土压平衡盾构密封舱压力控制的关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土压平衡盾构机是国家基础建设、资源开发和国防建设急需的重大技术装备,被广泛用于地铁隧道、越江隧道、铁路隧道等工程建设中。密封舱压力平衡控制是土压平衡盾构核心技术之一,直接影响着隧道开挖面的稳定性、施工安全和效率、能量消耗等。但由于对密封舱压力测点观测值与开挖面支护压力之间的映射关系认识不清,难以为密封舱压力平衡控制提供合理、准确的依据,给盾构设计、施工、控制带来了极大的困难,严重地阻碍了土压平衡盾构机的国产化进程。针对这一问题,本文采用模型实验、土工试验、数值模拟技术相结合的方法,研究了密封舱压力分布规律和密封舱压力传递特性,给出了密封舱等效压力的定义与计算方法,提出了密封舱压力测点优化布置方法,为密封舱压力平衡控制提供理论依据。
     本文以Φ6.28m土压平衡盾构作为设计原型,搭建密封舱压力控制实验台,并进行实验台模拟真实的密封舱压力分布规律的可行性实验。通过在不同改性砂土中进行实验可以发现,实验台密封舱竖直和水平压力分布与工程中的密封舱压力分布规律一致,表明实验台可以模拟改性砂土流动过程,能为密封舱内压力场数值模拟方法的有效性验证提供详实的数据。
     在搭建密封舱压力控制实验台的基础上,通过模型实验验证离散元法模拟密封舱压力场的有效性。依据改性砂土的三轴实验数据,采取基于遗传神经网络的反演方法获取改性砂土等效离散元模型参数。通过反演得到的接触模型参数预测的三轴实验结果与实测数据基本一致,表明接触模型能够模拟改性砂土颗粒间的力学行为,反演方法是可行的和正确的。在此基础上,以密封舱压力控制实验台为原型,进行密封舱压力场离散元数值模拟研究。数值模拟结果与实测结果具有较好的一致性,说明离散元仿真模型是有效的,为进一步的密封舱压力传递特性研究和测点布置优化奠定了基础。
     基于离散元数值模拟方法,本文研究了密封舱压力传递特性,提出开挖面与密封舱隔板间的压力差计算公式。采用数值模拟方法研究沈阳某地铁标段施工的Φ6.28m土压平衡盾构密封舱压力传递特性,通过施工数据验证了密封舱压力传递特性是可以用于指导施工的。同时,通过改变密封舱几何模型和边界条件,研究了密封舱长度、隧道埋深、刀盘开口对密封舱压力传递特性的影响。结果表明密封舱长度、隧道埋深对开挖面与隔板间的压力差的影响很小,但是随着刀盘开口率的增大,开挖面与隔板间的压力差反而降低,两者成二次函数曲线关系,为密封舱压力的设定提供了理论依据。
     为了获得较为精确的密封舱压力控制依据,本文提出密封舱等效压力的概念与加权计算方法,建立密封舱压力测点布置优化的数学模型,给出了密封舱压力测点优化布置方法。以Φ6.28m土压平衡盾构为研究对象,基于密封舱压力数值模拟数据,采用模糊聚类分析与判别分析相结合的方法进行了压力测点布置优化研究。通过对比密封舱等效压力误差可以发现,加权算法获得的密封舱等效压力是准确的,密封舱压力测点优化布置方法是可行的,为土压平衡盾构机设计、密封舱压力控制提供理论基础。
     最后,对下一步的研究工作进行了展望和规划。
The earth pressure balance shield (EPBS) is the important technical equipment for infrastructure projects, resource development and national defence. It has been widely applied in metro tunnel, crossing-river tunnel, railway tunnel and so on. The pressure balance control of working chamber is one of the core technologies. It directly influences on stability of tunnel face, safety and efficiency of tunneling construction, energy consumption and so on. However, due to lack of understanding on mapping relationship between observed values of pressure measurement points of working chamber and support pressure of tunnel face, it is difficult to supply reasonable and exact basis for pressure balance control of working chamber. This condition causes difficulties for design, construction and control of EPBS. Thus localization process of EPBS is hindered seriously. Aiming at this problem, in this work, by adopting the method of combining model experiment with geotechnical test and numerical simulation technique, pressure distribution law and pressure transfer characteristic of working chamber are studied, definition and calculation method of equivalent pressure of working chamber are presented, at the same time, optimal arrangement of pressure measurement points in working chamber is put forward. These works should provide theoretical basis for pressure balance control of working chamber.
     By adopting6.28m diameter EPBS as design prototype, The experiment table of pressure control of working chamber has been set up, and then feasibility test is carried through to simulate pressure distribution law of actual working chamber on this experiment table. Through experimentizing in different kinds of conditioned sand, we can find out that pressure distribution of vertical and horizontal direction of working chamber is consistent with pressure distribution law in engineering. This condition indicates that experiment table can simulate flowing process of conditioned sand and it also can provide exhaustive and real data for verifying validity of simulation method on pressure field of working chamber.
     Based on model experiment, validity of simulating pressure field of working chamber is verified through discrete element method (DEM). According to triaxial test data of conditioned sand, inversion method which is based upon back-propagation (BP) network and gentic algorithm is adopted to obtain equivalent parameters of discrete element model of conditioned sand. By back analyzing, contact model parameters are obtained. The triaxial test result which is predicted by these parameters is basically consistent with actual measured data. It indicates that contact model can simulate mechanical behaviour of particles of conditioned sand, and inversion method is feasible and correct. On this basis, by adopting experiment table of pressure control of working chamber as prototype, research of DEM on pressure field of working chamber is carried out. The results of the numerical simulation are better consistent with actual measured results. This shows that simulation model of DEM is impactful. It lays the foundation for farther reaserch on pressure transfer characteristic and optimal arrangement of measurement points of working chamber.
     The calculation formula of pressure difference between tunnel face and bulkhead of working chamber are presented. The pressure transfer characteristic of working chamber of6.28m diameter EPBS employed in a certain project of metro is studied by adopting numerical simulation method, and construction data verifies that the pressure transfer characteristic of working chamber can be used to guide construction. At the same time, through changing geometric model and boundary condition of working chamber, impact on pressure transfer characteristic of working chamber by length of working chamber, tunnel depth and cutter head open ratio is studied. The results show that length of working chamber and tunnel depth have little effect on pressure difference between tunnel face and bulkhead. However, with cutter head open ratio increases, instead, the pressure difference reduces. There is quadratic function curve relation between the both. This provides theoretics basis for pressure setting of working chamber.
     The definition and calculation method of equivalent pressure of working chamber are presented, and mathematic model of optimal arrangement of pressure measurement points is established, at the same time, optimal arrangement method of measurement points is presented. By selecting6.28m diameter EPBS as study object, according to data of pressure numerical simulation of working chamber, the study on optimal arrangement of pressure measurement points is carried through by using the method of combining fuzzy clustering analysis with discriminant analysis. Through contrasting equivalent pressure error of working chamber, we can find out that equivalent pressure obtained by weighted algorithm is more exact and optimal arrangement method of pressure measurement points is feasible. It should give a theoretical basis to design of EPBS and pressure balance control of working chamber.
     Finally, some suggestions for further research are given in this thesis.
引文
[1]张镜剑,傅冰骏.隧道掘进机在我国应用的进展[J].岩石力学与工程学报,2007,26(2):226-239.
    [2]傅德明,周文波.土压盾构技术在我国地铁隧道工程中的应用和发展[J].岩石力学与工程学报,2004,23(增2):4888-4892.
    [3]BABENDERERDE S. Tunnelling machines in soft ground:a comparison of slurry and EPB shield systems[J]. Tunnelling and Underground Space Technology,1991,6(2):169-174.
    [4]张风祥,朱合华,傅德明.盾构隧道[M].北京:人民交通出版社,2004.
    [5]ANAGNOSTOU G, KOVAR K. Face stability conditions with earth-pressure-balanced shields[J]. Tunnelling and Underground Space Technology,1996,11(2):165-173.
    [6]易宏伟,孙钧.盾构施工对软粘土的扰动机理分析[J].同济大学学报,2000,28(3):277-281.
    [7]张佳,付修华.成都地铁工程施工安全监督管理初探[J].建筑安全,2006,9:31-34.
    [8]SHIN H S, KWON Y C, JUNG Y S. Methodology for quantitative hazard assessment for tunnel collapses based on case histories in Korea [J]. International Journal of Rock Mechanics & Mining Sciences,2009,46(6):1072-1087.
    [9]YEH I-Cheng. Application of neural networks to automatic soil pressure balance control for shield tunneling[J]. Automation in Construction,1997,5(5):421-426.
    [10]刘东亮.EPB盾构掘进的土压控制[J].铁道工程学报,2005,4:45-51.
    [11]杨洪杰,傅德明,葛修润.盾构周围土压力的试验研究与数值模拟[J].岩石力学与工程学报,2006,25(8):1652-1657.
    [12]王洪新,傅德明.土压平衡盾构掘进的数学物理模型及各参数间关系研究[J].土木工程学报,2006,39(9):86-90.
    [13]王洪新,傅德明.土压平衡盾构平衡控制理论及试验研究[J].土木工程学报,2007,40(5):61-68.
    [14]施虎,龚国芳,杨华勇.盾构掘进土压平衡控制模型[J].煤炭学报,2008,33(3):343-346.
    [15]LI X, CHEN Z H. Fuzzy immune control for shield's earth-pressure-balance simulation system[C]. Fourth International Conference on Natural Computation. IEEE Computer Society,2008:648-652.
    [16]LI X, CHEN Z H. Modeling and simulation for earth-pressure-balance simulated system of shield machine[C].2008 Asia Simulation Conference. IEEE Computer Society,2008:732-735.
    [17]YANG H Y, SHI H, GONG G F et al. Earth pressure balance control for EPB shield[J]. Science in China Series E:Technological Sciences,2009,52(10):2840—2848.
    [18]李守巨,孙伟,栾巨田等.土压平衡盾构机密封舱土压力控制方法[J].煤炭学报,2010,35(3):403-406.
    [19]刘博,李守巨.土压平衡盾构机密封舱土压力控制模型[J].隧道建设,2010,30(4):388-391.
    [20]刘博,李守巨.土压平衡盾构机密封舱土压力控制模型[J].哈尔滨工业大学学报,2011,43(增1):262-266.
    [21]李守巨,屈福政,曹丽娟等.土压平衡盾构机密封舱压力控制实验研究[J].煤炭学报,2011,36(6):934-937.
    [22]刘宣宇,邵诚,刘任喜.盾构掘进土压控制模型的建立及仿真[J].煤炭学报,2010,35(4):575-580.
    [23]CHAMBON P, CORTE J F. Shallow tunnels in cohesionless soil:stability of tunnel face[J]. Journal of Geotechnical Engineering,1994,120(7):1148-1165.
    [24]KIMURA T, MAIR R J. Centrifugal testing of model tunnels in soft soil[C]. Proceedings of the 10th international conference on soil mechanics and foundation engineering, Stockholm,1981:319-322.
    [25]MASHIMO H, SUZUKI M. Stability conditions of tunnel face in sandy ground[C].Centrifuge 98, Tokyo,1998:721-725.
    [26]PLEKKENPOL J W, SCHRIER V D J S, HERGARDEN H J. Shield tunnelling in saturated sand—face support pressure and soiled formations[C]. In:Bezuijen A, van Lottum H (eds). Tunnelling:adecade of progress GeoDelft 1995-2005. London:Taylor & Francis,2006:133-141.
    [27]HALLAK A R, GARNIER J. Experimental study of the stability of a tunnel face reinforced by bolts[C]. Geotechnical aspects of underground construction in soft ground, Rotterdam,2000:65-68.
    [28]KAMATA H, MASHIMO H. Centrifuge model test of tunnel face reinforcement by bolting[J]. Tunnelling and underground space technology,2003,18:205-212.
    [29]周小文,濮家骝,包承钢.砂土中隧洞开挖稳定机理及松动土压力研究[J].长江科学院院报,1999,16(4):9-14.
    [30]张云.土质隧道土压力和地层位移的离心模型试验及数值模拟研究[D].河海大学,2000,南京.
    [31]ANSGAR K. Experimental investigation of the face stability of shallow tunnels in sand[J]. Acta Geotechnica,2010,5:43-62.
    [32]BRANQUED, DOAN V H, BOUTIN C. Earth pressure balanced shield method:experimental study on a large reduced scale model[C]. The 6th International Conference on Physical Modeling in Geotechnics, Hong Kong,2006:1145-1150.
    [33]徐前卫.盾构施工参数的地层适应性模型试验及其理论研究[D].同济大学,2006,上海.
    [34]吕强,傅德明.土压平衡盾构掘进机刀盘扭矩模拟试验研究[J].岩石力学与工程学报,2006,25(增1):3137-3143.
    [35]胡国良,龚国芳,杨华勇.盾构掘进机土压平衡的实现[J].浙江大学学报(工学版),2006,40(5):874-877.
    [36]李向红,傅德明.土压平衡模型盾构掘进试验研究[J].岩土工程学报,2006,28(9):1101-1105.
    [37]MERRIT A, MAIR RJ. Mechanics of tunnelling machine screw conveyor:model tests[J]. Geotechnique,2006,56 (9):605-615.
    [38]Bezuijen, A., Schaminee, P.E.L. Simulation of the EPB-shield TBM in model tests with foam as additive[C]. Proceedings of Congress on Modern Tunnelling Science and Technology, Kyoto,2001: 935-940.
    [39]BEZUIJEN A, JOUSTRA J F W, TALMON A M, GROTE B. Pressure gradients at the tunnel face of an Earth Pressure Balance shield[C]. Proceedings of the 31st ITA-AITES World Tunnel Congress, London,2005:809-814.
    [40]魏康林.土压平衡式盾构施工中“理想状态土体”的探讨[J].城市轨道交通研究,2007,(1):67-70.
    [41]KOCHMANOVA N. The effects of soil conditioning agents on fine and coarse grained soils with applications in earth pressure balance machine tunneling [D]. Master Thesis, University of Toronto, 2007.
    [42]汪国锋.北京地铁十号线土压平衡盾构土体改良技术应用研究[J].现代隧道技术,2009(4):77-82.
    [43]闫鑫,龚秋明,姜厚停.土压平衡盾构施工中泡沫改良砂土的试验研究[J].地下空间与工程学报,2010(3):449-453.
    [44]黄德中.超大直径土压平衡盾构施工土体改良试验研究[J].现代隧道技术,2011(4):65-71.
    [45]BABENDERERDE L H. Developments in polymer application for soil conditioning in EPB-TBM[J]. Tunnels and Metropolises,1998,2:691-695.
    [46]RAFFAELE V, CLAUDIO O, DANIELE P. Soil conditioning of sand for EPB applications:a laboratory research[J]. Tunnelling and Underground Space Technology,2008,23(3):308-317.
    [47]JANCSECZ S, KRAUSE R, LANGMAACK L. Advantages of soil conditioning in shield tunneling: experiences of LRTS Izmir[C]. International Congress on Challenges for the 21st Century, Rotterdam,1999:865-875.
    [48]朱伟,郭涛,魏康林.盾构用气泡的性能及对开挖土体改良效果影响[J].地下空间与工程学报,2006,2(4):571-577.
    [49]QUEBAUD S, SIBAI M, HENRY J P.Use of chemical foam for improvements in drilling by earth pressure balanced shields in granular soils[J]. Tunnelling and Underground Space Technology, 1998,13(2):173-180.
    [50]PSOMAS S. Properties of foam/sand mixtures for tunneling applications[D]. Michaelmas: University of Oxford,2001.
    [51]WILLIAMSON G E, TRAYLOR M T, HIGUCHI M. Soil conditioning for EPB shield tunneling on the south bay ocean outfall[C]. Proceedings of RETC,1999:897-925.
    [52]BOONE S J, ARTIGIANI E, SHIRLAW J N. Use of ground conditioning agents for earth pressure balance machine tunnelling[C]. Proceedings ofCongres International de Chambery,2005:313-319.
    [53]CUNDALL P A. A computer model for simulating progressive large scale movements in blocky system[C]. Proc Symp Int Soc Rock Mechanics, Rotterdam,1971,8-12.
    [54]STRACK. O D L, CUNDALL P A. The distinct element method as a tool for research in granular media, Part I[R]. Minnesota:University of Minnesota,1978.
    [55]CUNDALL P A, Strack O D L. The distinct element method as a tool for research in granular media, Part Ⅱ[R]. Minnesota:University of Minnesota,1979.
    [56]CUNDALL P A, Strack O D L. A discrete numerical model for granular assembles [J] Geotechniaue,1979.29 (1):47-65.
    [57]CAMPBELL C S, BRENNEN C E. Computer simulation of granular shear flows[J]. Journal of Fluid Mechanics,1985.151:167-188.
    [58]CAMPBELL C S, BRENNEN C E. Chute flows of granular materials:some computer simulations [J]. Journal of Applied Mechanics,1985.52:172-178.
    [59]王泳嘉,刘连峰.三维离散单元法软件系统TRUDEC的研制[J].岩石力学与工程学报,1996,15(3):200-210.
    [60]王泳嘉.离散元法—一种适用于节理岩石力学分析的数仇方法[C].第一届全国岩石力学数值计算及模型试验讨论会文集.汀西:西南交通大学出版社,1986:32-37.
    [61]徐泳,李红艳,黄文彬.耕作土壤动力学的三维离散元建模和仿真方安策划[J].农业工程学报,2003,2(19):34-38.
    [62]LIU K, GAO L T, TANIMURA S. Application of discrete element method in impact problems[J]. JSME International Journal,2004,47(2):138-145.
    [63]LIU K, GAO L T. The application of discrete element method in solving three-dimension impact dynamics problems[J]. Acta Mechniaca Solida,2003,16(3):256-261.
    [64]李世海,汪远年.三维离散元计算参数选取方法研究[J].岩石力学与工程学报,2004,23(21):3642-3651.
    [65]刘辉,陈文胜,冯夏庭等.大冶铁矿露天转地下开采的离散元数值模拟研究[J].岩土力学,2004,25(9):1413-1417.
    [66]王涛,陈晓玲,于利宏.地下洞室群围岩稳定的离散元计算[J].岩土力学,2005,26(12):1936-1940.
    [67]张翠兵,邓志勇,高凌天等.抛石散体振动密实过程的离散元数值模拟[J].岩石力学与工程学报,2004,23(1):95-100.
    [68]CUNDALL P A. Rational design of tunnel supports:a computer model for rock mass behavior using interactive graphics for the input and output of geometrical data[R]. Missouri River Division, U.S. Army Crops of Engineers,1974.
    [69]CUNDALL P A. BALL-A program to model granular media using the distinct element method[R]. London:Dames & Moore Advanced Technology Group,1978.
    [70]CUNDALL P A. UDEC:A generalized distinct element program for modelling jointed rock[R]. Peter Cundall Associates, European Research Office, U.S. Army,1980.
    [71]CUNDALL P A, HART R D. Development of generalized 2-D and 3-D distinct element programs for modeling jointed rock[R].ITASCA Consulting Group, U.S. Army Corps of Engineers,1985.
    [72]LEMOS J V. A hybrid distinct element computational model for the half-plane[D]. Minnesota: University of Minnesota,1983.
    [73]LORIG L J. A hybrid computational model for excavation and support design in jointed media[D]. Minnesota:University of Minnesota,1984.
    [74]郑文刚,刘凯欣.离散元法工程计算软件的前后处理系统[J].计算机工程与科学,2000,22(6):14-17.
    [75]刘凯欣,郑文刚,高凌天.脆性材料动态破坏过程的数值模拟[J].计算力学学报,2003,20(2):127-132.
    [76]CUNDALL P A.3DEC:Distinct element code-user's manual[M]. Minnesota: Itasca Consulting Group inc.,1991.
    [77]CUNDALL P A. PFC3D user's manual (version 3.1) [M]. Minneapolis:Itasca Consulting Group Inc., 2005.
    [78]THORNTON C. On the relationship between the modulus of particulate media and the surface energy of the constituent particles[J]. J. Phys. D Appl. Phys.,1993,26:1587-1591.
    [79]王泳嘉,宋文洲,赵艳娟.离散单元法软件系统2D-block的现代化特点[J].岩石力学与工程学报,2000,6(增刊):1057-1060.
    [80]WILLIAMS J R, REGE N. The development of circulation cell structures in granular materials undergoing compression[J]. Powder Technology,1997,90:187-194.
    [81]ODA M, KAZANA H. Microstructure of shear bands and its relation to the mechanisms of dilatancy and failure of dense granular soils[J]. Geotechnique,1998,48(4):465-481.
    [82]IWASHITA K, ODA M. Micro-deformation mechanism of shear banding process based on modified distinct element method[J]. Powder Technology,2000,109(1-3):192-205.
    [83]THORNTON C, ANTONY S J. Quasi-static shear deformation of a soft particle system[J]. Powder Technology,2000,109(1-3):179-191.
    [84]NI Q, POWRIE W, ZHANG, X et al. Effect of particle properties on soil behavior:3-D numerical modeling of shearbox tests[J]. Geotechnical Special Publication. ASCE,1996:58-70.
    [85]周健,池永.革的工程力学性质的颗粒流模拟[J].固体力学学报,2004,25(4):377-382.
    [86]吴剑,冯夏庭.高速剪切条件下土的颗粒流模拟[J].岩石力学与工程学报,2008,27(增刊): 3064-3069.
    [87]蒋明镜,李秀梅,孙渝刚,胡海军.考虑颗粒抗转动的砂土双轴试验离散元模拟[J].岩土力学,2009,30(S2):514-517.
    [88]贾学明,柴贺军,郑颖人.土石混合料大型直剪试验的颗粒离散元细观力学模拟研究[J].岩土力学,2010,31(9):2695-2703.
    [89]WU Li, QU Fu-zheng. Discrete element simulation of mechanical characteristic of conditioned sands in earth pressure balance shield tunneling[J]. Journal of Central South University of Technology, 2009,16(6):1028-1033.
    [90]常明丰,裴建中,陈拴发.粘结颗粒材料双轴试验的数值模拟研究[J].材料导报,2011,25(8):127-130.
    [91]蒋鹏,李荣强,孔德坊.离散元法用于块石土强夯过程模拟[J].岩土力学,1999,20(3):29-34.
    [92]PAUL W C. DEM simulation of industrial particle flows:case studies of dragline excavators, mixing in tumblers and centrifugal mills[J]. Powder Technology,2000,109:83-104.
    [93]ZHANG R, LI J Q. Simulation on mechanical behavior of cohesive soil by distinct element method[J]. Journal of Terramechanics,2006,43:303-316.
    [94]MANUEL J M M, LUIS E M R. Discrete numerical model for analysis of earth pressure balance tunnel excavation[J]. Journal of Geotechnical and Geoenvironmental Engineering,2005,131(10): 1234-1242.
    [95]ERF AN G N, YOUSSEF M A H, DA WEI Z, JAMSHID G. Simulation of front end loader bucket-soil interaction[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2007,31:1147-1162.
    [96]SHMULEVICH I, ASAF Z, RUBINSTEIN D. Interaction between soil and a wide cutting blade using the discrete element method[J]. Soil & Tillage Research,2007,97:37-50.
    [97]武力.基于离散元仿真的盾构密封舱压力平衡机理研究[D].大连理工大学,2009,大连.
    [98]武力,屈福政,孙伟等.基于离散元的土压平衡盾构密封舱压力分析[J].岩土工程学报,2010,32(1):18-23.
    [99]汪成兵,朱合华.隧道塌方机制及其影响因素离散元模拟[J].岩土工程学报,2008,30(3):450-456.
    [100]KAVANGH K, CLOUGH R W. Finite element applications in the characterization of elastic solids[J]. Int. J. Solids Structure,1971,7:11-23.
    [101]NAJJAR Y M. Utilizing computational neural networks for evaluating the permeability of compacted clay liners[J]. Geotechnical and Geological Engineering,1996,14:193-212.
    [102]MEULENKAMP F. Application of neural networks for the prediction of the unconfined compressive strength from Equotip hardncss[J]. International Journal of Rock Mechanics and Mining Sciences,1999,36:29-39.
    [103]LI S J, LIU Y X. Parameter Identification Procedure in Groundwater Hydrology with Artificial Neural Network[J]. Lecture Notes in Computer Science,2005,3645:276-285.
    [104]CHANG H C. Lithofacies identification using multiple adaptive resonance theory neural networks and group decision expert system[J]. Computers & Geosciences,2000,26:591-601.
    [105]CHANG H C, CHEN H C, FANG J H. Lithology determination from well logs with fuzzy associative memory neural network[J]. IEEE Transactions on Geoscicnce and Remote Sensing,1997, 35(3):773-780.
    [106]JAMIALAHMADI. Relationship of permeability, porosity and depth using anartificial neural network Journal of Petroleum[J]. Science and Engineering,2000,26:235-239.
    [107]郝哲,刘斌.基于差分法及神经网络的硐室围岩力学参数反分析[J].岩土力学,2003,24(增刊):77-80.
    [108]程涛,晏克勤,董必昌.基于神经网络的地质勘测反分析研究[J].岩土力学,2007,28(4):806-810.
    [109]FRISWELL M I. A combined genetic eigensnetivity algorithm for the location of damage in structures[J]. Comput. Struc.,1998,69:547-556.
    [110]WANG P P. An efficient approach for successively perturbed grounwater models[J]. Advances in Water Resources,1998:499-508.
    [111]RITEL, B J, EHEART J W, RANJITHAN S. Using genetic algorithms to solve a multiobjective groundwater pollution containment problem[J]. Water Resources Research,1994,30 (5): 1589-1603.
    [112]TOMONARI F. An automated system for simulation and parameter identification of inelastic constitutive models[J]. Computer Methods in Applied Mechanics and Engineering,2002,191: 2235-2260.
    [113]高玮,郑颖人.用快速遗传算法进行岩土工程反分析[J].土工程学报,2001,23(1):120-122.
    [114]刘耀儒,杨强,刘福深等.基于并行改进遗传算法的拱坝位移反分析[J].清华大学学报,2006,46(9):1442-1445.
    [115]张志增,李仲奎,程丽娟.基于主从式并行遗传算法的岩土力学参数反分析方法[J].工程力学,2006,27(10):21-26.
    [116]王登刚,刘迎曦,李守巨.岩土工程位移反分析的遗传算法[J].岩石力学与工程学报,2000,19(增刊):979-982.
    [117]NAKAO S. Hydraulic well testing inversion for modeling fluid flow in fractured rocks using simulated annealing: a case study at Raymond field site, California[J]. Journal of Applied Geophysics,2000,45(3):203-223.
    [118]MAULDON A D. An inversion technique for developing models for fluid flow in fracture systems using simulated annealing[J]. Water Resources Research,1993,29(3):3775-3789.
    [119]NAKAO S. Sensitivity study on hydraulic well testing inversion using simulated annealing[J]. Groud Water,1999,37(5):736-747.
    [120]NESTOR V Q. Efficient global optimization for hydraulic fracturing treatment design[J]. J. of Petroleum Science and Engineering,2002,35(1):151-166.
    [121]DOUGHERTY D E. Optimal groundwater management,1:simulated annealing[J]. Water Resources Research,1991,27(10):2493-2508.
    [122]姚振兴.时间域内有限地震断层的反演问题[J].地球物理学报,1997,40(5):691-701.
    [123]李守巨,刘迎曦.基于模拟退火法的含水层参数非线性反演[J].西安交通大学学报,2001,35(5):546-548.
    [124]LIANG Y C. Neural identification of rock parameters using fuzzy adaptive learning parameters[J]. Computers and Structures,2003,81:2373-2382.
    [125]魏连伟.基于模拟退火算法的水文地质参数识别[J].天津大学学报,2003,36(5):618-621.
    [126]黄戡、刘宝琛,彭建国等.基于遗传算法和神经网络的隧道围岩位移智能反分析[J].中南大学学报,2011,42(1):214-220.
    [127]李端有,甘孝清,周武.基于均匀设计及遗传神经网络的大坝力学参数反分析方法[J].岩土工程学报,2007,29(1):126-131.
    [128]CALVETTI F. Limitations and perspectives of the micromechanical modeling of granular materials[J]. Mathematical and Computer Modeling,2003,37:485-495.
    [129]MISHRA B K, MURTY C V R. On the determination of contact parameters for realistic DEM simulations of ball mills[J]. Powder Technology.2001,115:290-297.
    [130]HERTZE II. Uber die berurung fester elasticher korper[J]. Journal of Reine Angew Mathematics, 1882,92:156-171.
    [131]CALVETTI F, COMBE G, LANIER J. Experimental micro-mechanical analysis of a 2D granular material:relation between structure evolution and loading path[J]. Mechanics of Cohesive-frictional Materials,1997,2(2):121-163.
    [132]朱伟,钟小春,加瑞.盾构隧道垂直土压力松动效应的颗粒流模拟[J].岩土工程学报,2008,30(5):750-749.
    [133]史旦达,周健,贾敏才.考虑颗粒破碎的砂土高应力一维压缩特性颗粒流模拟[J].岩土工程学报,2007,29(5):736-742.
    [134]ALESSIO N, BEMHARD S, MAREK L. Application of artificial neural network for identification of parameters of a constitutive law for soils, Developments in Applied Artificial Intelligence, Lecture Notes in Computer Science[M]. Heidelberg:Springer Berlin,2003:423-436.
    [135]武力,屈福政,李守巨.土压平衡盾构改性砂土离散元模型参数反演方法研究[J].大连理工大学学报,2010,50(6):860-866.
    [136]亢晨钢,李守巨,刘迎曦.EPB盾构机土仓压力分布有限元数值模拟[J].工程建设,2009,41(4):1-6.
    [137]赵强政.Φ520mm土压平衡式模型盾构机研制及试验性掘进控制模拟[D].西南交通大学,2007,成都.
    [138]龚国芳,胡国良,杨华勇.盾构推进液压系统控制分析[J].中国机械工程,2007,18(6):1391-1395.
    [139]官会生,高波.盾构刀盘扭矩估算的理论模型[J].西南交通大学学报,2008,43(2):213-217.
    [140]邢彤,龚国芳,杨华勇.盾构刀盘驱动扭矩计算模型及实验研究[J].浙江大学学报,2009,43(10):1794-1800.
    [141]于颖,徐宝富,奚鹰等.软土地基土平衡盾构切削刀盘扭矩的计算[J].中国工程机械学报,2004,2:14-318.
    [142]宋克志,王本福.常见盾构刀盘型式及选用[J].筑路机械与施工机械化,2007,6:44-46.
    [143]LECA E, DORMIEUS L. Upper and lower bound solutions for the face stability of shallow circular tunnels in frictional material[J]. Geotechnique,1990,40(4):581-606.
    [144]LEE I M, Nam S W. The study of seepage forces acting on the tunnel lining and tunnel face in shallow tunnels[J]. Tunnelling and Underground Space Technology,2001,16(1):31-40.
    [145]LEE I M, NAM S W, JAE H A. Effect of seepage force on tunnel face stability[J]. Canadian Geotechnical Journal,2003,40(2):342-350.
    [146]BROERE W. Tunnel face stability new CPT application[D]. Delft:Delft University of Technology, 2001.
    [147]KIM S H, TONON F. Face stability and required support pressure for TBM driven tunnels with ideal face membrane-Drained case[J]. Tunnelling and Underground Space Technology,2010,25(5): 526-542.
    [148]黄正荣,朱伟,梁精华等.盾构法隧道开挖面极限支护压力研究[J].土木工程学报,2006,39(10):112-116.
    [149]GAO X B, XIE W X. Advances in Theory and Applications of Fuzzy Clustering[J]. Chinese Science Bulletin,2000,45(11):961-970.
    [150]LIAOA T W, CELMINSB A K, HAMMELL R J. A fuzzy c-means variant for the generation of fuzzy term sets[J]. Fuzzy Sets and Systems,2003,135:241-257.
    [151]PALIWAL M, KUMAR U A. Neural networks and statistical techniques:A review of applications[J]. Expert Systems with Applications,2009,36(1):2-17.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700