用户名: 密码: 验证码:
螺旋桩基础在斜向荷载作用下的力学特性与承载机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从广义上讲工程桩的载荷形式均可以视为斜向任意偏心载荷,即工程桩同时承受轴向荷载、水平荷载、扭矩和力偶的组合作用。本文研究的荷载形式是作用于桩顶的非偏心斜向荷载(包括水平荷载)。对于变截面、异形的螺旋桩而言,在斜向荷载作用下,其桩体的力学性质、桩土系统的力学响应、外荷载的倾角以及荷载耦合作用等因素导致了螺旋桩基础的荷载传递机理和破坏模式要比单一竖向荷载、单一水平荷载条件下的桩基础力学特性更为复杂。为此,使用试验、理论分析和数值模拟等技术手段,开展了斜向荷载螺旋桩基础承载机理和设计理论研究工作。
     首先,通过两组6次水平荷载作用的螺旋桩基础试验、两组11次斜向荷载承压螺旋桩基础试验和两组6次斜向荷载抗拔螺旋桩基础试验,实测了桩顶位移、桩顶荷载以及地基应力,研究了三种荷载形式下螺旋桩基础的桩土相互作用规律、斜向载荷水平分量与竖向分量的耦合效应、极限载荷判定以及螺旋桩基础破坏形式等关键问题,建议了相应极限承载力的判定方法,为提出斜向荷载承压、抗拔螺旋桩的破坏模式和相关设计理论奠定了基础。
     其次,在水平载荷、斜向压力、斜向拉力和竖向载荷等三种载荷试验的基础上,提出了斜向荷载承压螺旋单桩破坏模式、抗拔螺旋单桩破坏模式以及抗拔螺旋群桩基础的破坏模式,进而使用土力学、基础工程学、连续介质力学、弹性力学以及数学相关基础理论,建立了斜向荷载承压单桩、抗拔单桩以及抗拔群桩的极限荷载设计理论,建议了斜向荷载承压、抗拔螺旋桩基础极限荷载计算的判定条件。在竖向承压群桩的沉降设计理论方面,本文基于弹性力学的Mindlin解、土力学和基础工程学相关理论,推导了地基内部双集中力的地基应力影响界限深度和螺旋桩基础沉降计算方法。
     第三,对斜向荷载工程桩基础开展了三维弹塑性有限元分析(ANSYS8.0软件)和载荷试验工作,研究了螺旋群桩基础的承载机理和影响因素。应用所提出的斜向载荷螺旋单桩、群桩基础极限载荷设计理论和沉降设计理论,进行了工程桩基础的极限斜向荷载和沉降两方面设计工作。有限元计算结果、理论计算结果和工程实测结果比较接近,所提出的相关设计理论对螺旋桩基础工程设计有一定的指导意义。
On the general concept, the loading form of engineering pile can be seen as the inclined loading, which the loading combination of axial and horizontal loading acts on pile at one time. For the variable cross-section and abnormity screw pile, the mechanism of load transfer and its failure model by inclined loading condition are more complex than the mechanics property of screw pile under axial or horizontal loading condition, because of the mechanics property of pile, mechanics response of pile-ground, inclination of loading and couple effect of loading. Therefore, the load-bearing mechanics and designing theory of screw pile and pile group under inclined loading are studied by the examination, some theory and finite element method (FEM).
     First, by6times of2group of screw pile test under horizontal loading,11times of2group of static load-bearing test under inclined press, and6times of2group of screw pile pullout test under inclined pull-loading, the displacement and loading of pile cap and ground stress are measured. Some key problem under3kinds loading are studied, for example the action rule of pile-soil, the couple effect of horizontal and vertical component of inclined loading, estimated ultimately inclined loading and the failure model of screw pile foundation, and the estimating method of ultimately inclined loading. From these research effect, the base of failure model and designing theory that be applied to the load-bearing and pullout screw pile under inclined loading are established.
     Secondly, on the base of loading test for3kinds form of horizontal loading, inclined press, inclined pull force and vertical loading test, some failure models are put out on the condition of inclined loading, for example the failure model of single pressure screw pile under inclined press, the failure model of single screw pile and pile group. Used some theoretic of the soil mechanics, foundation engineering, continuum mechanics, elastic mechanics and math, the designing theory of the pressed screw pile, pullout screw pile and pile group are established for the condition of inclined loading, and the estimated method for calculating the ultimately inclined loading of the pressed or pull-out screw pile are advised. At the settlement designing of vertical pressed screw pile group, based on some theoretic of the Mindlin's solution of elastic mechanics, soil mechanics and foundation engineering, the limiting deepness of ground stress by the interactive effect of the twin force in ground is deduced, and the calculating settlement method is put out.
     Thirdly, in the aspect of engineering designing and application, the bearing property and influencing factors of the prototype screw pile group foundations under inclined loading are respectively studied by the elastic-plasticity3-D analysis of FEM(ANSYS8.0software) and loading field test. Used the designing theories of ultimately inclined loading and settlement of screw pile foundation, the ultimately inclined loading and settlement of screw pile group are calculation. The results of FEM and theory calculations are near to the results of field tests, and it shown that these theories in the paper may direct the designing screw pile foundation in fact.
引文
1. 史佩栋,梁晋渝.纪念大直径灌注桩问世100年[J],地基基础工程,1993,3(2),1.9.
    2. Reese and O'Neill. Drilled Shafts: Construction Procedures and Design Methods (FHWA-HI-8-042)[C]. McLean, Virginia: U.S. Department of Transportation, Federal Highway Administration, Office of Implementation,1988,311-326.
    3. George G. Goble. Developments in High Capacity Driven Piles[C]. Proceedings of the 12th Annual Great Lakes Geotechnical and Geoenvironmental Conference (GLGGC), Akron, Ohio, USA, 2004,1-17
    4. Poulos H G and Davis E H. Pile Foundation Analysis and Design, Wiley, New York,1980.
    5. 李毓锦.新型PHC桩及水冲气举静压沉桩法[P],发明专利,专利号:CN200410061106.9.2004年11月9日.
    6. ZHAO J X. Estimating kinematic interaction of raft foundation from earthquake records and its effects on structural response[J], Soil Dynamics and Earthquake Engineering,1998,17,73-88.
    7. 沈保汉.桩基础测试、勘察、设计和施工(一)—一般原则[J],工业建筑,1990,(9),49-53.
    8. CHELLIS R D. Pile Foundation [M]. New York: Mcgraw-Hill Book Company Inc.,1961,233-319.
    9. Makris N, Badoni D, Delis E and Gazetas G. Prediction of observed bridge response with soil-pile-structure interaction[J], journal for structure. Engineering.1994,120,2992-3011.
    10. Smith I M, Wang A. Analysis of piled rafts[J], International journal for numerical and analytical methods in geomechanics,1998,22,777-790.
    11.叶可明,范庆国,胡玉银.上海超高层建筑施工技术的新进展[J],建筑施工,2006,28(6),405-408.
    12.许贤敏.上海金茂大厦底层基础筏板的施工[J],建筑门窗与金属建材,2002,(5),52-53.
    13.蔡鑫.超长大孔径水中钻孔灌注桩的施工技术[J],西部探矿工程,2006,123,9-11.
    14.张刚,李康,吴进良,沈港.苏通大桥北主墩钻孔平台施工技术探讨[J],重庆交通学院学报,2006,25(1),19-23.
    15.杜兵.苏通大桥主桥基础工程GPS-RTK技术施工测量方案与实施[J],工程勘察,2006,(6),47-49.
    16.黄增财,彭立志,吴健.海上超长大直径钢管桩基础施工技术[J],施工技术,2005增刊,164-167.
    17.朱才科,郑海洪,.王嘉定,.周和平,.冯宗朝.大直径超长钢管桩制造技术[J],桥梁建设.2006,(3),47-50.
    18. Juran I, Bruce D A, DiMillio A, and Benslimane A. Micropiles:the state of practice. Part Ⅱ:design of single micropiles and groups and networks of micropiles[J], Ground Improvement,1999,3(3).
    19.史佩栋.香港地区的桩型和桩基指导书简介[J],建筑技术,1999,30(3),192-193.
    20.岩土工程界编辑部.微型桩[J],岩土工程界,2006,9(8),19-20.
    21.黄宏伟.微型预制桩单桩承载力时效现场试验分析[J],岩石力学与工程学报,2000,19(5),666-669.
    22.沈保汉.桩基础施工技术及发展趋向浅谈.刘金砺.桩基设计施工与检测[M],北京:中国建材工业出版社,2001,11-17.
    23.徐致均,张国栋.新型桩挤扩支盘灌注桩设计与工程应用[M],北京:机械工业出版社,2003.
    24.张忠苗,辛公锋,夏唐代,楼一层.软土地基灌注桩、挤扩支盘桩和注浆桩应用效果分析[J],岩土工程学报,2004,26(5),709-711.
    25. Ei Naggar M H, Sakr M. Evaluation of axial performance of tapered piles from centrifuge tests[J], Canadian Geotechnical Journal,2000,137(6),1295-1308.
    26. Sakr M, Ei Naggar M H, Nehdi M. Load transfer of fibre-reinforced polymer (FRP) composite tapered piles in dense sand[J], Canadian Geotechnical Journal,2004,141(1),70-88.
    27. Sakr M, Ei Naggar M H. Centrifuge Modeling of Tapered Piles in Sand[J], Geotechnical Testing Journal,2003,126(1),22-35.
    28.唐念慈译.苏联建筑法规:桩基础.地基与基础译文集编委会.地基与基础译文集:桩基础[M],北京:中国建筑工业出版社,1982,180-181.
    29. Gen Mori. Development of the screw steel pipe pile with toe wing, "Tsubasa Pile". Deep Foundations on Bored and Auger Piles[C], Rotterdam:Millpress,2003,171-176.
    30. Fukuei Kosan Inc.Spiral Concrete Pile[EB/OL], Okayama: Okayama Prefecture Industrial Promotion Foundation (2006/6/21)[2006/6/27], http://www.optic.or.jp.
    31. NKK Corporation. New Steel Screw-Pile Marketed, http://www.nkk.co.jp/en/,2005.
    32. A B Chance Co. Helical Pier Foundation Systems [R], Bulletin: Hubbell Inc,2000,1-12.
    33. Adrian Greeman. Victorian values[J], New Civil Engineer,2005, (1605),37.
    34. Pack J S and McNeill K M. John S. Pack; Kevin M. McNeill.12th Panamerican Conference on Soil Mechanics and Geotechnical Engineering; 39th U. S. Rock Mechanics Symposium[C], Cambridge, Massachusetts, USA:2003,1(2),1825-1832.
    35. Michael W. O'Neill. Review of Augered Pile Practice Outside the United States. Geo-Frontiers Conference[C], Austin,TeXas, USA:Geo-Institute of the American Society of Civil Engineers,2005, 63-69.
    36. Van Impe W F. Screw piling: still a challenging discussion topic?.4th International Geotechnical Seminar on Deep Foundations on Bored and AugerPiles[C], Rotterdam:Millpress,2003,3-8.
    37. Webmaster. Reddi-Walk Screw Pilling [Eb/Ol], Reddi-Walk Screwpile Products,2004.
    38. Execution of special geotechnical work-Micropiles[S]. NF P94-313-2005.
    39.吴敏,李波扬.全螺旋灌注桩螺纹桩竖向承载力初探[J],武汉大学学报(工学版),2002,35(5):109-112.
    40.李波扬,吴敏.一种新型的全螺旋灌注桩—螺纹桩[J],建筑结构,2004,34(8),22-57.
    41.陈日宏,罗明.混凝土螺旋预制桩.实用新型,专利号:99224893.0.2000年8月2日.
    42.孙鸣.钢筋混凝土螺旋桩可行性分析[J],天津城市建设学院学报,2001,7(3):187-190.
    43.王钊,王金忠,曾繁平,陈春红.玻璃钢螺旋锚的现场拉拔试验[J].岩土工程学报,2007,29(10),1439-1442.
    44.王钊,周红安,李丽华,储开明,崔伯军.玻璃钢螺旋锚的设计和试制[J].岩土力学,2007,28(11),2325-2328.
    45.苏晓青.螺旋锚在基坑支护工程中的应用[J].湖南工业大学学报,2007,21(5),12-14.
    46.汪滨,李军,邓昌螺旋锚加固滑坡抢险工程车的研制[J].水利水电机械,2007,29(11),16-18.
    47.海南卓典高科技开发有限公司.《中国螺杆桩技术》(第三版)(M),2008.
    48.董天文.螺旋桩基础力学特性与承载机理研究[D].沈阳,东北大学.
    49.董天文,梁力,王明恕,张成金.极限荷载条件下螺旋桩的螺距设计与极限承载力计算[J].岩土工程学报,2006,28(11),2031-2034.
    50.董天文,梁力.竖向受压螺旋桩荷载位移函数解[J].岩土工程学报,2007,29(10),1483-1487.
    51.董天文,梁力,王炜,王明恕.抗拔螺旋桩叶片与地基相互作用试验研究[J].工程力学,2008,25(8),150-155.
    52.董天文,梁力,黄连壮,杨重光,王明恕.螺旋群桩基础承载性状试验研究[J].岩土力学,2008,29(4),893-896.
    53.董天文,梁力,黄连壮,王明恕.螺旋桩基础抗拔试验研究[J].岩土力学,2009,30(1),186-190.
    54. Hanna A M and Ghaly A. Ultimate pullout resistance of groups of vertical anchors[J], Canadian Geotechnical Journal,1994,31(5),673-682.
    55. Clemence S P, Peper F D. Measurement of lateral stress around multi-helix anchors in sandJ], Geotechnical Testing Journal,1984,7(3),145-152.
    56. Adams J land Klyn T W. A Study of Anchor for Transmission Tower Foundations[J], Canadian Geotechnical Journal,1972,9(1),89-104.
    57. Adams, J I and Radhakrishna H S. Uplift Resistance of Auger Footings in Fissured Clay[J], OntarioHydro Research Quarterly,1970,22(1),10-16.
    58. Adams J I, Radhakrishna H S, and Klym T W. The Uplift Capacity of Anchors in Transmission Tower Design. Institute of Electricaland Electronics Engineers, Power Engineering Society Winter Meeting and Telsa Symposium[C], New York: IEEE,1976, A76 125-5.
    59. Udwari J J, Rodgers T E and Singh H. A rational approach to the design of high capacity multi-helix screw anchors.7th IEEE/PES Transmission and Distribution Conference and Exposition[C], Dames & Moore Washington D C, IEEE,1979,606-610.
    60.王钊,刘祖德,程葆田.螺旋锚的试制和在基坑支护中的应用[J],土木工程学报,1993,(4),47-53.
    61.郭方胜.倾斜螺旋锚片锚杆上拔性能室内试验研究[J],武汉冶金科技大学学报,1997,20(4),453-457.
    62.陈基成,柏文正,魏文伯.小型螺旋锚的快拉试验和研究[J],水利水运科学研究,1999,(3),296-301.
    63.汪滨.螺旋锚技术及其在工程中的应用[M],北京:中国水利水电出版社,2005.
    64. Mauricio Jun Arai, Mamoru Fujii and Yoshihiro Hashimoto. Study on the Visualization of Soil Turbulence Surrounding the Model Pile Using Thermography. The Proceedings of the International Offshore and Polar Engineering Conference [C], Seoul, Korea, International Society of Offshore and Polar Engineering,2005,454-458.
    65.林正宏,市川和臣,篠原敏雄,腾谷雅彦,森玄.大径つばそ杭[J].NKK技报,2002,(178),37-42.
    66.同本隆,林正宏,市川和臣,岛同久寿,篠原敏雄,森玄.先端翼付き回転入钢管杭(つばそ杭)[J].NKK技报,2000,(169),41-46.
    67. Ghaly A M, Hanna A. Ultimate pullout resistance of single vertical anchors[J], Canadian Geotechnical Journal,1994,31(5),661-672.
    68. MEYERHOF G G. Bearing capacity and settlement of pile foundation[J].11th Terzaghi lecture, ASCE, Journal of the geotechnical engineering division,1976,102(3):195-228.
    69.横山幸满著.桩结构物的计算方法和计算实例[M].唐业清,吴庆荪译.北京:中国铁道出版社,1984.
    70. MEYERHOF G G, SASTRY V V R N. Bearing Capacity of Rigid Piles under Eccentric and Inclined Loads[J].Canadian Geotechnical Journal,1985,22(6):267-276.
    71. SASTRY V V R N, MEYERHOF G G. Behavior of Flexible Piles in Layered Clays under Eccentric and Inclined Loads[J]. Canadian Geotechnical Journal,1994,32(3):387-396.
    72.范文田.轴向与横向力同时作用下柔性桩的分析[J].成都:西南交通大学学报,1986,23(1):39-44.
    73.王用中,张河水.弹性地基梁的压弯计算及其应用[J].桥梁建设,1985,14(4):30-52.
    74.侯运秋,赵明华,曹喜仁.倾斜荷载下基桩的承载力研究[J].中南公路工程,1998,23(1):39-42.
    75.刘金砺.桩基础设计与计算[M].北京:中国建筑工业出版社,1994.
    76.董天文,张亚军,李士伟,黄连壮.斜向抗拔螺旋群桩基础承载性状试验研究[J].岩土工程学报, 2008,30(3),429-433.
    78.顾大钊.相似材料和相似模型[M],徐州:中国矿业大学出版社,1995,23.
    79.JGJ94-94,建筑桩基技术规范[S],北京:中国建筑工业出版社,1995,131-138.
    80.DB21-907-96,建筑地基基础技术规范[S],北京:中国计划出版社,1996,132-134.
    81.沈保汉.桩基测试勘测设计与施工(三)—桩的垂直受压静载试验[J],工业建筑,1990,(10),44-49.
    82.彭雄志,赵善锐,周江平.软土中高速铁路桥梁基桩动力模型实验研究.刘金砺.桩基工程技术发展与应用[C].北京:中国建筑工业出版社,2003,28-32.
    83.南京水利科学研究院土工研究所.土工试验技术手册[M],北京:人民交通出版社,2003.
    84.GB50007-2002,建筑地基基础设计规范[S],北京:中国建筑工业出版社,2002,136-138.93.
    85.GB50021-2001,岩土工程勘察规范[S],北京:中国建筑工业出版社,2002,10.
    86.JGJ106-2003,建筑基桩检测技术规范[S],北京:中国建筑工业出版社,2003.
    87.JGJ4—80,工民建灌注桩基础设计与施工规程[S],北京:中国建筑工业出版社,1980.
    88.TBJ1—88,建筑地基基础设计规范(天津市)[S],北京:中国建筑工业出版社,1988.
    89.DBJ08—11—-89,地基基础设计规范(上海市)[S],北京:中国建筑工业出版社,1989.
    90.沈阳市城乡建设委员会设计科研处.沈阳城区单桩承载力研究[M],沈阳:辽宁科学技术出版社,1991,17-25.
    91.沈保汉.评价桩工作特性的新方法[J],建筑技术开发,1994,(2),11-21.
    92.沈保汉.桩基测试勘测设计与施工(十四)—桩的抗拔承载力[J],工业建筑,1991,(11),51-55.
    93.徐芝纶.弹性力学[M],北京:高等教育出版社,1990.
    94.同济大学数学教研室.高等数学[M],北京:高等教育出版社,1994.
    95.郭仲衡.非线性弹性理论[M],北京:科学出版社,1980.
    96.黄筑平.连续介质力学基础[M],北京:高等教育出版社,2003.
    97.R.特曼,A.米郎维尔清.薛密译,秦铁虎校.连续介质力学中的数学模型[M],北京:清华大学出版社,2004.
    98.华南工学院,南京工学院,浙江大学,湖南大学.地基及基础[M],北京:中国建筑工业出版社,1985.
    99.钱家欢,殷宗泽.土工原理与计算:2版[M],北京:中国水利水电出版社,1996.
    100.沈保汉.桩基础测试、勘察、设计和施工(二)—群桩垂直受压承载力[J],工业建筑,1991,(7),54-61.
    101.刘金砺,袁振隆.群桩承台土反力性状和有关设计问题.第五届土力学及基础工程学术会议论文选集[C],北京:中国建筑工业出版,1990,393-399.
    102.刘金砺,黄强,李华,高文生.竖向荷载下群桩变形性状及沉降计算[J],岩土工程学报,1995,17(6):1-13.
    103. Mylonakis G, Gazetas G. Settlement and additional internal forces of grouped piles in layered soil [J], Geotechnique,1998,48(1):55-72.
    104.陈仁朋,梁国钱,俞济棠,陈云敏.考虑桩土相对滑移的单桩和群桩的非线性分析[J],浙江大学学报(工学版),2002,36(6),668-673.
    105. Lee I K, White W and Ingles O G. Geotechnical Engineering[M].俞调梅,叶书麟译.岩土工程,北京:中国建筑工业出版社,1986,404.
    106. Geddes J D. Stress in foundation soils due to vertical subsurface load[J], Geotechnique,16,231-255.
    107. Poulos H G, Analysis of the settlement of pile groups[J], Geotechnique,1968,18(4),449-471.
    108. Butterfield R and Banerjee P K. The problem of pile group-pile cap interaction, Geotechnique,1971, 21(2),135.
    109. Indraratna B, Balasubramaniam A S and Sivaneswaran N. Analysis of settlement and lateral deformation of soft clay foundation beneath two full-scale embankments[J], International journal for numerical and analytical methods in geomechanics,1997,21,599-618.
    110. Russo G. Numerical analysis of piled rafts[J], International journal for numerical and analytical methods in geomechanics,1998,22,477-493.
    111.赵明华,邹新军,邹银生,郭玉荣.倾斜荷载下基桩的改进有限元—有限层分析方法[J],工程力学,2004,21(3),129-133.
    112.弗洛林B A.同济大学土力学及地基基础教研室译.土力学原理(第一卷)[M],北京:中国工业出版社,1965,109-112.
    113.辽宁省电力勘测设计院.螺旋锚基础试验研究[R].沈阳:辽宁电力勘测设计院,2002,12-13.
    114.张楚汉.论岩石、混凝土离散-接触-断裂分析[J],岩石力学与工程学报,2008,27(2),217-235.
    115. Lemos J A. A distinct element model analysis of jointed rock with application to dam foundation and fault motion [D]. Twin Cities: University of Minnesota,1987.
    116.朱伯芳.有限单元法原理与应用[M],北京:中国水利水电出版社,2000.
    117. Clough G W, Duncan J M. Finite element analysis ofretaining wall behavior [J], Journal of the Soil Mechanics and Foundations, ASCE,1971,97(12):1657-1672.
    118. Desai C S. Numerical design-analysis for piles in sand[J], Journal of Geotechnical Engineering,1974, 100(6),613-635.
    119. Valliappan S, Lee I k, and Boonlualohr P. Settlement of piles in layered soils. Proce.7th Biennial conference,Adelaid, Aust.:Road Res,144-153.
    120. Chow Y K, Analysis of vertically loaded pile groups[J], International Journal for Numerical and Analytical Methods in Geomechanics,1986,10,59-72.
    121. Clancy P and Randolph M F. An approximate analysis procedure for piled raft foundations[J], International Journal for Numerical and Analytical Methods in Geomechanics,1993,17(12),849-869.
    122. Smith I M and WANG A. Analysis of piled rafts[J], International Journal for Numerical and Analytical Methods in Geomechanics,1998,22,777-790.
    123. Liyanapathirana D S, Deeks A J and Randolph M F. Numerical analysis of soil plug behaviour inside open-ended piles during driving[J], International Journal for Numerical and Analytical Methods in Geomechanics,1998,22,303-322.
    124.王旭东,魏道垛,宰金珉.群桩—土—承台结构共同作用有限层—有限元分析[J],南京建筑工程学院学报,1994,(3),1-8.
    125.赵明华,邹新军,邹银生,郭玉荣.倾斜荷载下基桩的改进有限元—有限层分析方法[J],工程力学,2004,21(3),129-133
    126. Chakraborty S. Dynamic lateral load testing of deep foundation groups[D], The Graduate Faculty of Auburn University,2003.
    127.张嘎,张建民.土与结构接触面弹塑性损伤模型用于单桩与地基相互作用分析[J],工程力学,2006,23(2),72-77.
    128. Ansys Company. ANSYS Release 8.0 Documentation, Structural Analysis Guide[M]. USA, Ansys Company:Ingeciber. S.A,2000.
    129.郝文化ANSYS土木工程应用实例[M],北京:中国水利水电出版社,2005.
    130.博弈创作室APDL参数化有限元分析激素和及其应用实例[M],北京:中国水利水电出版社,2004.
    131.GB50010-2002,混凝土结构设计规范[S],北京:中国建筑工业出版社,2002,20-21.
    132.沈珠江.土的弹塑性应力应变关系的合理形式[J].岩土工程学报,1980,2(2),11-19.
    133. Roscoe K. H., Schofield A. N, Thurairajah A. Yielding of clays in states wetter than critical[J]. Geotechnique 1963,13(3):211-240.
    134. Lade P. V. Elastic-plastic stress-strain theory for cohesionless soil with curved yield surface[J], International Journal of Solids and Structures,1977, (13):1019-1035.
    135. Seed H B, Lee K L. Liquefaction of saturated sands during cyclic loading[J], Journal of Soil Mechanics and Foundation Engineering Division,1966,92(6),105-134.
    136.袁海平,曹平,许万忠,陈沅江.岩石弹塑性本构关系及改进的Burgers蠕变模型[J],岩土工程学报,2006,28(6),796-799.
    137.朱百里,沈珠江.计算土力学[M],上海:上海科学技术出版社,1990,61-67.
    138. Duncker D C, Prager W. Soil Mechanics and Plastic Analysis or Limit Design[J], Quarterly of Applied Mathematics,1952,10(2),157-165.
    139. Druncker D C, Prager W. Soil Mechanics and Plastic Analysis or Limit Design[J]. Quarterly of Applied Mathematics,1952,10(2):157-165.
    140.赵尚毅,郑颖人,刘明维等.基于Druncker- Prager准则的边坡安全系数定义及其转换[J].岩石力学与工程学报,2006,25(增1):2730-2734.
    141.张鲁渝,时卫民,郑颖人.平面应变条件下土坡稳定有限元分析.岩土工程学报[J],2002,24(4):487-490.
    142.郑颖人,段建立,陈瑜瑶.广义塑性力学中的屈服面与应力-应变关系[J].岩土力学,2000,21(3):305-308.
    143.郑颖人,沈珠江,龚晓南.岩土塑性力学原理[M],北京:中国建筑工业出版社,2002.
    144.刘金砺.桩基研究与应用若干问题浅析[J].岩土工程界,2000,3(2):10-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700