黄河下游河道演变与河口演变相互作用规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前在黄河口淤积延伸和流路变迁对黄河下游河道反馈影响的问题上,许多学者意见不一。本文作者对现有的研究成果进行了认真的总结分析后认为,黄河下游河道演变与河口演变影响因素繁多,各因素之间的相互作用极为复杂。过去各家由于受研究手段的限制,不能理清各个因素的作用与全面地分析各种关系,切入点不同,结论也就各不相同。黄河口为弱潮陆相河口,从长时段看,因进入河口沙量很大,河口演变主要表现为流路的淤积延伸与改道,两者交替发展形成了目前的三角洲。黄河下游河道演变与河口演变的一个重要特点是,其受上游来水来沙条件变化的影响非常大,河床(包括河口)冲淤变形调整非常剧烈,这一点是其它任何河流也不可比拟的。例如,有的改道初期上游来沙量很大,其作用掩盖了改道溯源冲刷的发展,造成改道影响不大甚至没有影响的假象。因而,单纯的不全面的实测资料分析往往不能获得正确的认识。本文的主要特点之一,就是运用较全面反映各因素之间相互关系的水动力学泥沙数学模型,对黄河下游河道与河口冲淤演变之间的关系以及来水来沙对它们的影响作系统的、定量的研究。
     针对黄河下游河道与河口水沙演进传播及演变特点,本文通过理论探讨与实测资料分析,建立了黄河下游河道糙率公式、含沙量及悬沙组成沿河宽分布公式及悬移质泥沙与床沙交换基本方程,对悬移质泥沙与床沙交换基本方程中的有关参数、黄河下游水流挟沙力计算、河槽在冲淤过程中河宽变化调整模拟方法、床沙粒径调整计算方法、河口淤积延伸计算模式等进行了深入研究,在此基础上,研制开发了统一计算黄河下游河道演变与河口演变耦合作用的水沙数学模型,并采用1976年7月~1996年6月水沙系列对模型进行了系统检验。
     本文采用天然实测资料分析与多种组合方案下数学模型计算相结合的方法,把来水来沙、下游河道冲淤演变、河口淤积延伸以及流路改道作为一个整体来研究,探讨黄河下游河道演变与河口演变相互作用规律,得出如下几点认识与创新:
     (1) 黄河下游来水来沙年际变化很大,以致于河道演变出现了总体上为累积淤积,但在某些时期冲淤交替发展的过程。利津以下河口段河道的冲淤演变既受上游来水来沙条件的影响,又受河口改道变迁与延伸的影响。黄河口延伸长度与进入河口沙量成正比,但不同河口流路、或同一流路的不同发展阶段,其比例系数并不相同。
     (2) 来水来沙条件是影响黄河下游河道演变与河口演变的主要因素,花园口~利津河段的年冲淤量与花园口来水量的平方成反比,与来沙量成正比,淤积量及淤积比随来沙组成的变粗而增大,根据实测资料回归建立了体现上述规律的长系列多年平均情况下该河段河道冲淤量计算公式。当花园口来沙量增加或减少时,各河段淤积量均随之增大或减少;河道冲淤幅度是自上而下逐渐变小的,河道纵比降也将作出新的调整;通过几百公里河道的冲淤调节,进入河口沙量仍不
At present, many researchers disagree with each other on the problem of feedback influence in the lower Yellow River due to the estuary extension and changes of the course. After analyzing the exist results, the author thinks that there are many factors that influence the riverway in the lower Yellow River and estuary evolution, and their interaction is extremely complicated. But by the limit of methods, previous research failed to recognize the interaction between different factors and to analyze the relation scientifically, and as the researches are based on different aspects of the problem, the results are diverse from each other. The estuary of Yellow River has weak tide like a inland estuary. For a long period, because the amount of incoming sediment is very big, estuary evolution mainly displays as the river course extension and changes of the course, and the alternate action of these two factors comes into being present delta. One obvious characteristic of riverway and estuary evolution in Yellow River is that the incoming flow and sediment change greatly and the erosion and deposition of riverbed in the lower reach including estuary, adjust strongly. This is the most obvious characteristic that any other river can't compare with. For example, in initial stage of river changing its course, as the sediment inflow is very large, the effect of sediment deposition conceals the development of scouring which traces to the source. So a false appearance is that river changing its course takes little effect on the lower river scouring. Therefore, the results based on simple and the one-sided field data analysis are not correct. In this paper, by using hydrodynamic sediment mathematic model that can reflect relation among each factor, the relation between estuary and riverway scouring and deposition is studied, and influence of incoming flow and sediment also is considered in quantities.Aiming at the characteristics of the lower river evolution and estuary evolution, based on field data analysis and academic discussion, the formula of roughness, the distribution equations of sediment concentration and suspended across the river width, exchanging equations about suspended load and bed load are set up in this paper. And the relevant parameters in exchanging equations, the formula of sediment transport capacity, simulation method of river width changes in the process of erosion and deposition, and bed load diameter adjustment, estuary deposition and extension are studied. Finally, a flow and sediment mathematic model is proposed, which is used to simulate the interaction between the lower river and estuary in the process of erosion and deposition, and it is systematically verified by the data from July 1976 to June 1996.Several research methods are used in this paper, including field data analysis and mathematical model calculation of multiple combination schemes. The research takes the incoming flow and sediment, erosion and deposition, estuary extension and changes of the river course as a whole. And the interaction between the lower river evolution and estuary evolution is also discussed. The results and the innovation viewpoints are listed as followed:
    (1) The annual incoming flow and sediment of the lower river change greatly so that the riverbed evolution appears accumulative deposition, but in a certain period it also experiences a process of erosion and deposition alternatively. The riverbed evolution from the downstream of the LiJin station is both influenced by the incoming flow and sediment, river changing its course and estuary extension. There is a direct proportion between the incoming sediment and the distance of estuary extension. And the proportionality coefficients are different between courses and evolution stages of the same course.(2) The incoming flow and sediment, as the main reason, influences evolution of the lower river and estuary. The annual mean deposition amount between HuaYuanKou and LiJin is inversely proportional to square of the incoming flow amount from HuaYuanKou, and it is direct proportional to the incoming sediment amount. And with the increase of sediment grain size, the amount and rate of sediment deposition increases too. According to regression analysis of field data, an empirical formula is established, which is used to calculate the amount of erosion and deposition of this reach and this reflects the average amount for a long time. When the incoming sediment increases or decreases at HuaYuanKou, the corresponding sedimentation amount of each reach will increase or decrease. The degree of erosion or deposition reduces gradually from upstream to downstream, and the longitudinal gradient becomes steeper or slower. By the self-adjustment of riverbed about several hundreds kilometer, the amount of sediment into the estuary still can't achieve to the level in equilibrium state. With the increasing or decreasing of incoming sediment at HuaYuanKou, the speed of estuary extension changes. But the rate of change of estuary extension is less than that of incoming sediment at HuaYuanKou, and they have the exponential relation with the coefficient of 0.58.(3) At present, compared with the historical situation, the boundary condition in the lower river has changed obviously. Under the present boundary condition, if there recurs a same flow and sediment process with an old one, the erosion amount of the lower river will reduce, the deposition amount of will increase, and the distribution of erosion and deposition along the river will adjust too. The influence of water and sediment diversion on lower river erosion and deposition is dual. On the hand, when the proportion of water diversion to total incoming flow is very high, as result of losing sediment with big proportion simultaneously, the river deposition will reduce. On the other hand, when the proportion is not very high, the river deposition will increase. For a long time, under the influence of water and sediment diversion along the river, the sediment deposition will increase in the river, and the distance of estuary extension will shorten. The water division along the river is the main reason that leads to the fact that the bankfull discharge is relatively higher in upstream of GaoCun station and downstream of AiShan station, and it is relatively lower between these two stations. This phenomenon is the concurrent result of water division, which led to the increase of river deposition, and river diversion to QingShuiGou course in 1976, which led to decrease of river deposition. For the reach between GaoCun and AiShan, the influence
    of water division along the river, which leads to river deposition and the water level increase, is relatively great, and the influence of river diversion to QingShuiGou, which leads to decrease of deposition, is small.(4) As numerical simulating results show that, during the period of 20 years after Yellow Rvier changing its course to QingShuiGou in 1976, compared with running the course of DiaoKou, the deposition amount of its upstream reduced. From 1976 to 1995, the reduced deposition amount from HuanYuanKou station to YuWa station is about 15.3% of the total in the reach. And the reduced deposition amount is smaller in the upstream and larger in the downstream. Before the flood season in 1996, the reduced-deposition-reach has extended to the reach of HuangZhuang Station, and its distance is about 370km far from the diversion point. Compared with non-extension of estuary, its extension in the QingShuiGou's course leads to increase of the deposition amount. And the increased deposition amount between HuanYuanKou and QingThree is about 16.2% of total amount from 1976 to 1995. The increase amplitude of deposition amount decreases gradually from downstream to upstream. Before the flood season in 1996, the increase-deposition-reach has extended to Zhangcun cross section upstream of LuoKou Station, and its distance is about 275km far from the diversion point.(5) From the point view of practicability for engineering application, the range of feedback influence due to the estuary extension is confirmed, and two dominate indexes, which are obvious influence and relatively serious influence, are proposed. And a new concept of increment rate of the feedback influence due to the estuary extension is brought forward. The course of influence distance increase can be partitioned into two periods. In the first period, the extension distance is about 28-30 km from division location, and the feedback influence distance is about 160~170km. In this period, dominant factor that influences the increment rate is the estuary landform at the beginning of division, and subordinate factor is the landform of influenced-reach. In the second period, the estuary extends farther, and dominant factor is the landform of influenced-reach. Base on this, a formula that is used to calculate the influence distance due to the estuary extension is established. When the extension distance from the XiHeKou is about 98km, the feedback influence will extend to GaoCun reach, and when the extension distance from the XiHeKou is about 125km, it will extend to HuaYuanKou reach. With the increase of longitudinal gradient, the increment rate of the feedback influence due to the estuary extension decreases from downstream to upstream. If the incoming flow and sediment change, the longitudinal gradient will adjust, and the relation between the estuary extension distance and feedback influence distance will change too, but the amplitude of change is small. And according to the comparison of river course evolution between ShenXianGou, DiaoKou and QingShuiGou, it is concluded that feedback influence due to estuary extension will not exceed to AiShan, but downstream of LuoKou will been influenced greatly.
引文
[1] 胡一三.黄河卷.中国江河防洪丛书.中国水利水电出版社,1986.
    [2] Qian ning. Evolution of the lower reaches of the Yellow River subsequent to dyke breach at Tong-waxiang in 1855. Selected papers of Researches on the Yellow River and present practice. The editor "the Yellow River" Yellow River Conservancy Commission, October. 1987.
    [3] 胡一三.黄河防洪.中国水利科学技术丛书.黄河水利出版社,1997.
    [4] 涂启华,安催花,曾芹,谢宝平.小浪底水库运用方式研究.黄河小浪底水利枢纽文集(林秀山主编).黄河水利出版社,2001.
    [5] 方宗岱.论江河治理.水利水电出版社,1992.
    [6] 《行水金鉴》卷三十二.
    [7] 潘季驯.《两河经略疏》.
    [8] 靳辅.《经理河工第一疏》.
    [9] 《清河县志》咸丰四年同治补续刊.
    [10] 靳辅.《靳文襄公治河书》.
    [11] 安立森.黄河河口之现状,1937.
    [12] 赵业安,周文浩,费祥俊,胡春宏,申冠卿,陈建国,等编著.黄河下游河道演变基本规律.“八五”国家重点科技攻关项目“黄河治理与水资源开发利用”系列专著.黄河水利出版社,1998.
    [13] 前左站.黄河河口观测报告(1953~1955),1956.
    [14] 黄委会水科所.黄河河口资料整理报告,1957.
    [15] 黄委会.黄河河口潮汐问题初步分析,1959.
    [16] 杨庆安,缪风举.黄河三门峡水库运用及工程决策的经验教训.黄河三门峡水利枢纽运用研究文集.河南人民出版社,1993.
    [17] 谢鉴衡,庞家珍,丁六逸,张广泉,刘白松.黄河河口基本情况及基本规律.武汉水院、黄委会前左站、黄委会水科所科研报告,1965.
    [18] 钱宁,周文浩.黄河下游河床演变.科学出版社,1965.
    [19] 黄委会河口规划队.黄河河口计划改道安排意见,1968.
    [20] 黄委会河口规划队.黄河河口防凌防洪规划意见,1968.
    [21] 黄委会河口规划队.黄河河口地区水利规划意见,1968.
    [22] 钱宁,王可钦,阎林德,府仁寿.黄河中游粗泥沙来源区对黄河下游冲淤的影响.第一次河流泥沙国际学术讨论会论文集(第一卷).光华出版社,1980.
    [23] 曹如轩.高含沙水流挟沙力探讨.黄河泥沙研究报告选编(第二集),1975.
    [24] 麦乔威,赵业安,潘贤娣.黄河下游河道泥沙问题.第一次河流泥沙国际学术讨论会论文集(第一卷).光华出版社,1980.
    [25] 潘贤娣,赵业安,李勇,申冠卿.三门峡水库修建后黄河下游河道演变.黄河三门峡水利枢纽运用研究文集.河南人民出版社,1993.
    [26] 黄科所,等.黄河河口现行河道基本资料分析与发展趋势预估,1972.
    [27] 王恺忱.黄河河口演变规律.海岸河口区动力、地貌、沉积过程论文集,1985.
    [28] 黄委水文处.一九七六年黄河水沙冲淤及河口改道情况,1977.
    [29] 齐璞,李世滢,刘月兰,赵业安,等.黄河水沙变化与下游河道减淤.“八五”国家重点科技攻关项目“黄河治理与水资源开发利用”系列专著.黄河水利出版社,1997.
    [30] 黄科所.黄河河口演变规律及其对下游河道的影响,1978.
    [31] 王恺忱.黄河河口与下游河道的关系及整治问题.泥沙研究,1982(2).
    [32] 胜利油田建港指挥部.胜利油田五号桩油码头海区自然环境资料汇编,1985.
    [33] 范兆木,黎夏.黄河三角洲近期动态的遥感研究,1985.
    [34] 洪尚池,吴致尧.黄河河口地区海岸线变迁情况分析.黄委会设计院科研报告,1982.
    [35] 王志豪.黄河口无潮点与三角洲的开发治理.人民黄河,1984(6).
    [36] 王恺忱,刘月兰,王开荣.黄河口清水沟流路规划方案计算报告.黄科院科研报告,1988.
    [37] 曾庆华,张士奇,胡春宏,等.黄河口演变规律及整治研究.“八五”国家重点科技攻关项目“黄河治理与水资源开发利用”系列专著.黄河水利出版社,1997.
    [38] 陈宝冲.黄河口清水沟流路的河床演变及其影响.地理学报,1999.
    [39] 李殿魁,杨玉珍等.延长黄河口清水沟流路行水年限的研究总报告.黄河水利出版社,2002.
    [40] 尹学良.黄河口的河床演变.中国铁道出版社,1997.
    [41] 刘贵芝.黄河下游河道整治技术发展概况.人民黄河,1994(1).
    [42] 胡一三,张红武,刘贵芝,王恺忱,彭瑞善,刘月兰,等著.黄河下游游荡性河段河道整治.“八五”国家重点科技攻关项目“黄河治理与水资源开发利用”系列专著.黄河水利出版社,1998.
    [43] 陈霁巍,徐明全,姚传江,等.黄河治理与水资源开发利用.黄河水利出版社,1998.
    [44] 庞家珍.论黄河三角洲流路演变及河口治理的指导原则.黄河河口治理总结暨学术研讨会论文集.黄河水利出版社,1995.
    [45] 联合国开发计划署项目(CPR/91/144黄河口治理与水资源利用).河口治理与水资源专家组,1997.
    [46] 李殿魁.加强科学研究,根治黄河水患.黄河河口治理总结暨学术研讨会论文集.黄河水利出版社,1995.
    [47] 东营市、胜利油田黄河河口疏浚工程指挥部.黄河河口疏浚试验工程总结.黄河河口治理总结暨学术研讨会论文集.黄河水利出版社,1995.
    [48] 包锡成.黄河河口治理措施评价.包锡成文集.黄河水利出版社,1999.
    [49] 包锡成.黄河河口“塞支强干”和“工程导流”质疑.包锡成文集.黄河水利出版社,1999.
    [50] 王恺忱.清水沟尾间河段整治概况与分析.黄河水利科学研究院科研报告,2002.
    [51] 林秉南,周建军,张仁,王兆印.引用海水冲深黄河下游河槽——治黄新途径的探索.中 国水利水电科学研究院学报,1997.
    [52] 李泽刚.黄河口治理与水沙资源综合利用.人民黄河,2001(2).
    [53] 王恺忱,等.黄河河口拦门沙的治理问题.第十届中国海岸工程学术讨论会论文集.海洋出版社,2001.
    [54] 修日晨,顾玉荷.关于利用海洋动力输沙的可行性讨论.黄河河口治理总结暨学术研讨会论文集.黄河水利出版社,1995.
    [55] 王涛,尹宝树,李平.黄河三角洲近海冲淤变化对海动力条件的影响及风暴潮、浪、流对拦门沙动态变化的重要作用.黄河河口治理总结暨学术研讨会论文集.黄河水利出版社,1995.
    [56] 王恺忱,王开荣.黄河河口治理措施分析.第九届中日河工坝工会议论文集,1993.
    [57] 洪尚池,等.黄河中下游挖河减淤关键技术研究.黄河水利出版社,2002.
    [58] 包锡成.黄河下游冰凌洪水的防治.包锡成文集.黄河水利出版社,1999.
    [59] 蔡琳.黄河防凌工作50年.人民黄河,1996(12).
    [60] 王开荣,等.黄河河口的洪凌灾害及防治对策.第29届国际水利学大会,2000.
    [61] 王开荣,茹玉英,等.黄河河口演变与治理研究报告.黄河水利科学研究院科研报告,2002.
    [62] 谷源泽,等.黄河口复循环流路沙嘴延伸机制特性与行水年限分析.黄委会山东水文水资源局科研报告,2001.
    [63] 崔树彬,宋世霞,等.三门峡以下水环境保护研究.水利部国家环保总局黄河流域水资源保护局科研报告,2002.
    [64] 孙寿松,张光森.东营市水资源开发利用的现状、问题和对策.黄河水政水资源研究论文集.黄河水利出版社,1999.
    [65] 倪晋仁,金玲,等.黄河下游河流最小生态需水量初步研究.水利学报,2002.
    [66] 石伟,王光谦.黄河下游生态需水量及其估算.地理学报,2002(5).
    [67] 高中琪.共和国年轻的土地新世纪腾飞的基石——院士推进黄河三角洲高效生态经济发展纪实.中国工程院网站.
    [68] 杨玉珍.黄河治理应高度重视环境保护.黄河断流及其对策.中国水利水电出版社,1997.
    [69] 田家怡,王民,等.黄河断流对三角洲生态环境的影响与缓解对策的研究.黄河断流与流域可持续发展.中国环境科学出版社,1997.
    [70] 钱征寒,倪晋仁.黄河断流及其生态环境影响,2001.
    [71] 朱震达,陈志清.黄河下游断流及其对沿岸土地荒漠化的影响.黄河断流与流域可持续发展.中国环境科学出版社,1997.
    [72] 杨朝飞.黄河断流的生态思考.黄河断流与流域可持续发展.中国环境科学出版社,1997.
    [73] 刘晓燕.关于黄河河口问题的思考.人民黄河,2003(7).
    [74] 侯国本,拾兵.治黄河论.海洋出版社,2001.
    [75] 张仁,谢树楠.废黄河的淤积形态和黄河下游持续淤积的主要原因.泥沙研究,1985(3).
    [76] 尹学良.黄河下游河道的演变、改造和寿命.黄河流域环境演变与水沙运行规律研究文集(第三集).地质出版社,1992.
    [77] 尹学良.黄河下游平衡纵剖面的塑造.黄河流域环境演变与水沙运行规律研究文集(第一集).地质出版社,1991.
    [78] 赵文林主编.黄河泥沙.黄河水利科学技术丛书.黄河水利出版社,1996.
    [79] 李泽刚.黄河口近期演变规律及发展趋势预测.人民黄河,1996(9).
    [80] 曹文洪.黄河口三角洲演变及其反馈影响的研究.泥沙研究,1997(4).
    [81] 叶青超.流域环境演变与水沙运行规律研究.山东科学技术出版社,1994.
    [1] Dai Yingsheng. Genesis and Brief History of Evolution of the Yellow River. Selected papers of Researches on the Yellow River and Present Practice. The editor "the Yellow River" Yellow River Conservancy Commission, October. 1987.
    [2] Zhaoyin WANG, Chunhong HU. Interactions Between Fluvial Systems and Large Scale Hydro-projects. Proceedings of the Ninth Symposium on the Sedimentation October 18-21, 2004, Yichang, China.
    [3] 胡一三.黄河卷.中国江河防洪丛书.中国水利水电出版社,1986.
    [4] 陈霁巍,徐明全,姚传江,等.黄河治理与水资源开发利用.“八五”国家重点科技攻关项目“黄河治理与水资源开发利用”系列专著.黄河水利出版社,1998.
    [5] 廖义伟,等.黄河下游“二级悬河”成因及治理对策.黄河水利出版社,2003.
    [6] Lisheng SUO. River Management And Ecosystem Conservation In China. Proceedings of the Ninth Symposium on the Sedimentation October, 2004, Yichang, China.
    [7] 潘贤娣,赵业安,李勇,申冠卿.三门峡水库修建后黄河下游河道演变.黄河三门峡水利枢纽运用研究文集.河南人民出版社,1993.
    [8] Zhang Haimin, Li Shiming and Huo Shiqing. Analysis on the Flood and Disaster Situation in the Lower Yellow River. Proceedings 1st International Yellow River Forum on River Basin Management (Volume Ⅱ). The Yellow River Conservancy Publishing House, 2003.
    [9] Li Guoying. Prototype Test for Water and Sediment Regulation of the Yellow River. Proceedings 1st International Yellow River Forum on River Basin Management (Volume Ⅱ). The Yellow River Conservancy Publishing House, 2003.
    [10] Zhongping Zhu. Yellow River Basin Water Accounting. Proceedings 1st International Yellow River Forum on River Basin Management (Volume Ⅱ). The Yellow River Conservancy Publishing House, 2003.
    [11] 黄河防汛资料汇编(2000年).黄河防总办公室,2000.
    [12] 刘颖秋.强化黄河水资源优化配置和管理的几点建议.黄河断流及其对策.中国水利水电出版社,1997.
    [13] 景万林.黄河下游断流的影响及河南引黄对策.黄河断流及其对策.中国水利水电出版社,1997.
    [14] 杨玉珍.黄河治理应高度重视环境保护.黄河断流及其对策.中国水利水电出版社,1997.
    [15] 赵文林主编.黄河泥沙.黄河水利科学技术丛书.黄河水利出版社,1996.
    [16] Qu Shaojun, Qian Yiying and Li Xiaoping. The Mechanism of Adjustment due to Changes in Regime of Flow and Sediment in the Lower Yellow River. Proceedings 1st International Yellow River Forum on River Basin Management (Volume Ⅱ). The Yellow River Conservancy Publishing House, 2003.
    [17] 温善章,陈升辉,赵业安.黄河三门峡工程回顾与评价.黄河三门峡水利枢纽运用研究文集.河南人民出版社,1993.
    [18] 陈枝霖,陈升辉,李国英,侯晓明.三门峡工程的历史回顾及国民经济评价.黄河三门峡水利枢纽运用研究文集.河南人民出版社,1993.
    [19] 吴柏煊,程徐建,林志华,王建伟.三门峡水利枢纽工程建设的经验和教训.黄河三门峡水利枢纽运用研究文集.河南人民出版社,1993.
    [20] 齐璞,赵业安,樊左英,等.1977年黄河下游高含沙洪水的输移与演变分析.黄科院科研报告,1984.
    [21] 李保如,王恺忱,屈孟浩,等.1982年8月洪水调查报告.黄委会,1982.
    [22] 牛占,等.河床严重萎缩后典型洪水的演进过程.黄河水利委员会水文局,1996.
    [23] 林秀山.小浪底水利枢纽设计若干问题的研究与实践.黄河小浪底水利枢纽文集(二).黄河水利出版社,2001.
    [24] 石春先,李世滢,刘继祥,安新代,等.小浪底水库2000年运用方案研究报告.水利部黄河水利委员会勘测设计研究院(HSY-GH-101),2000.
    [25] 李国英主编.黄河调水调沙试验.黄河水利出版社,2004.
    [26] Simons, Li and Associates. Overview of Flood Routing Methods, in Eng. Analysis of Fluvial Systems, 1982.
    [27] J.尼库拉兹.粗糙管中水流的规律.张瑞瑾泽.水利出版社,1957.
    [28] 徐正凡(主编).水力学.高等教育出版社,1987.
    [29] 周善生(主编).水力学.人民教育出版社,1980.
    [30] J-W戴莱,D"R"T哈里曼著.流体动力学.郭子中,陈玉璞,等泽.人民教育出版社,1981.
    [31] 张红武.挟沙水流流速的垂线分布公式.泥沙研究,1995.
    [32] 张红武,江恩惠,等.黄河高含沙洪水模型相似律.河南科学技术出版社,1994.
    [33] 黄文锽主编.水力学.人民教育出版社,1981
    [34] 徐正凡主编.水力学手册.水利电力出版社,1980
    [35] 张红武,马继业,张俊华,等.河流桥渡设计.中国建材工业出版社,1993.
    [36] 陈先德主编.黄河水文.黄河水利出版社,1996.
    [1] Lu Jianyi. Mouth of the Yellow River, Its Evolution and Improvement. Selected papers of Researches on the Yellow River and present practice. The editor "the Yellow River " Yellow River Conservancy Commission, October. 1987.
    [2] 曾庆华,张士奇,胡春宏,等.黄河口演变规律及整治研究.“八五”国家重点科技攻关项目“黄河治理与水资源开发利用”系列专著.黄河水利出版社,1997.
    [3] Changxing Shi, Davaid Dian Zhang, Lianyuan You. Sediment Budget of the Yellow River Delta, China: the Importance of Dry Bulk Density and Implications to Understanding of Sediment Dispersal. Marine Geography 199, 2003.
    [4] 赵文林主编.黄河泥沙.黄河水利科学技术丛书.黄河水利出版社,1996.
    [5] 尹延鸿.黄河尾闾河道1996年改道的意义及黄河三角洲演化趋势.海洋工程,2001(4).
    [6] Jiongxin Xu, Dongsheng Cheng. Relation between the erosion and sedimentation zones in the Yellow River, China. Geomorphology 48, 2002.
    [7] Kairong Wang, Xiaotian Chen and Qiaolan Han. Discussion on the Dynamic Equilibrium of the Coastline in the Yellow River Estuary. Proceedings of the Ninth Symposium on the Sedimentation October, 2004, Yichang, China.
    [8] 赵康星,张万清,李玉环,陈乐增.GIS支持下的黄河口近期淤蚀动态研究.地理科学.1999.
    [9] 黄委会.黄河河口潮汐问题初步分析,1959.
    [10] 前左站.黄河滨海区潮汐潮流特性,1961.
    [11] 李泽刚.黄河三角洲沿岸潮汐初步分析.黄科所科研报告,1981.
    [12] 李泽刚.黄河三角洲附近海域潮流分析.黄科所科研报告,1981.
    [13] 胜利油田建港指挥部.胜利油田五号桩油码头海区自然环境资料汇编,1985.
    [14] 杨光复,李永植,等.近代黄河三角洲演变.中科院青岛海洋所科研报告,1992.
    [15] 李殿魁,杨玉珍,等.延长黄河口清水沟流路行水年限的研究总报告.黄河水利出版社,2002.
    [16] 王恺忱,董年虎.黄河入海泥沙对大口河海区影响分析.黄科院科学研究论文集第三集,1992.
    [17] 王恺忱,王开荣.清水沟流路改走北汊对黄河海港影响分析.第十届海洋工程学术讨论会论文集,2001.
    [18] J. Paul Liu, John D. Milliman, Shu Gao, Peng Cheng. Holocene Development of the Yellow River's Subaqueous Delta, North Yellow Sea. Marine Geography 209, 2004.
    [19] 胡春宏,曹文洪.黄河口水沙变异与调控Ⅰ——黄河口水沙运动与演变规律研究.泥沙研究,2003(5).
    [20] 赵保仁,庄国文,曹德明,雷方辉.渤海的环流、潮余流及其对沉积物分布的影响.海洋与湖沼,1995(5).
    [21] 胡春宏,吉祖稳,王涛.黄河口海洋动力特性与泥沙的输移扩散.泥沙研究,1996(4).
    [22] Yoshiki Saito, Helong Wei, Yongqing Zhou, Akira Nishimura, Yoshio Sato, Setsuya Yokota. Delta Progradation and Chenier Formation in the Huanghe (Yellow River) delta, China. Journal of Asian Earth Sciences 18, 2000.
    [23] Bagnold, RA., "Beach formation by Wavers; Some Model Experiments in a Wave Tank", J.Inst.civil Engrs., No.1, 1940.
    [24] Xiaohua Zhang and Hongxia Shang. The Changing Characteristics of Water and Sediment Resources Distribution in the Middle and Lower Yellow River. Proceedings of the Ninth Symposium on the Sedimentation October,2004, Yichang, China.
    [25] 黄河研究会.黄河河口地区治理开发概况.黄河河口问题及治理对策研讨会专家论坛.黄河水利出版社,2003.
    [26] 尹学良.黄河口的河床演变.中国铁道出版社,1997.
    [27] 王恺忱,周志德.黄河河口演变规律及其对下游河道的影响.黄河水利科学研究所科研报告,1978.
    [28] 王锡栋.黄河河口治理的实践及建议.黄河河口问题及治理对策研讨会专家论坛.黄河水利出版社,2003.
    [29] 宋振华,程义吉.黄河口清水沟流路河道整治情况及效用.人民黄河(5).
    [30] 程义吉.黄河口演变与治理对策.中国江河河口研究及治理、开发问题研讨会文集.中国水利水电出版社,2003.
    [31] 张红武,赵连军,曹丰生.游荡河型成因及其河型转化问题的研究.人民黄河,1996(10).
    [32] 王宗文.黄河口清8改汊后河道演变概况及发展趋势预测.水土保持研究,1998(5).
    [33] 程义吉.黄河口清8出汊后流路演变分析.海岸工程,2000(4).
    [1] 张红武,黄远东,赵连军,江恩惠.黄河下游非恒定输沙数学模型—Ⅰ模型方程与计算方法.水科学进展,2002(3).
    [2] 张红武,江恩惠等.黄河高含沙洪水模型相似律.河南科学技术出版社,1994.
    [3] 杨国录.河流数学模型.武汉水利电力大学出版社,1992.
    [4] 韩其为.悬移质不平衡输沙的初步研究.河流泥沙国际学术讨论会论文集.1980.
    [5] Feldman A. D. Hec Models for water Resources system simulation. Theory and Experience. The Hydraulic Engineering Center. Davis. California, 1981.
    [6] 李义天.河道平面二维河床变形计算初步研究.泥沙研究,1988.
    [7] 韦直林,张良奎,付小平.黄河泥沙数学模型研究.武汉水利电力大学学报,1997(5).
    [8] 胡海明.平衡状态下非均匀沙级配的分析研究.泥沙研究,1995.
    [9] 曲少军,张启卫,高际平.黄河泥沙数学模型的研究及方案计算.“八五”国家重点科技攻关子专题报告(85-926-02-04-02).黄河水利科学研究院,1995.
    [10] 王士强,谢树楠,等.黄河中游水库和下游河道水动力学泥沙冲淤数学模型及方案计算.“八五”国家科技攻关子专题报告(85-926-02-04-01).清华大学水利水电工程系,1995.
    [11] 孙卫东.黄河水库泥沙冲淤数学模型及方案计算.“八五”国家重点科技攻关子专题报告(85-926-02-04-06).中国水利水电科学研究院,1995.
    [12] 张俊华,王严平,赵连军.准二维水库泥沙冲淤变形的数值模拟方法.泥沙信息,1996.
    [13] 谈广鸣,张小峰.库区干支流异重流入汇运动分析计算.第二届全国泥沙基本理论研究学术讨论会论文集.中国建材工业出版社,1995.
    [14] 赵连军,吴香菊,王原.悬移质泥沙级配的计算方法.第十二届全国水动力学研讨会论文集.海洋出版社,1998
    [15] 赵连军,谈广鸣,韦直林,江恩惠.天然河流床沙级配的计算.武汉大学学报(工学版),2005(2).
    [16] Bogardi, J., Sediment Transport in Alluvial Streams, Akademiai Kiado, Budapest, 1974
    [17] 赵连军,谈广鸣,韦直林,张红武,江恩惠.黄河下游河道悬移质泥沙与床沙交换计算方法研究.水科学进展,2005(2).
    [18] 张红武.黄河下游洪水模型相似律的研究.清华大学博士学位论文,1995.
    [19] 赵连军,谈广鸣,韦直林.天然悬移质泥沙粒径分布及混合平均沉速的计算.中国农村水利水电,2004(9).
    [20] Lianjun ZHAO, Guangming TAN, zhlin WEI, Hongwu ZHANG. Research on the Vertical Distribution of Average Grain-Size of Suspended Load. Proceedings of the Ninth International Symposium on River Sedimentation. Tsinghua University Press, 2004
    [21] 张红武,吕昕.弯道水力学.水利电力出版社,1993.
    [22] 张红武,马继业,张俊华,等.河流桥渡设计.中国建材工业出版社,1993.
    [23] Rouse H., "Modern Conceptions of the Mechanics of fluid turbulence" Tran. ASCE, Vol102, Paoer No. 1965, 1937
    [24] 丁君松.悬移质含沙量沿垂线分布的研究及其应用.武汉水利电力学院学报,1981.
    [25] 张红武.河流动力学.黄河水利出版社,1998.
    [26] 张红武,张清.黄河水流挟沙力的计算公式.人民黄河,1992.
    [27] 舒安平.水流挟沙力公式的验证与评述.人民黄河,1993(1).
    [28] 陈雪峰,陈立,李义天.高中低浓度挟沙水流挟沙力公式的对比分析.武汉水利电力大学学报,1999(5).
    [29] 张瑞瑾,谢鉴衡,等.河流泥沙动力学.水利电力出版社(第二版),1998.
    [30] 潘贤娣,赵业安,李勇,申冠卿.三门峡水库修建后黄河下游河道演变.黄河三门峡水利枢纽运用研究文集.河南人民出版社,1993.
    [31] 韦直林,谢鉴衡,傅国岩,伊小玲.黄河下游河床变形长期预测数学模型的研究.武汉水利电力大学学报,1997(6).
    [32] 韦直林.黄河下游河道河口段泥沙数学模型的初步研究.武汉水利电力大学泥沙教研室科研报告,1997.
    [33] 余欣,李景宗,郭选英,冯自环.黄河入海流路发展趋势初步研究.海岸工程,2000(4).
    [34] 姚传江,龙毓骞,等.黄河下游断面法冲淤量分析与评价.黄河水利科学研究院科研报告,2002.
    [35] Colly, B. R. &Hembree. C.H.Computation of Total Sediment Discharge, Niobrara River Near Cody. Nebraska, USGS Water Supply Paper, 1357. 1955.
    [36] H. A. Einstein. River Sedimentation, Handbook of Applied Hydrology. A Cpmpendium of Water-resources Technology, 1964.
    [37] 赵业安,潘贤弟,樊左英,韩少发.黄河下游河床演变基本资料汇编.黄河水利科学研究所科研报告,1987.
    [38] 赵连军,江恩惠,张红武,等.黄河下游实用水位预报模型修改与完善.黄河水利科学研究院科研报告.黄科技第HX-9913-42号,1999.
    [39] 江恩惠,张红武,等.黄河下游泥沙数学模型研究.黄河水利科学研究院科研报告.黄 科技第95029号,1995.
    [40] 张红武,黄远东,赵连军,江恩惠.黄河下游非恒定输沙数学模型—Ⅱ模型验证.水科学进展,2002(3).
    [41] 赵连军,谈广鸣,韦直林,王严平.小浪底水库2002年调水调沙下游河道洪水演进跟踪模拟计算.水动力学研究与进展,2004(5).
    [42] 赵连军,江恩惠,张红武,等.利用非恒定流泥沙数学模型预测黄河下游河道冲淤变化.黄河水利科学研究院科研报告.黄科技第ZX-9915-35号,1999.
    [43] 韦直林,赵连军,谈广鸣,余新明.小浪底水库运用初期黄河下游河道冲刷模拟计算.四川大学学报(工程科学版),2005(2).
    [44] 张红武,等.泾河东庄水利枢纽工程下游河道冲淤变化数学模型计算研究.清华大学科研报告,2001.
    [45] 张红武,等.宁夏黄河数学模型研究与计算.清华大学科研报告,2000.
    [46] 赵连军,江恩惠,张红武,等.黄河花园口至高村河段数学模型1977年洪水预测计算黄河水利科学研究院科研报告.黄科技第97062,1997.
    [47] 赵连军,江恩惠,张红武,等.黄河花园口至孙口河段数学模型现场演示及1998年洪水演进时预报报告.黄河水利科学研究院科研报告.黄科技第HX-9814-047号,1998。
    [48] 赵连军,江恩惠,张红武,等.1999年汛期花园口至孙口河段数学模型洪水预测计算报告.黄河水利科学研究院科研报告.黄科技第HX-9916-52号,1999.
    [49] Zhao Lianjun, Jiang Enhui, Zhang Hongwu. Study on Forecasting Calculation of Mathematical Model for Stream Flood Routing in The Lower Yellow River. International Association of Hydraulic Engineering and Research. Beijing, 2001.
    [50] 江恩惠,赵连军,黄晓霞,张清.小浪底水库运用初期黄河下游河道减淤效果研究.第十六届全国水动力学研讨会文集.海洋出版社,2002.
    [51] 韦直林,赵连军.黄河下游滩区治理模式和安全建设研究报告之一——黄河下游滩区不同治理模式对河道冲淤演变影响预测计算.武汉大学水利水电学院科研报告,2004.
    [52] 韦直林,赵连军.黄河下游滩区生产堤加高加固利弊分析研究报告之二——生产堤对黄河下游河道冲淤演变及行洪的影响.武汉大学水利水电学院科研报告,2004.
    [53] 张红武,赵连军.泾河东庄水库对渭河下游河道冲淤影响的数学模型计算研究.清华大学科研报告,2002.
    [54] 赵连军,江恩惠,张红武,等.黄河花园口至高村河段洪水数学模型计算.黄河水利科学研究院科研报告.黄科技第970009号,1997.
    [55] Zhang Junhua, Zhang Hongwu, Zhao Lianjun and Ma Huaibao. Impact on movable model of time distortion ratio analysis. International Association of Hydraulic Engineering and Research, 2001, Beijing.
    [1] 胡一三,徐福龄.黄河下游河道整治在防洪中的作用.中美黄河下游防洪措施学术讨论会论文集.中国环境科学出版社,1989.
    [2] 廖义伟等.黄河下游“二级悬河”成因及治理对策.黄河水利出版社,2003.
    [3] 潘贤娣,赵业安,李勇,申冠卿.三门峡水库修建后黄河下游河道演变.黄河三门峡水利枢纽运用研究文集.河南人民出版社,1993.
    [4] 胡一三,张红武,刘贵芝,王恺忱,彭瑞善,刘月兰,等.黄河下游游荡性河段河道整治.“八五”国家重点科技攻关项目“黄河治理与水资源开发利用”系列专著.黄河水利出版社,1998.
    [5] 刘贵芝.东坝头至高村河段河道整治的经验教训.人民黄河,1992(2).
    [6] 黄河防汛资料汇编(2001年).黄河防总办公室,2001.
    [7] 李希宁,王银山.山东黄河河道发生横河、斜河的原因及其防御出险的措施.人民黄河,1990(4).
    [8] 温善章,陈升辉,赵业安.黄河三门峡工程回顾与评价.黄河三门峡水利枢纽运用研究文集.河南人民出版社,1993.
    [9] 赵业安,周文浩,费祥俊,胡春宏,申冠卿,陈建国,等编著.黄河下游河道演变基本规律.“八五”国家重点科技攻关项目“黄河治理与水资源开发利用”系列专著.黄河水利出版社,1998.
    [10] 耿明全,赵勇,张柏山.黄河下游滩区生产堤加高加固利弊分析研究.河南黄河河务局科研报告,2004.
    [11] 李勇,苏运启,等.黄河下游河道近年来阻力特性变化及对防洪的影响.黄河水利科学研究院科研报告.黄科技Zx-9918-49,1999.
    [12] Wu Baosheng, Ma Jiming, Zhang Baishan and Ma Jiye. Morphological Response to River Training in the Lower Yellow River. Proceedings 1st International Yellow River Forum on River Basin Management (Volume Ⅱ). The Yellow River Conservancy Publishing House, 2003.
    [13] 陈枝霖,陈升辉,李国英,侯晓明.三门峡工程的历史回顾及国民经济评价.黄河三门峡水利枢纽运用研究文集.河南人民出版社,1993.
    [14] 赵文林主编.黄河泥沙.黄河水利科学技术丛书.黄河水利出版社,1996.
    [15] 李国英主编.黄河首次调水调沙试验.黄河水利出版社,2003.
    [16] 李国英主编.黄河第三次调水调沙试验.黄河水利出版社,2004.
    [1] 谢鉴衡.江河演变与治理研究.武汉大学出版社,2004.
    [2] 赵文林主编.黄河泥沙.黄河水利科学技术丛书.黄河水利出版社,1996.
    [3] 胡一三.黄河卷.中国江河防洪丛书.中国水利水电出版社,1986.
    [4] 李泽刚.黄河口近期演变规律及发展趋势预测.人民黄河,1996(9).
    [5] 尹学良.黄河口的河床演变.中国铁道出版社,1997.
    [6] 曹文洪.黄河口三角洲演变及其反馈影响的研究.泥沙研究,1997(4).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700