵农21抗白粉病基因的RAPD分子标记。
     3.基于单一PCR条带的大量测序和多重比对,成功地将含有大量重复序列的RM874标记转化为SCAR标记SM142
     RM874稳定性欠佳,有待于转化成更稳定和特异的SCAR标记。测序表明,RM874单一条带包含有一系列等长的、来自于重复序列的同源序列片段。在已经测序的克隆子中,克隆子序列RS874与抗白粉病基因一起沿簇毛麦→贵农21→010714→C050S×010714的F_2群体的传递路线。将RM874条带中能在簇毛麦、010714和C050S×010714的F_2群体中均有出现的序列RS874与GenBank中已登录序列进行广泛比对,结果表明010714与抗白粉病基因连锁的RAPD分子标记RM874所包含的重复序列家族与一粒小麦、圆锥小麦、普通小麦、大麦甚至水稻的对应序列具有同源性。RM874及其同源序列为类似gypsy逆转录转座子中gag-pol编码区的部分序列,很可能在转座过程中大量遗留于不同染色体的不同位置,构成了重复序列家族,GISH表明它们在010714染色体组中呈散在分布。RM874为簇毛麦特有的序列,有别于其他近缘物种。010714为6V/6B代换系,所以在010714中RM874为6V染色体特异的RAPD标记。通过RS874与其他RM874序列、一粒小麦、圆锥小麦、普通小麦、大麦和水稻对应序列进行比对,设计出SCAR引物组合05-116/05-117,能扩增出长度为142bp的特异条带,命名为SM142,SM142与抗白粉病基因具有连锁关系,但未呈现共分离的完全连锁。
     4.利用SM142标记的辅助选择,实现了抗白粉病性与TGMS不育性的聚合
     以C050S×010714的F_2代单株和F_5代单株为RM874和SM142与抗白粉病基因连锁性的验证群体,结果表明RM874和SM142与抗白粉病基因间存在连锁关系,但SM142稳定性好于RM874,二者均可用作C050S×010714杂种后代抗白粉病性的分子标记。利用SCAR标记SM142,进行抗白粉病性分子标记辅助选择,结合传统选育方法,在部分C050S×010714的F_5代群体中选育到2个抗白粉病性得到改良、不育度和株高基本符合育种要求的株系。证明SM142在育种实践中具有一定实用价值。C050S×010714杂种后代出现少量具有SM142但不带抗白粉病基因的现象,是因为个别后代植株发生了易位,出现了感病的6V长臂易位系和抗病的6V短臂易位系,前者SM142与抗白粉病基因不连锁,而后者SM142与抗白粉病基因连锁,说明抗白粉病基因位于6V染色体的短臂上。对于010714和杂种后代,以及其他携带来自于簇毛麦6V染色体的小麦材料来讲,RM874和SM142可作为6V染色体特异的分子标记。对于携带来自于簇毛麦其他染色体的小麦材料而言,RM874有可能在一定程度上作为跟踪簇毛麦遗传物质的分子标记。
Wheat(Triticum aestivam) is an important grain crop worldwide.Powdery mildew(PM,caused by Blumeria graminis f.sp.tritici) is a major epidemic disease of wheat,causing serious reduction of yield and quality.Breeding and extension of powdery mildew resistant varieties is an efficient and safe strategy to control this disease,lntrogression of powdery mildew resistance genes from relative species into common wheat genetic background is a crucial for disease resistance breeding in wheat. At same time,identification of molecular markers linked with resistance genes and application of them in the selection of cultivars and stocks,will promote the pyramiding efficiency and comprehensive elite traits and the disease resistance breeding steps.
     1.The 6V/6B alien substitution line 010714 of wheat was bred and identified
     Guinong 21 is an elite wheat line with multiple resistances especially with to powdery mildew.It is a 6V/6A substitution line in which the 6V chromosome was introgressed from Haynadia villosa.Hexaploid of Ae.ventricosa-T,durum is an offspring of T.durum and Aegilops ventricosa.Both of them have good resistance to powdery mildew.Bridge-cross between Guinong 21 and hexaploid of Ae.ventricosa-T. durum was made and a PM-resistant intermediate line 010714 was selected from the F_7 generation.It is relatively stable,highly resistant to PM,and has comprehensive agronomic traits near general common wheat lines.
     Cytological identifications of 010714 were carried by Genome in Situ Hybridization(GISH),karyotype investigation and C-band analysis.Using Digoxigenin-11-dUTP labeled total genomic DNA of H.villosa and A.ventricosa as the probes.The results revealed that line 010714 has a pair of alien chromosomes from H.villosa and no chromosome or mega fragment from A.ventricosa.Karyotype analysis suggested that the arm ratio of the chromosome from H.villosa is 1.20, simility to the 1.12 of 6V.In 010714,there is only a pair of 1B-like satellite chromosomes with an arm ratio of 1.85.But it lacks another satellite chromosome,6B, whose arm ration is 2.10.C-band analysis showed the substitution chromosome is the 6V chromosome.Is definite that 010714 is a 6V/6B substitution line which is a new material,and its resistance to PM is correlated to the alien chromosome.
     2.The RAPD marker RM874 was identified,with linkage to the PM-resistance in 010714
     C050S has the thermo-photo-sensitive genic male sterility(TGMS) and good agronomic traits but is highly susceptible to many diseases especially PM.This study used 010714 as the male parent and C050S as the female parent to make a cross,and identified the molecular markers with linkage to the PM-resisntance.The F_1 plants are resistant to PM,indicating that the PM-resistance of 010714 is a dominant trait.The F_2 plants segregated for a ratio of 139 resistant over 96 susceptible ones.The PM resistance is a dominant trait determined by a single gene.This segregation ratio did not follow the typical Mendelian ratio 3:1,because in 6V substitution line,the transmission rate of the 6V chromosome through gametes was significantly lower than that of common wheat chromosomes.RAPD primer S2018 amplified a specific band of about 874 bp,named RM874 that is a specific RAPD marker for powdery mildew resistance in GN21 and 010714.
     3.Based on batched sequencing within single PCR bands and multi-alignments, the repeat-containing RM874 marker was successfully converted into SCAR marker SM142
     RM874 showed a little instability and needed to be converted into a more stable and specific SCAR marker.Sequencing results indicated that RM874 single band contained a family of homologous repetitive sequences with equal lengths.Among the sequenced clones,sequence F2R874-7 from the F_2 resistant pool was completely identical to sequence PR874-910 from 010714 and sequence Hv874-7 from H.villosa. Then the specific F2R874-7/PR874-910/Hv874-7 fragment was named as RS874. RS874 could be traced together with the PM-resistance from H.villosa to Guinong 21, then to 010714,and finally to the F_2 plants of cross C050S×010714.NCBI BLASTn revealed that,in local alignments,RS874 had 58.1%to 72.1%identities to LTR-retrotransposon like repetitive regions from T.monococcum,T.turgidum, common wheat,Hordeum vulgare and Oryza sativa.RM874 and its homologous sequences were in the GAG-POL coding regions of Ty3-gypsy retrotransposons.The family sequences from RM874 were dispersive in 010714's chromosomes.Based on multi-alignments of RS874 with other 43 RM874 sequences and homologous sequences from T.monococcum,T.turgidum and common wheat,a pair of SCAR primers 05-116/05-117were designed.This SCAR primer pair specifically amplified a 142-bp fragment from 010714 and F_2 resistant pool,but not from C050S and F_2 susceptible pool.This SCAR marker was named SM142.SM142 is linked with the PM resistance gene but did not show cosegrating/complete linkage with the PM resistance gene.
     4.Based on SM142-assited selection,the PM resistance and the TGMS were successfully combined
     F_2 and F_5 individual plants from the C050S×010714 were examed for the presentation of RAPD marker RM874 and SCAR marker SM142.The results showed that the markers are linked to the PM resistance,and SM142 is more stablie than RM874.Both of them can be applicated as the markers of PM resistance in MAS.Two TGMS lines with elite PM resistance and other agronomic traits were selected from F_5 population by SM142-assisted selection and traditional breeding.It proved the value of SM142.Because of translocation between 6V chromosome and common wheat's chromosome,the linkage between the marker and the PM-resistance has been disrupted in several progenies of cross C050S×010714.The results of GISH show that the individuals having SM142 but no PM resistance are 6VL translocation lines,while the individuals that having both SM142 and resistance are 6VS translocation line. These suggested that the PM resistance gene is located at the short arm of 6V chromosome.For 010714,its hybrid offsprings,and other wheat materials with 6V chromosome from H.villosa,RM874 and SM142 can act as 6V-specific PCR marker. For wheat stocks harboring other chromosome from H.villosa,RM874 might be capable to certain extent for tracing the alien genetic substances as well.
引文
[1]金善宝.中国小麦学[M].中国农业出版社,1996
    [2]杨作民,唐伯让,沈克全,等.小麦育种的战略问题——锈病和白粉病第二抗源的建立和利用[J].作物学报,1994,20:385-394
    [3]刘金元,刘大钧.小麦白粉病抗性基因研究进展[J].植物病理学报,2000,30(4):289-295
    [4]Lupton F G H.北京农业大学遗传育种研究室译.小麦育种的理论基础[M].北京:北京农业大学出版社,1988
    [5]刘红彦,何文兰,杨共强,等.小麦抗白粉病基因的分子标记及标记辅助育种研究进展[J].河南农业大学学报,2001,31(1):26-31
    [6]侯向阳,高卫东.作物野生近缘种的保护与利用[J].生物多样性,1999,7(4):327-331
    [7]牛吉山.小麦抗白粉病遗传育种研究[M].北京:中国农业科学技术出版社,2008
    [8]翁跃进.山羊草属基因库的开拓利用[J].作物品种资源,1995,2:16-18
    [9]尚海英,郑有良.黑麦属基因资源研究进展[J].麦类作物学报,2003,23(1):86-89
    [10]张增艳,马有志,辛志勇,等.应用基因组原位杂交技术鉴定抗黄矮病小麦新种质[J].中国农业科学,1998,31(3):1-4
    [11]卢良絮.中国大麦学[M].北京:中国农业出版社,1996
    [12]蒋观敏,贾继增,董玉琛,等.早麦草属种质资源的鉴定评价与特性研究[J].中国农业科学,1998,31(2):63-69
    [13]孔凡晶,陈孝.簇毛麦基因组及其在小麦改良中的应用研究进展[J].麦类作物学报,2001,21(2):85-87
    [14]孔令让,董玉琛.普通小麦与四倍体小麦—粗山羊草双二倍体杂种后代的细胞遗传学研究[J].作物学报,1997,23(4):505-508
    [15]胡含,王恒立.植物细胞工程与育种[M].北京:北京工业大学出版,1990
    [16]Phaliwa H S,William M.Transfer of rest resistance from Aegilops ovata into bread wheat (Triticum aestivum L.) and molecular characterisation of resistant derivatives[J].Euphytica,2002,126(2):153-159
    [17]张晓科,柴守成.小麦PH基因系的研究及应用[J].西北农业学报,1998,7(4):102-105
    [18]李洪杰,张艳敏.组织培养创造抗白粉病小麦—簇毛麦染色体易位及分子标记辅助选择[J].遗传学报,2000,27(7):608-613
    [19]刘润堂,白建荣,温琪汾.小麦抗白粉病基因导入的研究[J].山西农业科学,2002,30(1):13-16
    [20]亓增军,刘大钧,陈佩度.冬小麦种质“矮盂牛”的分子细胞遗传学研究[J].植物学报,2001,43(5):469-474
    [21]Hart G.E.Genetics and evolution of muhilocus isozymes in hexaploid wheat.In,Isozymes-Current Topics in Biological and Medical Reasearch[C].ALan,R.Liss,Inc.New York,1983,10:365-380.
    [22]Sozinov A A,Novosolskaya A Y,Lushnikova A A,et al.Cytological and biochemical analysis of dread wheat variants with IB/IR substitutions and translocations in Karyotype[J].Tsitologiya I Genetika,1987,21:256-261
    [23]马渐新,周荣华,贾继增,等,用基因组原位杂交与RFLP标记鉴定小麦—簇毛麦抗白粉病代换系[J].遗传学报,1997,24(5):447-452
    [24]白建荣,Langr P.用AFLP标记鉴定带有簇毛麦抗白粉病基因的小麦易位系[J].华北农学报,2000,15(4):29-34
    [25]张小萍,应用基因组原位杂交鉴定杂交后代中的簇毛麦染色体,西南师范大学学报(自然科学版),2002(3):401-403
    [26]陈佩度,周波,齐莉莉,等.用分子原位杂交(GISH)鉴定小麦—簇毛麦双倍体、附加系、代换系和易位系[J].遗传学报,1995,22(5):380-386
    [27]周建平,张怀渝,张怀琼,等.小麦新品种川农12号中外源染色质的分子细胞遗传学检测[J].麦类作物学报,2006,26(4):20-22
    [28]Sears E R and Briggle L W.Mapping the Gene Pml for resistance to Erysiphe graminis f.sp.tritici on chromosome 7A of wheat.Crop Sci 1969,9(1):96-97.
    [29]Hsam S L K,Huang X Q,Zeller F J,et al.Chromosomal location of genes for resistance to powdery mildew in common wheat(Triticum aestivum L.am.Thell.).5.Alleles at the Pml locus[J].Theor Appt Genet,1998,96:1129-1134
    [30]Hartl L,Mohler F J,Zeller F J,et al.Identification of AFLP markers closely linked to the powdery mildew resistance genes Pmlc and Pra4a in common wheat(Tricum aestivum L.)[J].Genome,1999,42:322-329.
    [31]Chao S,Sharp P J,World A J,et al.RFLP-based genetic maps of wheat homologous group 7chromosomes[J].Theor.Appl.Genet.1989,78:495-504.
    [32]Singrtin C H,Hsam S L K,Hartl L,et al.Powdery mildew resistance gene Pro22 in cultivar Virest is a member of the complex Pml locus in common wheat(Tricum aestivum L.em Thell.)[J].Theor.Appl.Genet,2003,106:1420-1424
    [33]Jorgenssen J H,Jensen C J.Genes for resistance to wheat powdery mildew in derivatives of Tritiaum tiraopheevi and T.carthticum[J].Euphytica,1972,21:121-128.
    [34]Mcintosh R A,Bennett F G A.Telocentric mapping of genes Pm3a and Hg on chromosome 1A of hexaploid wheat[J].Cereal Research Communications,1978,6:9-14.
    [35]Zeller F J,Luts J,Stephan U.Chromosorrual location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L.).1. MIk and other alleles at the Pm3 locus[J].Euphytica, 1993, 68: 223-229.
    [36] Briggle L W. Three loci in wheat involving resistance to Erysiphe graminis f. sp. tritici[J]. Crop Sci, 1966,6:461-465
    [37] Zeller F J, Hsam S L K. Progress in breeding for resistance to powdery mildew in common wheat (Triticum aestivum L.) [A]. In: Slinkard AE(ed) Proc 9~(th)"Int Wheat Genet ymp [C].Saskatoon, Sask., Canada, University Extention Press, 1998, 1: 178—180
    [38] The T T, Mcintosh R A, Bennett F G A. Cytogenetic studies in wheat. DC. Monosomic analysis.telocentric mapping and link age relationships of genes Sr21, Pro4, and Mle[J]. Aust J Biol Sci,1979,32: 115-125
    [39] Lebsock K L, Briggle L W. Gene Pm5 for resistance to Erysiphe graminisf. sp. tritici in Hope wheat[J]. Crop Sci, 1974, 14: 561 -563.
    [40] Hsam S L K, Huang X Q, Zeller F J. Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em. Thell. )6. Alleles at the Pm5 locus [J].Theorappl Genet, 2001, 102: 127-133
    [41] Huang X Q, Wang L X, Xu M X, et al. Microsatellite mapping of the powdery mildew resistance gene Pm5e in common wheat (Triticum aestivum L.) [J]. Theor Appl Genet, 2003,106: 858-865
    [42] Huang X Q, Hsam S L K, Zeller F J. Chromosomal location of two novel genes for resistance to powdery mildew in Chinese landraces (Triticum aestivum L. m. Thell.) [J]. Genet. Breed, 2000,54:311-317
    [43] Driscoll C J, Jensen N F. Release of a wheat-rye translocation stock involving leaf rust and powdery mildew resistances [J]. Crop Sci, 1965, 5: 279- 280
    [44] Mcintosh R A, Hart G E, Devos K M, et al. Catalogue of gene symbols for wheat[A]. In:Slinkard AE (ed) Proc 9th Int Wheat Genet Syrup [C]. Saskatoon, Sask. , Canada, University Extention Press, 1998,5: 123-127
    [45] Friebe B, Jiang J, Raupp W J,et al. Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status [J]. Euphytica, 1996, 91: 59-87
    [46] Schneider D M, Heun M, Fischbeck G. Inheritance of the powdery mildew resistance gene Pm9 in relation to Pm1 and Pm2 of wheat [J]. Plant Breed, 1991, 107: 161-64
    [47] Tosa Y, Tsujimoto H, Ogura H. A gene involved in the resistance of wheat to wheat grass powdery mildew fungus[J]. Genome, 1987, 29: 850- 852
    [48] Tosa Y, Tsujimoto H, Ogura H. Identification of a gene for resistance to wheat grass powdery mildew fungus in common wheat cultivar Chinese Spring [J]. Genome, 1988, 30: 612-614
    [49] Jia J, Devos K M, Chao S, et al. RFLP-based maps of the homoeologous group—6 chromosomes of wheat and their application in the tagging of Pm12, a powdery mildew resistance gene transferred from Aegilops speltoides to wheat [J]. Theor Appt Genet, 1996,92:559-565
    [50] Ceoloni C, Signore G, Ercoli L, et al. Locating the alien chromatin segment in common wheat-Aegilops longissim. milldew resistant transfers [J]. Hereditas, 1992,116: 239-245
    [51] Tosa Y, Sakai K. The genetics of resistance of hexaploid wheat to the wheat grass powdery mildew fungus[J]. Genome, 1990, 33: 225-230
    [52] Reader M, Miller T E. The introduction into bread wheat of a major gene for resistance to powdery mildew from wild emmer wheat[J]. Euphytica, 1991, 53: 57-60
    [53] Lowry J R, Sammons D J, Baenziger P S, et al. Identification and characterization of the gene conditioning powdery mildew resistance in 'Amigo'wheat[J]. Crop Sci, 1984, 24: 129-132
    [54] Lutz J, Hsam S L K, Limpert E, et al. Chromosoma 1 location of powdery mildew resistance genes in Triticum aestivum L. (common wheat). 2. Genes Pm2 and Pm19 from Aegilops squarrosaL. [J]. Heredity, 1995, 74: 152-156
    [55] Friebe B, Heun M, Tuleen N, et al. Cytogenetieally monitored transfer of powdery mildew resistance from rye into wheat [J]. Crop Sci, 1994, 34: 621-625
    [56]齐莉莉,陈佩度,刘大均,等.小麦白粉病新抗原—Pm21 [J].作物学报, 1995, 21(3):257-262.
    [57] Yang Z J, Ren Z L. Chromosome location of a new gene for resistance to powdery mildew in wheat [J]. Plant Breed, 1994,114 (in press)
    [58] Huang X Q, Hsam SLK, Zeller F J. Chromosomal location of gene s for resistance to powdery mildew in common wheat (Triticum aestivum L. em. Thell. ) 4. Gene Pm24 in Chinese landrace Chiyacao [J]. Theor Appt Genet, 1997,95: 950-953
    [59] Shi A N, Leath S, Murphy J P. A major gene for powdery mildew resistance transferred to common wheat from wild einkorn wheat [J]. Phytopathology, 1998, 88: 144-147
    [60] Rong J K, Millet E, Manisterski J, et al. A new powdery mildew resistance gene: Introgression from wild emmer into common wheat and RFLP-based mapping [J]. Euphytica, 2000, 115:121-126
    [61] Jarve K, Peusha H O, Tsymbalova J, et al. Chromosomal location Of a Triticum timopheevii-derived powdery mildew resistance gene transferred to common wheat [J].Genome, 2000,43:377-381
    [62] Peusha H, Enno T, Priilinn O. Chromosomal location of powdery mildew resistance genes and cytogenetic analysis of meiosis. in common wheat cultivar Men [J]. Hereditas, 2000, 132: 29-34
    [63]Zeiler F J,Kong L,Hartl L,et al.Chromosomal location of genes for resistance to powdery mildew common wheat(Triticum aestivum L.em Thell.).7.Gene Pm29 in line Pova[J].Euphytica,2002,123:187-194
    [64]Liu Z Y,Sun Q X,Ni Z F,et al.Molecular characterization of a novel powdery mildew resistance gene Pro30 in wheat originating from wild emmer[J].Euphytica,2002,123:21-29
    [65]Xie C J,Sun Q X,Ni Z F,et al.Chromosomal location of a Triticum dicoccoides-derived powdery mildew resistance gene in wheat by using microsatellite markers[J].Theor Appt Genet,2003,106:341-345
    [66]Hsam S L K,Lapochkina I F,Zeller F J.Chromosomal location of genes for resistance to powdery mildew in common wheat(Triticum aestivum L.em Thell.).8.Gene Pm32 in a wheat-Aegilops speltoides translocation line[J].Euphytica,2003,133:367-370
    [67]Zhu Z D,Zhou R H,Kong X Y,et al.Microsatellite markers linked to 2 powdery mildew resistance genes introgressed from Triticum carthlicum accession PS5 into common wheat[J].Genome,2005(48):585-590
    [68]Miranda L M,Murphy J P,Marshall D,et al.Pm34:a new powdery mildew resistance gene transferred from Aegilops tauschii Coss.to common wheat(Triticum aestivum L)[J].Theor Appl Genet 2006,(113):1497-1504
    [69]Miranda L M,Murphy J P,Marshall D,et al.Chromosomal location of Pro35,a novel Aegilops tauschii derived powdery mildew resistance gene introgressed into common wheat(Triticum aestivum L.)[J].Theor Appl Genet,2007,114:1451-1456
    [70]Blanco A,Gadaleta A,Cenci A,et al.Molecular mapping of the novel powdery mildew resistance gene Pro36 introgressed from Triticum turgidum var.dicoccoides in durum wheat[J].Theor Appl Genet,2008,117:135-142
    [71]Perugini L D,Murphy J P,Marshall D,et al.Pm37,a new broadly effective powdery mildew resistance gene from Triticum timopheevii[J].Theor Appl Genet,2008,116:417-425
    [72]Lillemo M,Asalf B R,Singh P,et al.The adult plant rust resistance loci Lr34/Yr18 and Lr46/Yr29 are important determinants of partial resistance to powdery mildew in bread wheat line Saar.[J].Theor Appl Genet,2008,116:1155-1166
    [73]Chao S,Sharp P J,Worland A J,eta 1.RFLP-based genetic maps of wheat homoeologous group 7 chromosomes[J].Theor Appl Genet,1989,78,(1):495-504
    [74]Ma Z Q,Sorrells M E,Tanksley S D.RFLP markers linked to powdery mildew resistance genes Pm1,Pro2,Pro3,and Pm4 in wheat.[J].Genome,1994 Oct;37(5):871-875.
    [75]Hu X Y,Ohm H W,Dweikat I.Identification of RAPD markers linked to the gene Pm1 for resistance to powdery mildew in wheat[J].Theor Appl Genet,1997,94:832-840
    [76]Hartl L,Weiss H,Stephan U,et al.A.Molecular mapping of powdery mildew resistance genes in common wheat(Triticum aestivum L.).Theor.Appl.Genet,1995,90:601-606
    [77]Hartl L,Mohler F J,Zeller F J,et al.Identification of AFLP markers closely linked to the po wdery mildew resistance genes Pmlc and Pm4a in common wheat(Triticum aestivum L.)[J].Genome,1999,42:322-329
    [78]刘金元,陶文静,刘大均,等.与小麦白粉病抗性基因Pm2紧密连锁的RAPD标记的筛选研究[J].遗传学报,2000,27(2):139-145
    [79]Hartl L,Weis H,Zeller F J,et al.Use of RFLP markers for the identification of alleles at the Pro3 locus conferring powdery mildew resistance in wheat(Triticum aestivum L.)[J].Theor.Appl.Genet.,1993,86:959-963
    [80]Tao W,Liu D,Liu J,et al.Genetic mapping of the powdery mildew resistance gene Pm6 in wheat by RFLP analysis[J].Theor Appl Genet,2000,100:564-568
    [81]王心宇,亓增军,马正强,等.小麦抗白粉病基因Pm6的RAPD标记[J].遗传学报,2000,27(12):1072-1079
    [82]Jia J,Devos K M,Chao S,et al.RFLP-based maps of the homoeologous group-6chromosomes of wheat and their application in the tagging of Pml2.a powdery mildew resistance gene transferred from Aegilops speltoides to wheat[J].Theor.Appl.Genet.,1996,92:559-565
    [83]Cenci A,D'Ovidio R,Tanzarella O A,et al.Identification of molecular markers linked to Pm13,an Aegilops longissima gene conferring resistance to powdery mildew in wheat[J].Theor.Appl.Genet.,1999,98(3/4):448-454
    [84]Hsam S L K,Mohler V,Hard L,et al.Mapping of powdery mildew and leaf rust resistance genes on the wheat-rye translocated chromosome TIB.IRs using molecular and biochemical markers[J].Plant Breeding,2000.119:87-89
    [85]Qi L L,Cao M S,Chen P D,et al.Identification,mapping,and application of polymorphic DNA associated with resistance gene Pm21 of wheat[J].Genome,1996,39:191-197
    [86]Liu,Z,Sun Q X,Ni Z F,et al.Development of SCAR markers linked to the Pm21 gene conferring resistance to powdery mildew in wheat[J].Plant Breed,1999,118:215-219
    [87]Chen Y P,Wang H Z,Cao A Z,et al.Cloning of a Resistance Gene Analog from Wheat and Development of a Codominant PCR Marker for Pm21[J].Journal of integrative plant Biology,2006,48(7):715-721
    [88]Zhang Q L,Liu Y H,Li T,et al.Powdery mildew resistance gene Pro23 in wheat[J].Acta Botanica Boreali-Occidentalia Sinica,2003,11:1882-1888
    [89]Huang X Q,Hsam S L K,Zeller F J,et al.Molecular mapping of the wheat powdery mildew resistance gene Pm24 and marker validation for molecular breeding[J].Theor.Appl.Genet.,2000,101(3):407-414
    [90]张立异,任明见.贵农21白粉病抗性基因的RAPD分子标记[J].山地农业生物学报,2001,20(5):329-333
    [91]朴春根,唐文华,曾士迈.小麦白粉病抗性基因Pm2近等基因系的RAPD分析[J].中国农业大学学报,1997,2(5):46-48
    [92]许红星,刘红彦,李锁平,等.小麦抗白粉病基因Pm6的RAPD标记和SCAR标记[J].河南农业科学,2004,04:25-28
    [93]Vos P,Hogers R,Bleeker M,et al.AFLP:a new technique for DNA fingerprinting[J].Nucleic Acids Res.,1995,23:4407-4414
    [94]陈松柏,蔡一林,周荣华,等.小麦抗白粉病基因Pm4的STS标记[J].西农业大学学报,24(3):231-234
    [95]刘金元,刘大钧,陶文静,等.小麦抗白粉病基因Pm4的RFLP标记转化为STS标记的研究[J].农业生物技术学报,1999,7(2):113-116
    [96]李珥莹,裴忠有,沈平,等.分子标记技术及其在作物遗传育种研究上的应用[J].沈阳农业大学学报,2001,32(2):150-154
    [97]刘金元,刘大钧,陈佩度,等.分子标记辅助育种新尝试——与Pm2和Pm4基因紧密连锁RFLP标记在小麦抗白粉病育种中的应用[J].南京农业大学报,1997,20(2):1-5
    [98]Luo M C,Dyorak J.Molecular mappinng of an aluminium to tolerance locus on Chromosome 4D of Chinese spring wheat[J].Euphytica,1996,91(1):31-35
    [99]Talbert L E,Bruckner P L,Smith L Y,et al.Development of PCR markers linked to resistance to wheat streak mosaic Virus in wheat[J].Theor.Appl.Genet,1996,93(3):463-467
    [100]曾祥艳,张增艳,林丽璞,等.分子标记辅助选育兼抗白粉病、条锈病、黄矮病小麦新种质[J].中国农业科学 2005,38(12):2380-2387
    [101]高安礼,何华纲,陈全战,等.分子标记辅助选择小麦抗白粉病基因Pm2、Pm4a和Pm21的聚合体[J].作物学报,2005,31(11):1400-1405
    [102]Tanksley S D.Molecular markers in plant breeding[J].Plant Mol.Biol.Rep.1983,1:3-8
    [103]Landry B S,Kesseli R V,Farrara B,et al.A genetic map of lettuce(Lactuca sativa L.) with restriction fragment length polymorphisms,isozymes,disease resistance genes and morphological markers[J].Genetics,1987,116:331-337
    [103]Gimelfarb A,Lande R.Simulation of marker-assisted selection in hybrid population[J].Genet.Res.1994,63:39-47
    [104]Moreau L,Charcosset A,Hospital F,et al.Marker-assisted selection efficiency in populations of finite size[J].Genetics,1998,148:1353-1365
    [105]Melchinger A E.Use of molecular markers in breeding for oligogenic disease resistance[J].Plant Breed,1990,104:1-19
    [106]Tanksley S D,Young N D,Paterson A H,et al.RFLP mapping in plant breeding:new tools for an old science[J].Bio Technology 1989,7:257-264
    [107]郑康乐,黄宁,标记辅助选择在水稻改良中的应用前景[J].遗传,1997,19(2):40-44
    [108]Huang N,Angeles E R,Domingo J,et al.Pyramiding of bacterial blight resistance genes in rice:marker-assisted selection using RFLP and PCR.[J].Theor.Appl.Genet.,1997,95:313-320
    [109]Xie C,Xu S,Strategies of marker-aided recurrent selection[J].Crop Sci.1998,38:1526-1535
    [110]李洪杰,朱至清.簇毛麦的利用价值和染色体操作[J].植物学通报,1999,16(5):504-510
    [111]孔凡晶,陈孝.簇毛麦基因组及其在小麦改良中的应用研究进展[J].麦类作物学报,2001,21(2):85-87
    [112]De Pace C,Paolini V,Scaraseia M G T,et al.Evaluation and utilization of Dasypyrum villosum as a genetic resources for wheat improvement[C].In Wheat resource:meeting diverse needs,New York,1990:279-291
    [113]De Pace C,Snidaro D,Ciaffi M,et al.Introgression of Dasypyrum villosum chromatin into common wheat improves grain protein quality[J].Euphytica,2001,117:67-75
    [114]Yu M Q,Chen J,Deng G B,et al.Identification for H.villosa chromatin in wheat line using genetic in situ hybridization,G-banding and Gliadin electrophoreses technique[J].Euphytica,2001,121:157-162
    [115]Coullin P,Valent A,Barbounaki I,et al.Pellestor E Bemheim A.Rapid detection of chromosomes by in situ hybridization of labelled oligonucleotides and comparison with PRINS [J].CR Acad Sci Pads Sci Vie,1996,319:901-906
    [116]李辉,陈孝,辛志勇,等.普通小麦-簇毛麦6DL/6VS抗白粉病易位系的选育及鉴定.[J].中国农业科学,1999,32(5):9-15
    [117]黄光永.小麦条锈病新抗源92R149的初步利用与评价[J].麦类作物学报。2000,20(1):91-93
    [118]Liu D J,Chen P D,Pei G Z,等.Transfer of Haynaldia villosa chromosomes into Triticum aestivum.[C].In:Miller T E,Koebner R M D.Proceeding of 7th Int.Wheat Genetics Symp.,Cambridge,UK.1988:355-361
    [119]王秋英,吉万全.普通小麦——簇毛麦抗白粉病异代换系的选育[J].西北农业学报,1999,8(1):27-29
    [120]张庆勤,张立异,朱文华.簇毛麦在小麦育种中的利用[J].植物保护学报,1998,25(1):41-45
    [121]李洪杰,朱至清.簇毛麦的利用价值和染色体操作[J].植物学通报,1999,16(5):504-510
    [122]马渐新,周荣华,贾继增.用基因组原位杂交与RFLP标记鉴定小麦—簇毛麦抗白粉病代换系[J].遗传学报,1997,24(5):447-452
    [123]戴秀梅,傅大雄,徐如宏,等.硬粒小麦—偏凸山羊草六倍体的核型分析[J].麦类作物学报,2000,20(2):8-12
    [124]杨海燕,宗学风,余国东,等.激素调控对小麦温光敏核不育系育性转换的影响[J].西南农业大学学报,2006,28(3):369-372
    [125]Gill B S,Friebe B,Endo T R.Standard karyotype and nomenclature system for description of chromosome bands and structural aberrations in wheat(Triticum aestivum)[J].Genome,1991,34:830-839
    [126]李懋学.植物染色体研究技术[M].哈尔滨:东北林业大学出版社,1991
    [127]李懋学,张赞平.作物染色体及其研究技术[M].北京:中国农业出版社,1996,1-60
    [128]傅体华,任正隆.簇毛麦染色体的形态学及Giemsa-C带的多态性研究Ⅰ.簇毛麦染色体的核型及C-带核型[J].四川农业大学学报,2001,19(12):400-404
    [129]袁宏,李勤菲,戴秀梅.小麦抗病种质贵农775的细胞学分析[J].西南大学学报(自然科学版),已接收,待发表
    [130]Ovesna J,Kucera L,Bockova R,Holubec V.Characterisation of powdery mildew resistance donors within Triticum boeoticum accessions using RAPD[J].Czech J Genet Plant Breed 2002,38:117-124
    [131]Micheli M R,Bova R,Pascale E,et al.Reproducible DNA fingerprinting with the random amplified polymorphic DNA(RAPD) method.[J].Nucleic Acids Res,1994,22:1921-1922
    [132]Li R F,Liang H X,Zhao M L.The meiotic behavior of an alien chromosome in Triticura aestivum-Haynaldia villosa monosomic addition lines[J].Agric.Sci.China,2002,1:370-374.
    [133]Ma J X,Zhou R H,Jia J Z,Dong Y C.Genetic stability and transmission of chromosome 6V from H.villosa through gametes in wheat background[J].Acta Genet Sin,1999,26:384-390
    [134]Robert O,Abelard C,Dedryver F.Identification of molecular markers for the detection of the yellow rust resistance gene Yr17 in wheat.[J].Mol Breed,1999,5:167-175
    [135]Zhang Z Y,Xu J S,Xu X J,et al.Development of novel PCR markers linked to the BYDV resistance gene Bdv2 useful in wheat for marker-assisted selection[J].Theor Appl Genet,2004,109:433-439
    [136]Cao W,Hughes G R,Ma H,et al.Identification of molecular markers for resistance to Septoria nodorum blotch in durum wheat[J].Theor Appl Genet,2001,102:551-554
    [137]Hernaindez P,Martin A,Dorado G.Development of SCARs by direct sequencing of RAPD products:a practical tool for the introgression and marker-assisted selection of wheat.[J].Mol Breed,1999,5:245-253
    [138]Bodenes C,Joandet S,Laigret F,Kremer A.Detection of genomic regions differentiating two closely related oak species Quercus petraea(Matt.) Liebl.and Quercus robur L.[J].Heredity,1997,78:433-444
    [139]Friesen N,Brandes A,Heslop-Harrison J S.Diversity,origin,and distribution of retrotransposons(gypsy and copia) in conifers[J].Moi Biol Evol,2001,18:1176-1188
    [140]Gao L,McCarthy E,Ganko E,et al.Evolutionary history of Oryza sativa LTR retrotransposons:a preliminary survey of the rice genome sequences[J].BMC Genomics,2004,5:18
    [141]唐益苗,马有志.植物逆转录转座子及其在功能基因组中的利用[J].植物遗传资源学报,2005,6:221-225
    [142]徐如宏,任明见,黄世全,张庆勤.小麦抗病种质贵农775中抗白粉病基因的RAPD标记[J].作物学报,2005,31:243-247
    [143]王春梅,别同德,陈全战,等..簇毛麦6V染色体短臂特异分子标记的开发和应用[J].作物学报,2007,33(10):1595-1600
    [144]Cao A Z,Wang X E,Chen P D.A Sequnence-specific PCR marker linked with Pm21distinguishes chromosome 6VS,6BS,6DS of Triticum aestivum and 6VS of Haynadia villosa [J].Plant Breed,2006,125:201-205
    [145]洪敬欣,彭永康.小麦.簇毛麦染色体代换系、易位系V染色体RAPD分子标记[J].华北农学报,2004,19(3):103-105
    [146]曹爱忠,陈全战,王海燕,等.基于专化的反转录转座子序列开发鉴定簇毛麦染色质的PCR分子标记[J].西北植物学报,2007,27(6):1078-1084
    [147]Li W L,Chen P D,Qi L L,等.Isolation characterization and application of a species-specific repeated sequence from Haynaldia villosa[J].Theor Appl Genet,1995,90:526-533
    [148]刘守斌,唐朝晖,尤明山,等.簇毛麦基因组特异性PCR标记的建立和应用[J].遗传学报,2003,30(4):350-360
    [149]刘守斌,唐朝晖,李保云,等.簇毛麦1V染色体SSR标记的筛选[J].作物学报,2004,30,(2):138-142.
    [150]Zhang W,Gao A L,Zhou B,et al.Screen and Applying wheat Microsatelliate Marker to Trace Individual Haynaldia villosa[J].Acta Genetica Sinica,2006,33(3):236-243
    [151]李锁平和刘大均.节节麦和硬粒小麦—簇毛麦双二倍体间杂种的产生及其细胞遗传学研究[J].遗传学报,1992,19(4):344-348
    [152]傅杰,陈漱阳,张安静.普通小麦与簇毛麦双二倍体的合成、育性及细胞遗传学研究[J].遗传学报,1989,16(5):345-356
    [153]李浚明,杨作民,田慧琴,等.普通小麦与簇毛麦属间杂种体细胞无性系的建立及双倍体的合成[J].遗传,1991,13(1):1-3
    [154]英加,陈佩度.利用AABBDDDD八倍体培育小麦-簇毛麦二体附加系的研究[J].遗传学报,2000,27(6):506-510
    [155]李辉,陈孝,辛志勇,等.普通小麦-簇毛麦6DL/6VS抗白粉病易位系的选育及鉴定[J].中国农业科学,1999,32(5):9-15
    [156]刘成,杨足均,冯娟,等.利用小麦微卫星引物建立簇毛麦染色体组特异性标记[J].遗传,2006,28(12):1573-1579
    [157]刘成,杨足君,李光蓉,等.一个可以用来检测小麦背景中簇毛麦遗传物质的分子标记[J].中国科技论文在线精品论文,2008,1(8):863-867
    [158]王石平,张启发.高等植物基因组中的反转录转座子[J].植物学报,1998,40(4):291-297
    [159]唐益苗,马有志,李连城,等.小麦反转录转座子家族鉴定及其转录活性分析[J].科学通报,2005(5):546-551
    [160]王子成,李爱忠,邓秀新.植物反转录转座子及其分子标记[J].植物学通报,2003,20(3):287-294
    [161]李义文,李洪杰,唐顺学,等.一种创造高频率易位系的方法——不同种属代换系杂交[J].高技术通讯,2000,3:15-18
    [162]李义文,李洪杰,梁辉,等.荧光原位杂交分析小麦-簇毛麦杂种减数分裂与染色体易位[J].遗传学报,2000,27(4):317-324
    [163]张学勇.普通小麦易位系的产生和利用[J].遗传,1991,13(5):39-44
    [164]Sears E R.Chromosome engineering in wheat[C].Proc 4th Stader Genet Symp,1972:23-38
    [165]李瑞芬,梁宏夏,赵茂林.小麦-簇毛麦单体异附加外源染色体减数分裂行为的研究[J].中国农业科学,2002,35(2):127-131
    [166]陈静,邓光兵,余懋群,等.小麦-簇毛麦端体附加系中6VS的细胞遗传学行为及其抗性遗传研究[J].四川农业大学学报,2001,19(3):1-5
    [167]赵茂林,李瑞芬,梁宏霞,等.小麦-多枝赖草单体异附加材料减数分裂期外源染色体的行为研究[J].自然科学进展,2001,11(9):945-949
    [168]柴春月,刘红彦,伊艳杰,等.小麦抗白粉病基因Pm23分子标记的初步鉴定[J].河南农业科学,2006(5):47-50.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700