冷激波灭火系统的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
火灾已给人类带来了众多的人员伤亡和严重的经济损失。为了预防火灾的发生和减少损失,各式各样的消防设备和探测仪器应运而生,但是在面对高楼、森林、草原等特殊火灾时,由于受地形条件、环境因素以及设备本身缺陷等的限制,消防物资和消防人员不能及时到达火灾现场,导致了更加严重的火灾损失。灭火弹由于可以通过迫击炮、火箭等设备发射,从而不受地形、地势条件的影响,因此可以实现人工远距离控火、灭火。目前灭火弹还受造价高、稳定性差、安全性低等缺点限制,使其实际应用较少;而且面对超高层建筑火灾时,现有迫击炮、火箭等发射装置存在发射精确度低,无法满足现有消防要求;针对灭火弹的研究也主要集中在灭火弹结构优化、引信设计、灭火效果及相关主要影响因素方面,而针对灭火机理方面的研究却未见诸报道。
     本文在已有灭火弹基础、FAE (fuel air explosive)技术、激波灭火技术和无人机技术上提出了一种适用于无人直升机的冷激波灭火系统。该灭火系统采用人工智能控制无人直升飞机,到达指定位置后投放或发射冷激波灭火弹,冷激波灭火弹到达火场后启动引信,起爆冷激波灭火弹,从而达到控火、灭火的目的。普通空中激波具有高温、高压特性,而冷激波灭火系统中抛洒药爆炸后首先需要通过灭火介质,由于灭火介质比热较大,因此所形成的激波温度较低,故称为冷激波灭火系统。论文针对无人直升机式冷激波灭火系统整个应用过程,研究了水基和粉基灭火介质的力学模型,测试了灭火弹内壁处的压力,研究了冷激波灭火弹壳体破碎规律,分析了灭火弹爆炸抛洒/撒后所引起的空气扰动情况,研究了冷激波灭火弹静态灭火的灭火机理及相关影响因素,对点火药的选择、壳体结构设计进行了分析。论文具体工作包括:水基/粉基灭火介质力学模型。简单介绍了水基灭火介质的力学模型,通过MTS实验测试的松散粉体在不同位移加载速度下的单轴压缩应力应变曲线和SEM图片发现:粉体介质中存在大量空隙,粉体的抗压强度随着加载应力和加载速度的增大而增大,粉体在压缩过程中需要消耗大量的能量。为了增大弹体加载率、减小爆炸能量损失,提出预压缩粉团思想。采用MTS和SHPB实验对5MPa、10MPa、15MPa预压力下的预压缩粉团进行了静态压缩破坏和动态压缩破坏实验,发现预压缩粉团的屈服强度随着预压力的增大而增大、随着应变率的提高而提高,并藉此建立松散粉体和预压缩粉团的本构模型。
     冷激波灭火弹内壁压力测试。首先采用量纲法分析了冷激波内壁处的压力与弹体直径和装药量的关系,然后在不同内壁直径、不同装药量下,采用PVDF压力传感器测试松散粉体下冷激波灭火弹内壁处的压力。对比水基灭火弹发现:为了达到相同的壳体破碎效果,粉基冷激波灭火弹的抛洒药和比药量都要高于水基灭火弹;对比无限粉基介质内所测的峰值压力发现,粉基灭火介质在弹体壁面处的反射超压约为入射超压的7.8倍;通过研究所测压力波形发现,粉基冷激波灭火弹壳壁破碎是由于爆炸冲击波和爆生气体共同作用产生的。
     冷激波灭火弹壳体破碎。根据已有PVC材料的动静态力学实验结果发现:发现PVC材料是粘塑性材料,在初始屈服阶段具有应变强化特性,应变值超过0.032后,材料出现弱化。基于上述结果,加上应变损伤模型并在假设的基础上建立PVC材料的Johnson-Cook本构模型。根据所测压力对PVC薄壳结构做动力响应分析,求解薄壳单元的膨胀速度和膨胀位移。最后采用实验和数值模拟的方法研究PVC壳体的破碎行为和破碎方式。发现:壳体破碎从外表面开始;预制裂纹数量决定了壳体破片形状和大小,随着预制裂纹数量的增多,壳体破碎越均匀,但较多的预裂纹会消耗更多的爆炸能量;为达到相同的壳体破碎效果,水基灭火弹所需的比药量低于粉基灭火弹,预压缩粉基灭火弹的比药量低于松散粉基灭火弹。
     冷激波灭火弹的爆炸抛洒。首先通过高速摄影拍摄水基和粉基冷激波灭火弹的爆炸抛洒,观察其抛洒规律;然后采用DPM模型和两相流模型模拟液滴和粉体颗粒在空中高速运动所引起的空气扰动;最后通过高速纹影实验观察小尺寸下灭火介质爆炸抛洒的运动规律。发现:不管是水基还是粉基灭火介质,爆炸抛洒后由于曳力作用,会在空中形成较大卷吸现象,卷吸现象的产生迫使灭火介质上方火焰和大量新鲜空气进入灭火介质场中,从而加快介质灭火速度和火场温度下降速度。
     冷激波灭火弹的灭火机理。首先通过纹影实验观察灭火介质爆炸抛洒后的激波现象,发现:粉基灭火介质能在观察窗中观察到激波现象,激波速度为440m/s,而水基灭火介质未观察到激波现象。随后采用激波理论分析激波波阵面前后的压力、速度、介质密度和温度的变化情况,论证了激波灭火的可行性;采用数值模拟和实验的方法分析弱激波在气液界面的运动规律及对周边环境的影响,发现:液面上方会形成马赫反射,从而降低了激波衰减速度,但是对比介质抛洒所引起的加快可燃气体的燃烧速度,激波的影响弱于介质抛洒。接着简单介绍了水基和粉基灭火介质的灭火机理,并详细的分析了激波与灭火介质的相互作用机理及灭火机理。最后定义了一个影响因子(灭火弹高度/火焰高度),分析了影响因子和比药量对灭火效果的影响,发现:当影响因子在0.118及以下时冷激波灭火弹不能扑灭油盆火;随着必要量的增大,激波强度越大,介质雾化效果越好,灭火效果越好,但是较大的激波强度会带动油面远离灭火介质作用区域,从而引起火场复燃。
     冷激波灭火弹的应用研究。在实验情况下简单研究了发射式灭火弹的发射药选择及发射药量与发射速度的关系,根据能量守恒计算了自制发射管的能量利用率。对圆柱壳结构进行了设计,发现添加尼龙材料缓冲块的灭火弹发射后不会造成圆柱壳的破碎。
Fire caused numerous casualties and enormous economic losses every year. In order to prevent fire and reduce the losses, a wide variety of fire-fighting equipments and detection instruments emerge as the times require. But when faced with the fire of tall buildings, forests, grasslands and other special conditions, fire protection supplies and fire fighters could not arrive at fire site in time owing to the limit of terrain, environmental factors and the devices, which resulted in more serious losses. Fire-extinguishing bomb, which could be launched by mortar, missile and other facility, has the advantages of realization remote fire controlling and fire fighting as not subjected to the influence of topography and terrain. But the high cost, poor stability and low security limited its practical application, and mortar, rocket and other launcher devices exsited low accuracy for super high-rise building fire, which did not meet the requirements of fire fighting. Researches mainly focused on structure optimization, fuse design, extinguishing efficiency and related factors, but the mechanism of fire extinction has not been reported.
     A new unmanned aerial vehicles(UAV) cold shock wave fire-extinguishing system based on fire-extinguishing bomb, FAE, shock wave fire extinction technology and UAV technology was put forward. In the system, UAV was controlled by artificial intelligence to deliver or launch cold shock wave fire-extinguishing bomb at the specified position. Once arrived at the fire site, fuse ignited the bomb, which realized the purpose of fire controlling and fire fighting. Ordinary air shock wave has the characteristics of high temperature and high pressure, while the temperature of shock wave in extinguishing medium was low because of the higher specific heat of the extinguishing medium, which is why named cold shock wave fire-extinguishing system.
     According to the application process of the UAV cold shock wave fire extinguishing system, the mechanical models of water-based and powder-based fire extinguishing mediums were studied, the inside wall pressure of the fire-extinguishing bomb was tested, air turbulence after the blasting dispersion of extinguishing medium was analyzed, static fire suppression mechanism of cold shock wave fire extinguishing bomb and relative influence factors were researched, the choice of ignition composition and the design of cartridge structure were analyzed. The concrete work of the doctoral dissertation as follows:
     The mechanical models of water-based and powder-based fire extinguishing medium
     The mechanical models of the water-based fire extinguishing medium were introduced briefly. Stress-strain curves of loose powder were obtained by MTS under uniaxial compression at various loading rates. Combined with SEM picture, we found that a large number of voids existed in the powder medium, compressive strength of the powder increased as the increase of loading stress and loading speed, the powder consumed plenty of energy during the compression process. In order to increase the loading rate of projectile body and reduce the loss of explosion energy, pre-compression powder was put forward. Static and dynamic compressive deformation behaviors of the pre-compression powder at5MPa,10MPa,15Mpa were tested by MTS and SHPB. Found that the yield strength of pre-compression powder increased with the increase of pre-loading and strain rate. Finally, the constitutive model of loose powder and pre-compression powder were established
     The inside wall pressure test of cold shock wave fire-extinguishing bomb
     Firstly, the relations of the inside wall pressure of the cold shock wave fire extinguishing bomb with projectile body diameter and the center charge weight were studied by dimensional analysis. Then the inside wall pressure of cold shock wave fire-extinguishing bomb filled with loose powder in different inner diameter and charge weight were tested by PVDF pressure sensor. Contrasting to water-based extinguishing bomb, the dispersion charge weight and specific charge of powder-based extinguishing bomb were higher than water-based in order to achieve the same shell fragmentation effects. Contrasting to tested pressure of infinite powder medium, Powder-based medium reflection overpressure at wall is7.8times of incident overpressure. According to the pressure wave tested by experiments, the shell fragmentation of the powder-based extinguishing bomb was resulted from shock wave and blasting gas.
     The shell fragmentation of cold-shock fire-extinguishing bomb
     Judging from PVC static and dynamic mechanical test results, PVC was visco-plastic material, which had strain strengthening characteristics at initial yield stage and appeared softening when strain value accessed0.032. On the basis of these results and assumptions, a Johnson-Cook constitutive model of PVC, which is coupled with strain injury model, was established. According to the measured pressure, the dynamic response of shell structure was analyzed and the expansion velocity and expansion displacement were solved. Finally shell fragment was studied by experiment and numerical simulation. Found that the shell fragmentation started from outside surface. The shape and size of shell fragments were determined by the quantity of pre-crack, the more pre-cracks, the more uniform the spalls, but the more pre-cracks consumed the more explosive energy. In order to reach the same shell fragmentation effect, the specific charge of water-based extinguishing bomb was lower than powder-based, and the specific charge of loosen powder-based extinguishing bomb was higher than dense powder-based.
     The dispersion of cold shock wave fire-extinguishing bomb
     Firstly, the blasting dispersion regularity of water-based and powder-based extinguishing bomb were observed by high-speed photography. Then, air turbulence resulted from high speed moving of droplets and powder particles in gas were stimulated by using DPM and two-phase flow model. Finally, the explosive dispersion laws of different extinguishing mediums under small size were obtained by High-Speed Schlieren Method. Found that no matter water-based or powder-based medium, entrainment phenomenon induced by drag force could drive the above flame and plenty of fresh air into the extinguishing medium area, which accelerated the medium suppression velocity and fire temperature descending speed.
     Suppression mechanism of the cold Shock wave fire-extinguishing bomb
     Shock wave formed by explosion dispersion of different extinguishing mediums was observed by schlieren experiment apparatus, found that shock wave with the speed of440m/s were observed in powder-based extinguishing media, while not observed in water-based media. Then, pressure, velocity, density and temperature in front and bacd of shock wave were analyzed by shock wave theory, which demonstrated the feasibility of shock wave suppression. The weak wave motion rule and its affects to surroundings were studied by numerical simulation and experimental analysis. Found that mach reflection that appeared above the liquid surface could speed up the velocity the combustible gas, but the effect was weaker than the acceleration induced by medium explosion dispersion. Afterwards water-based and powder-based suppression mechanisms were introduced briefly, the interaction and extinguishing mechanism between shock wave and media were analyzed detailed. At last, a definition of an influence factor (the height of grenade/flame height) was made. The bomb could not quench oil basin fire when the impact factor below0.118. With the increase of specific charge, the shock became stronger, spray effect and water suppression effects both got better, but strong shock wave could lead to the oil going far away from the fire extinguishing medium area, which caused the fire re-burning and spread
     The application research of the cold shock wave fire-extinguishing bomb
     The relations among propellant selection, amount and launched speed of cold shock wave fire-extinguishing bomb were studied simply under experiment situation. According to the conservation of energy, the energy efficiency of homemade launch tube was calculated. The different structures of cylindrical shells were designed, found that the shell adding nylon buffer could not break at the launching process.
引文
[1]冯艳萍。世界火灾统计[J]。消防技术与产品信息。2009,(3):75-78
    [2]范维澄,王清安,姜冯辉等。火灾学简明教程[M]。中国科技大学出版社,1995
    [3]钟茂华。火灾过程动力学特性分析[M]。科学出版社,2007.
    [4]胡源,宋磊,尤飞等。火灾化学导论[M]。化学工业出版社,2006.
    [5]徐晓楠。灭火剂与灭火器[M]。化学工业出版社,2006
    [6]陈忠信,王建新,路景志。多管式远程干粉灭火炮[J]。2006年中国科协年会:374-382.
    [7]任海,姚庆学,高昌菊。国外森林防火新技术与设备[J]。林业机械与木工设备。2003,31(3):33-35.
    [8]魏茂洲,王克印。森林灭火装备的现状与展望[J]。林业机械与木工设备。2006,34(7):11-14.
    [9]郭克君,张伟,渠聚鑫。森林防火装备的现状及展望[J]。林业机械与木工设备。2009,37(7):7-10.
    [10]田海宁,王克印,韩星星等。水介质爆轰灭火研究[J]。灭火剂与阻燃材料。2010,29(9):811-814.
    [11]桂潜波,王克印,赵瑞成。固体灭火剂爆炸抛洒半径分析[J]。军械工程学院学报。2008,20(2):29-32.
    [12]赵瑞成,王克印。固体灭火剂在中心抛洒药下的实验研究[J]。科学技术与工程。2008,8(2),428-431.
    [13]李涛,王克印,张增军等。灭火弹比药量与灭火效果关系研究[J]。军械工程学院学报。2009,21(6):23-30.
    [14]魏茂洲,王克印。基于FAE技术的森林灭火弹药的研究[J]。林业科技。2006,31(6):32-34.
    [15]徐豫新,王树山,王海燕等。一种灭火战斗部威力优化的工程设计方法[J]。兵工学报。2010,31(4):473-476.
    [16]徐豫新,王树山,韩宝成等。爆炸作用驱动液体抛洒初始阶段数值仿真[J]。高压物理学报。2011,25(1):73-77.
    [17]陈雪礼,王克印,李涛。灭火弹齐爆的灭火效果[J]。灭火剂与阻燃材料。2010,29(3):236-238.
    [18]李涛,王克印,张增军。灭火剂抛洒云图与弹体破片形状关系试验研究[J]。科技通报。2010,26(4):603-605.
    [19]赵益巍,朱顺官。爆炸法喷水成雾灭火弹分析[J]。四川兵工学报。2010,31(5):27-29.
    [20]Krzysztof Stefanski, Damian Lewandowski, Roman S. D. et al. Explosive formation and spreading of water-spray cloud-Experimental development and model analyses[J]. Central European Journal of Energetic Materials.2009,6(3-4):291-302.
    [21]陈雪礼,王克印,龚华雄。一种森林灭火弹的终点效应分析[J]。灭火剂与阻燃材料。2010,29(8):689-691.
    [22]岳中文,颜事龙,刘峰。液体抛洒初期水雾运动速度的实验研究[J]。安徽理工大学学报,2006,26(1):61-63.
    [23]李政,汪泉,惠强强等。一种爆炸水雾灭火弹的设计[J]。灭火剂与阻燃材料。2010,29(4):304-308.
    [24]桂潜波,王克印。迫击炮灭火弹圆柱部结构设计[J]。四川兵工学报,2008,29(4),26-27.
    [25]李涛,王克印,桂潜波。迫击炮灭火弹发射安全性计算与仿真[J]。四川兵工学报。2009,30(4):57-58.
    [26]安进华。森林消防炮专业灭火弹结构及动力学研究[D]。哈尔滨:哈尔滨工程大学,
    2010.
    [27]何苗,郭庆昌,詹盛武。近炸引信在森林灭火弹上的应用[J]。水雷战与舰船防护。2009,17(4):44-47.
    [28]徐建伟。森林消防炮及灭火弹控制系统研究[D]。哈尔滨:哈尔滨工程大学,2010.
    [29]蒋耀港,沈兆武。冷激波灭火弹的灭火机理及应用研究[J]。火灾科学,2007,16(4):226-231.
    [30]蒋耀港,沈兆武。比药量对冷激波灭火弹灭火效果的影响[A]。刘殿书。中国爆破新技术[C]。北京:冶金工业出版社,2008.875-880.
    [31]蒋耀港,沈兆武,马宏昊等。冷激波灭火系统扑灭明火现象的机理研究[J]。安全与环境学报,2009,9(5):154-157.
    [32]Jiang Yao-gang, Shen Zhao-wu. Study of cold shock wave extinguishing engulfment and its phenomenon[C]. APS Blasting3,2011;
    [33]Faeth G M, Hsiang L P, Wu P K. Structure and Breakup Properties of Sprays[J].Int. J. Multiphase Flow.1995,21:99-127
    [34]陆强,廖光煊,秦俊等.细水雾灭油池火时各种影响因素的相对重要度分析[J].火灾科学,2002 11(3):164-169.
    [35]姚斌,范维澄,廖光煊.细水雾灭火技术的研究[J].中国安全科学学报,1998,8(2):21-25.
    [36]Grant G, Brenton J, Drysdale D. Fire suppression by water sprays[J]. Progress in Energy and Combustion Science,2000,26(2):79-130.
    [37]Ohnishi A, Takashima H, Hakiri, M. Characteristics of heat transfer of multi water spray nozzle[J]. Transactions of the Iron and Steel Institute Japan,1987,27(12):299.
    [38]Prinz B, Bamberger M. Determination of heat transfer coef-ficient of mist air sprays[J]. Materials Science and Technology,1989,5(4):389-393.
    [39]Grishin A M, Kovalev, Yu M. Shock wave intensification during interaction with a forest fire front[J]. Soviet Physics-Dokalady,1990,35(5):409-411
    [40]Grishin A M, Kovalev, Yu M. Experimental study of the effect of explosions of solid explosives on the front of crown forest fire[J]. Soviet Physics-Dokalady,1989, 34(10):878-881
    [41]Grishin A M, Gruzin A D, Gruzina E E. Aerodynamics and heat exchange between the front of a forest fire and surface layer of the atmosphere [J]. Journal of Applied Mechanics and Technical Physics,1984,25(6):889-894.
    [42]Spyros Sklavounos, Fotis Rigas. Computer simulation of shock waves transmission in obstructed terrains[J]. Journal of Loss Prevention in the Process Industries,2004,17:407-417
    [43]Grishin A M, Baranovskii N N. Comparative analysis of simple models of drying of the layer of forest combustibles including the data of experiments and natural observations[J]. Journal of Engineering Physics and Thermophysics,2003,76(5):1154-1159.
    [44]Grishin A M, Golovanov A N, Rusakov S V. Evaporation of free water and water bound with forest combustibles under isothermal conditions[J]. Journal of Engineering Physics and Thermophysics,2003,76 (5):1166-1172.
    [45]Grishin A M,Gruzin A D,Zverev V. G. Mathematical modeling of the spreading of high-level forest fires[J]. Soviet Physics-Doklady,1983,28(4):328-330.
    [46]Grishin A G. Interaction of shock wave with tree crowns and the front of crown forestfire[A]. BrunR. Shock wave[C]. Berlin Heideberg, Springer-verlag,1995,411-416.
    [47]常熹钰,易仕和,罗俊荣,张韬,文定元,胡照文。激波与森林作用的实验研究[J].火灾科学,1999,8(2):56-62。
    [48]张艳,任兵,常熹钰,熊国清。激波诱导可燃气体爆燃的数值模拟[J].国防科技大学学报,2001,23(2):33-37.
    [49]常熹钰,周勇为,张艳。一种新型森林灭火技术原理的实验探索[J].林业科学,2002,38(1):168-172.
    [50]常熹钰,易仕和,罗俊荣等。激波喷出过程和在林带中的传播[J]。爆炸与冲击,2000,20(4):373-378。
    [51]刘君,周勇为,常熹钰。激波灭火技术的初步研究[J].国防科技大学学报,1999,21(6):17-20。
    [52]C. W. Smith, C. M. Ablow, S. Y. Hanagud, et al. Ultrasonic dissemination of aerosols[R]. AD818285,1967
    [53]R. J. Zabelka, L. H. Smith. Explosively Dispersed Liquids[R].AD-863268,1969.
    [54]M. Rosenblatt, G. E. Eggum, K. N. Kreyenhagen. DICE-FAE analysis of fuel dispersal and detonation from a fue-air-explosive device[R]. Air Force Armament Laboratory,1976
    [55]D. R. Gardner. Near-field dispersal modeling for liquid fuel-air explosives[R]. SAND90-0686,1990
    [56]M. W. Glass. Far-field dispersal modeling for fuel-air-explosive[R]. SAND90-0528,1990
    [57]S. K. Singh, V. P. Singh. Extended near-field modeling and droplet size distribution for fuel air explosive warhead[J]. Defence Science Journal,2001,51(3):303-314
    [58]惠明君,张陶,郭学永。FAE装置参数对燃料抛洒与爆炸威力影响的实验研究[J]。高 压物理学报,2004,18(2):103-108.
    [59]丁珏,刘家骢.液体的爆炸抛撒理论模型及全过程数值模拟[D].南京:南京理工大学,2001.
    [60]Zhang Qi, Bai Chunhua, Liu Qingming et al. Study on Near Field Dispersal of Fuel Air Explosive[J] Journal of Beijing Institute of Technology,1999,8 (2):113-117
    [61]GAO Chongyang, SHI Huiji, YAO Zhehan et al. Numerical Simulation and Dynamic Fracture Criteria of Thin Cylindrical Shells under Inner Explosive Loading[J] Tsinghua Science and Technology,2000,5 (1):13-17
    [62]陈亚红,白春华,李建平等。装药比对中心炸药抛洒钨颗粒群影响的实验研究[J]。实验力学,2010,25 (6):661-666
    [63]秦友花。新型燃料空气炸药及爆炸机理的研究[D]。合肥:中国科学技术大学,2002
    [64]王德润,沈兆武,周听清。液体燃料爆炸抛洒及云雾形成的实验研究[J]。流体力学实验与测量,2004,18(4):15-19.
    [65]崔晓荣,罗勇,周听清等。固相一次起爆型FAE燃料的优化选择[J]。火炸药学报,2008,31(2):12-15
    [66]吴德义。冲击波作用下液体抛洒及界面运动的研究[D]。合肥:中国科学技术大学,2002
    [67]陈军,吴国栋,韩肇元等。FAE爆炸抛洒后云雾液滴尺寸的测量[J]。爆炸与冲击,2003,23(1):74-77
    [68]许学忠,裴明敬,王宇辉等。一次起爆FAE的燃料扩散特征[J]。火炸药学报,2000,(1):47-49.
    [69]陆守香.爆炸成雾效果影响因素的研究[A].王理,张洪福,李锐.中国煤炭学会第六届青年科技学术研讨会论文集[C].北京:煤炭工业出版社,2000.73-76.
    [70]Vladimiras Suslavicius, Marijonas Bogdevicius. New automatic impulse extinguishing device[J]. Trasport.2008,23(2):124-128。
    [71]杨林,廖振方。爆震雾化射流用于灭火的可行性研究[J]。中国安全科学学报,2003 13(7):12-15。
    [72]疏学明,赵建华,袁宏永等。小型智能消防水炮的研究[J]。消防技术与产品信息。2002,(5):19-21.
    [73]疏学明,袁宏永,苏国锋。消防水炮机械转动机构研究与改进[J]。机械研究与应用。2002,15(4):51.
    [1]北京工业学院一系831/81 1教研室合编。爆炸物理基础[M]。北京,1974:411-417
    [2]Zhang A-man, Yang Wen-shan, Yao Xiong-liang. Numerical simulation of underwater contact explosion[J]. Applied Ocean Research.2011.
    [3]刘科种,徐更兴,辛春亮等。AUTODYN水下爆炸数值模拟研究[J]。爆破。2009,26(3):18-21.
    [4]王伟力,曾亮,朱建云。水下爆炸的数值模拟研究现状[J]。海军航空工程学院学报。2006,21(2):209-216.
    [5]牟金磊,朱锡,黄晓明。近壁面水下爆炸冲击波载荷参数研究[J]。海军工程大学学报。2011,23(1):23-27.
    [6]张振华,朱锡,白雪飞。水下爆炸冲击波的数值模拟研究[J]。爆炸与冲击。2004,24(2):182-188.
    [7]袁建红,朱锡,张振华。水下爆炸载荷数值模拟方法[J]。舰船科学技术。2011,33(9):18-23.
    [8]Xiaomin Ni, Kaiqian Kuang, Donglei Yang, et al. A new type of fire suppressant powder of NaHC03/zeolite nanocomposites with core-shell structure[J]. Fire Safety Journal,2009, (44):968-975.
    [9]刘慧敏,庄爽,李姝等。利用干粉灭火剂灭金属火[J]。灭火剂与阻燃材料。2009,28(5):346-348.
    [10]周文英,邵宝州,李文泉等。干粉灭火剂浅论[J]。消防技术与产品信息。2002,(7):69-71.
    [11]胡时胜。研究混凝土材料动态力学性能的实验技术[J]。中国科学技术大学出版社。2007,37(10):1312-1319.
    [12]皮爱如,沈兆武,王肖钧。土壤冲击特性的实验研究[J]。振动与冲击。2003,22(3):28-29.
    [13]D. C. Drucker, W. Prager. Soil mechanics and plastic analysis or limit design[J]. Quarterly of Applied Mathematics.1952,10(2):157-165.
    [14]D. C. Drucker, R. E. Gibson, D. J. Henkel. Soil mechanics and work hardening theories of plasticity[J]. Transactions ASCE.1957,122:338-346.
    [15]Tuhin Sinha, Jennifer S. Curtis, Bruno C. Hancock. A study on the sensitivity of Drucker-Prager Cap model parameters during the decompression phase of powder compaction simulations[J]. Powder Technology.2010,198:315-324.
    [16]A. R. Khoei, A. R. Azami. A single cone-cap plasticity with an isotropic hardening rule for powder materials[J]. International Journal of Mechanical Sciences.2005,47:94-109
    [17]H.DorMohammadi, A. R. Khoei. A three-invariant cap model with isotropic-kinematic hardening rule and associated plasticity for granular materials[J]. International Journal of Solids and Structures.2008,45:631-656.
    [18]Hedi Chtourou, Michel Guillot, Augustin Gakwaya. Modeling of the metal powder compaction process using the cap model. Part I. Experimental material characterization and validation[J]. International Journal of Solids and Structures.2002,39:1059-1075.
    [19]Amir R. Khoei, Shaia Azizi. Numerical simulation of 3D powder compaction processes using cone-cap plasticity theory[J]. Materials and Design.2005,26:137-147.
    [20]C. Y. Wu, O. M. Ruddy, A. C. Bentham et al. Modelling the mechanical behavior of pharmacentical powders during compaction[J]. Powder Technology.2005,152:107-117.
    [21]David Falgon, Emmanuelle Vidal-Salle, Jean-Claude Boyer. Identification procedure of a hardening law for powder compaction[J]. Powder Technology.2005,157:183-190.
    [22]Sofia Mattsson, Christer Nystrom. Evaluation of strength-enhancing factors of a ductile binder in direct compression of sodium bicarbonate and calcium carbonate powders[J]. European Journal of Pharmaceutical Sciences.2000,(10):53-66
    [23]王礼立,周光泉,李永池。现代材料力学进展[M]。合肥:中国科学技术大学出版社。2002.
    [24]胡时胜。材料动力学[M]。合肥:中国科学技术大学出版社。2002.
    [1]Josef Henrych. The dynamics of explosion and its use[M]. New York:Elsevier Scientific Pub. Co.1979.
    [2]T. J. Vogler, M. Y. Lee, D. E. Grady. Static and dynamic compaction of ceramic powders[J]. International Journal of Solids and Structures,2007,44:636-658.
    [3]A. G. Mamalis, I. N. Votta, D. E. Manolakos. On the modeling of the compaction mechanism of shock compacted powders[J]. Journal of Materials Processing Technology.2011, 108:165-178.
    [4]Tasneem Abbasi, S. A. Abbasi. Dust explosion-cases, causes, consequences, and control[J]. Journal of Hazardous Materials,2007,140:7-44.
    [5]A. Britan, G. Ben Dor, O. Igra, et al. Shock waves attenuation by granular filers[J]. International Journal of Multiphase Flow.2001,(27):617-634.
    [6]A. Britan, G. Ben Dor. Shock tube study of the dynamical behavior of granular materials[J]. International Journal of Multiphase Flow.2006,(32):623-642.
    [7]M. V. Rashev, T. J. Ahens. Hypervelocity impact and shock wave attenuation in porous medium[J]. Lunar and Planetary Science.2007.
    [8]Rudolf Klemens, Marian Gieras, Michal Kaluzny. Dynamics of dust explosions suppression by means of extinguishing powder in various industrial conditions [J]. Journal of loss prevention in the process industries,2007,20:664-674.
    [9]Xiaomin Ni, Kaiqian Kuang, Donglei Yang, et al. A new type of fire suppressant powder of NaHCO3/zeolite nanocomposites with core-shell structure[J]. Fire Safety Journal,2009, (44):968-975.
    [10]吴德义,李辉煌,杨基明。不同条件下圆柱状容器水压爆破压力测试及其分析[J]。流体力学实验与测量。2002,16(4):81-86.
    [11]范喜生,徐天瑞。闭口薄壁圆筒形构筑物水压爆破药量计算[J]。爆炸与冲击。1995,15(1):63-68.
    [12]R. Rajendran, K. Narasimhan. Deformation and fracture behavior of plate specimens subjected to underwater explosion-a review[J]. International Journal of Impact Engineering. 2006,32:1945-1963.
    [13]K. Ramajeyathilagam, C. P. Vendhan. Deformation and rupture of thin rectangular plates subjected to underwater shock[J]. International Journal of Impact Engineering. 2004,30:699-719.
    [14]谈庆明。量纲分析[M]。合肥:中国科学技术大学出版社,2005,99-109
    [15]锦州科信电子材料有限公司。PVDF压电膜介绍。
    [16]Measurement Specialties, Inc.. Piezo film sensors technical manual.
    [17]温殿英,林其文,张忠斌等。PVDF膜的冲击电响应研究[J]。爆轰波与冲击波,2000,(1):26-31.
    [18]李英,王健,周良骥。PVDF膜在冲击波传播时间测量中的应用[J]。爆轰波与冲击波,2003,(4):143-146.
    [19]巫绪涛,胡时胜,田杰。PVDF应力测量技术及在混凝土冲击实验中的应用[J]。爆炸与冲击,2007,27(5):411-415。
    [20]张安跃。PVDF应力应力传感器的制作及压电特性的实验研究[D]。合肥:中国科学技术大学,2009.
    [21]崔村燕,洪延姬,李修乾等。PVDF压力传感器标定及在激光推进实验中的应用[J]。爆炸与冲击,2011,31(1):31-35.
    [22]袁人枢,隋世群。脉冲压力条件下PVDF压电薄膜的动态响应特性[J]。仪表技术与传感器,2011,(8):4-6.
    [23]马宏昊。高安全雷管机理与应用的研究[D]。合肥,中国科学技术大学,2008。
    [24]金韶华,松全才。炸药理论[M]。西北工业大学出版社,2010:24-37.
    [1]G. I. Taylor. The fragmentation of tubular bombs, Scientific papers of G. I. Taylor, Ⅲ(44). London:Cambridge University Press.1963.387.
    [2]A. G. Ivanov. Peculiarities of the blasting strain and fracture of pipes[J]. Problemy Prochnosti.1976,(11):50-52.
    [3]M. A. Syrunin, A. G. Fedorenko, A. G. Ivanov. Limiting strain in an oriented fiberglass shell on internal explosive loading[J]. Combustion, Explosion and Shock Wave. 1992,28(2):190-194.
    [4]V. A. Ogorodnikov, A. G. Ivanov, V. I. Luchinin et al. Scaling effect in dynamic fracture of brittle and ductile material[J]. Combustion, Explosion and Shock Wave.1999,35(1):97-102.
    [5]封加波,经福谦,苏林详等。对薄层柱壳爆炸膨胀断裂过程的研究[J]。高压物理学报。1988,2(2):97-103.
    [6]李永池,李大红,魏志刚等。内爆炸载荷下圆管变形、损伤和破坏规律的研究[J]。力学学报。1999,31(4):442-449.
    [7]李永池,王红五,江松青等。含损伤材料的热粘塑性本构关系和柱壳破裂研究[J]。爆炸与冲击。2001,21(2):105-110.
    [8]高重阳,施惠基,姚振汉等。薄壁柱壳在内部爆炸载荷下膨胀断裂的研究[J]。爆炸与冲击。2000,20(2):160-167.
    [9]高重阳。内部爆炸载荷下柱壳结构破裂问题的研究[D]。北京:清华大学。2000.
    [10]陈胜铭,罗迎社,杨占宇。单向拉伸荷载下含缺陷PVC板的弹性变形降温分析[J]。中南林业科技大学学报。2010,30(11):136-139.
    [11]Egil Fagerholt, Marcilio Alves, Magnus Langseth et al. Impact on HDPE and PVC plates-Experimental tests and numerical simulations[J]. International Journal of Impact Engineering.2010,37:580-598.
    [12]L. M. Alves, P. A. F. Martins. Cold expansion and reduction of thin-walled PVC tubes using a die[J]. Journal of Materials Processing Technology.2009,(209):4229-4236.
    [13]Babak Farrokh, Akhtar S. Khan. A strain rate dependent yield criterion for isotropic polymers:low to high rates of loading[J]. European Journal of Mechanics A/Solids. 2010,29:274-282.
    [14]S. M. Walley, J. E. Field. Strain rate sensitivity of polymers in compression from low to high rates[J]. Dymat Journal.1994,3(1):211-227.
    [15]杨炳麟。强化一弱化材料的本构关系[J]。武汉水利电力学院学报。1984,(4):79-85.
    [16]M. Otsuka, S. Tanaka, S. Itoh. Research for explosion of high explosive in complex media[J]. Computational Methods.2006:1885-1890.
    [17]樊自建,沈兆武,廖学燕等。圆柱形水下爆炸实验容器壁部强度设计研究[J]。高压物理学报。2008,22(4):402-408.
    [18]翁智远。梁板壳静动力学译文集[D]。上海:同济大学出版社,1986.
    [19]张立国,李守巨。水压爆破圆柱薄壳结构物的动力响应分析[J]。工程爆破,1998,4(1):7-11.
    [20]崔云航,吴腾芳,朱立新等。壳体理论在水压爆破中的应用[J]。爆破,2002,19(2):54-56.
    [21]曾赞文。填砂爆破机理及装药参数研究[D]。合肥:中国科学技术大学,2010。
    [22]陈成军,谢若泽,张方举。内部填充泡沫铝的柱壳力学响应数值模拟[J]。爆炸与冲击。201131(4):361-366
    [1]C. W. Smith, C. M. Ablow, S. V. Hanaqud, et al. Ultrasonic dissemination of aerosols. AD-818285,1967.
    [2]G. R. Abrahamson, R. W. Gates, G. M. Muller, et al. Explosive dissemination from spherical devices. Technical report, Stanford Research Institute,1967
    [3]L, B, Seely, J. G. Berke. Detonation, shock and chemical reaction processes in explosive dissemination:boundary stability and cavitation. AD-820740,1967
    [4]David R. Gardner. Near-field dispersal modeling for liquid FAE. SAND90-0686,1990
    [5]Micheal W. Glass. Far-field dispersal modeling for FAE devices. SAND90-0528,1990
    [6]丁珏。液体的爆炸抛洒理论模型及全过程数值模拟[D]。南京:南京理工大学,2001.
    [7]吴德义。冲击波作用下液体抛洒及界面运动的研究[D]。合肥:中国科学技术大学,2002.
    [8]姚干兵,解立峰,刘家骢。水爆炸抛洒成雾的研究[J]。弹箭与制导学报。2006,26(3):113-116.
    [9]丁珏,陆中兵,翁培奋。受限空间内新型抑爆装置爆炸抛洒水雾形成过程的研究[J]。兵工学报。2007,28(11):1335-1339.
    [10]Krzysztof STEFANSKI, Damian LEWANDOWSKI, Roman S. DYGDALA et al. Explosive formation and spreading of water-spray cloud-experimental development and model analyses. Central European Journal of Energetic Materials.2009,6(3-4):291-302.
    [11]胡栋,韩肇元,张寿齐。炸药爆炸变形和首次破碎的研究[J]。高压物理学报,2004,18(3):198-202.
    [12]杨磊,韩肇元,黄中伟。液体轴对称抛洒破碎和雾化的实验研究[J]。实验流体力学,2007,21(2:):50-55.
    [13]Geoffrey Taylor. The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. Ⅰ. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.1950,201(1065):192-196.
    [14]Geoffrey Taylor. The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. Ⅱ. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.1950,202(1068):81-96.
    [15]吴德义,孙荣荣。爆炸冲击波强度对液-气界面稳定性影响分析[J]。煤矿爆破,2007(1):16-17.
    [16]R. Klemens, P. Zydak, M. Kaluzny, et al. Dynamics of dust dispersion from the layer behind the propagating shock wave[J]. Journal of Loss Prevention in the Process Industries. 2006,(19):200-209.
    [17]R. Klemens, B. Szatan, M. Gieras, et al. Suppression of dust explosions by means of different explosive charges[J]. Journal of Loss Prevention in the Process Industries. 2000,(13):265-275.
    [18]R. Klemens, M. Gieras, M. Kaluzny. Dynamics of dust explosions suppression by means of extinguishing powder in various industrial conditions[J]. Journal of Loss Prevention in the Process Industries.2007, (20):664-674.
    [19]O. Kalejaiye, P. R. Amyotte, M. J. Pegg, et al. Effectiveness of dust dispersion in the 20-L siwek chamber[J]. Journal of Loss Prevention in the Process Industries.2010, (23):46-59.
    [20]Veeraya Jiradilok, Dimitric Gidaspow, Jalesh Kalra et al. Explosive dissemination and flow of nanopaticles[J]. Powder Technology.2006,(164):33-49
    [21]Dimitri Gidaspow. Multiphase Flow and Fluidization:continuum and kinetic theory descriptions[M]. Academic Press, Harcourt Brace& Company, Publishers,USA.
    [22]Lu Huilin, Dimitri Gidaspow, Jacques Bouillard et al. Hydrodynamic simulation of gas-solid flow in a riser using kinetic theory of granular flow[J]. Chemical Engineering Journal,2003,95:1-13.
    [23]Mayank Kashyap, Dimitric Gidaspow. Computation and measurements of mass transfer and dispersion coefficients in fluidized beds[J]. Powder Technology.2010,203(1):40-56.
    [24]D. Gidaspow, M. Syamlal, J. L. Austing et al. The large-scale detonation of a particulate pytotechnic in a computer modeled dispersed state. Proceedings of the ninth pyrotechnics symposium. IIT Research Institute.1984:193-226.
    [1]刘永基,王作福,单大国。消防燃烧原理[M]。沈阳,辽宁人民出版社,1992.
    [2]周力行。湍流气粒两相流动和燃烧的理论与数值模拟[M]。北京,科学出版社,1994.
    [3]Kenneth K. Kuo著,郑楚光,袁建伟,米建春译。燃烧原理[M]。武汉,华中理工出版社,1991.
    [4]范维澄,王清安,姜冯辉等。火灾学简明教程[M]。合肥,中国科学技术大学出版社,1995.
    [5]洪滔,秦承森。铝颗粒激波点火机制初探[J]。爆炸与冲击,2003,23(4):295-299.
    [6]张丁山,阮文俊,王浩等。爆轰快速点火实验研究及机理分析[J]。爆炸与冲击,2011,31(2):185-190.
    [71董刚,唐熬,叶经方等。激波聚焦诱导点火和爆轰的数值研究[J]。爆炸与冲击,2005,25(5):437-444.
    [8]Grishin A M, Kovalev, Yu M. Shock wave intensification during interaction with a forest fire front[J]. Soviet Physics-Dokalady,1990,35(5):409-411
    [9]Grishin A M, Kovalev, Yu M. Experimental study of the effect of explosions of solid explosives on the front of crown forest fire[J]. Soviet Physics-Dokalady,1989,34(10): 878-881
    [10]Grishin A G. Interaction of shock wave with tree crowns and the front of crown forestfire[A]. BrunR. Shock wave[C]. Berlin Heideberg, Springer-verlag,1995,411-416.
    [11]常熹钰,易仕和,罗俊荣,张韬,文定元,胡照文。激波与森林作用的实验研究[J].火灾科学,1999,8(2):56-62。
    [12]张艳,任兵,常熹钰,熊国清。激波诱导可燃气体爆燃的数值模拟[J].国防科技大学学报,2001,23(2):33-37.
    [13]常熹钰,易仕和,罗俊荣等。激波喷出过程和在林带中的传播[J]。爆炸与冲击,2000,20(4):373-378。
    [14]刘君,周勇为,常熹钰。激波灭火技术的初步研究[J].国防科技大学学报,1999,21(6):17-20。
    [15]江强。火焰再激波诱导下稳定性问题的实验和理论研究[D]。南京:南京理工大学,2004.
    [16]勒建明。火焰再激波诱导下稳定性问题的数值模拟与实验验证[D]。南京:南京理工大学,2004.
    [17]M. W. Glass. Far-field dispersal modeling for fuel-air-explosive[R]. SAND90-0528,1990
    [18]R. J. Zabelka, Smith L H. Explosively Dispersed Liquids[R].AD-863268,1969.
    [19]Xiaomin Ni, Kaiqian Kuang, Donglei Yang, et al. A new type of fire suppressant powder of NaHCO3/zeolite nanocomposites with core-shell structure[J]. Fire Safety Journal,2009, (44):968-975.
    [20]Josef Henrych. The dynamics of explosion and its use[M]. New York:Elsevier Scientific Pub. Co.1979.
    [21]Spyros Sklavounos, Fotis Rigas. Computer simulation of shock waves transmission in obstructed terrains[J]. Journal of Loss Prevention in the Process Industries,2004,17:407-417
    [22]G. Grant, J. Brenton, D. Drysdale. Fire suppression by water sprays[J]. Progress in Energy and Combustion Science.2006,26:79-130.
    [23]Lanchao Lin, Rengasamy Ponnappan. Heat transfer characteristics of spray cooling in a closed loop[J]. International Journal of Heat and Mass Transfer.2003,46:3737-3746
    [24]G. M. Faeth, L. P. Hsiang, P. K. Wu. Structure and breakup properties of sprays[J]. International Journal of Multiphase Flow.1995,21:99-127
    [25]A. Ohnishi, H. Takashima, M. Hakiri. Characteristics of heat transfer of multi water spray nozzle[J]. Trans Iron and Steel Inst Jpn,1987,27(12):299.
    [26]B. Prinz, M. Bamberger. Determination of heat transfer coef-ficient of mist air sprays[J]. Mater Sci Technoly,1989,5(4):389-393.
    [27]靖华。基于液滴蒸发的钠盐气溶胶粒子的制备[D]。武汉:武汉科技大学,2007.
    [28]A. Hamins. Flame extinction by sodium bicarbonate powder in a cup burner[J]. Proceeding of the Twenty Seventh Symposium on Combustion. The Combustion Institute, 1998:2858-2864
    [29]H. K. Chelliah, P. C. Wanigarathne, A. M. Lentati, et al. Effect of sodium bicarbonate particle size on the extinction condition of non-premixed counterflow flames[J]. Combustion and Flame.2003,(134):261-272.
    [30]蒋耀港,沈兆武。比药量对冷激波灭火弹灭火效果的影响[A]。刘殿书。中国爆破新技术[C]。北京:冶金工业出版社,2008.875-880.
    [1]苏新兵,王建平,华江涛。无人驾驶飞机综述[J]。航空制造技术。2003,(9):28-30。
    [2]杨建元,李航航。军用无人机综述[A]。中国航空学会飞机总体专业委员会第五次学术交流会。2002:56-59.
    [3]邹湘伏,何清华,贺继林。无人机发展现状及相关技术[J]。飞航导弹。2006,(10):9-14.
    [4]马凌,朱爱平。Dominator Ⅱ中空长航时无人机完成首次试飞[J]。飞航导弹。2009,(11):52
    [5]侯健,韩育礼。火炮身管强度设计理论和安全系数的研究[J]。弹道学报。2009,21(3):44-47.
    [6]张培忠,黄彦昌,何永。火炮相似模型设计与实验技术研究[J]。兵工学报。2003,24(4):447-450.
    [7]谈乐斌,侯保林,陈卫民。降低火炮后坐力技术概述[J]。火炮发射与控制学报。2006,(4):69-72
    [8]金韶华,松全才。炸药理论[M]。西安:西北工业大学出版社,2010.
    [9]刘鸿文。材料力学[M]。北京:高等教育出版社,2002.
    [10]桂潜波,王克印。迫击炮灭火弹圆柱壳结构设计[J]。四川兵工学报。2008,29(4):26-27。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700