高速磁浮列车最优速度曲线及其跟踪控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高速磁浮列车是未来交通的重要发展方向之一。高速磁浮交通技术研究已经被列为国家“十五”863计划重大专项。本文以德国高速磁浮列车系统为研究对象,以实现列车安全正点、舒适节能地自动驾驶为目标,对列车运行的最优速度曲线及其跟踪控制问题以及与此相关的问题进行了研究。论文的主要研究工作及创新点总结如下。
     (1)为了便于分析和求解磁浮列车的运行规律,采用拟和方法对磁浮列车运行的非线性动力学模型进行了近似处理,得到了适用于类型相同而不同编组列车系统的统一的近似动力学模型,并给出了隐式解析解的通用表达形式。研究了恒力作用下列车运行的规律,并给出了已知列车运行规律求解控制力的迭代搜索算法。
     (2)系统地分析了磁浮列车的双限速度防护问题,提出了基于动力学模型的安全速度防护曲线的求解算法,确定了列车运行的安全速度域。研究了列车速度越界后的防护措施,并给出了列车超速防护下的涡流制动切换算法。
     (3)基于磁浮列车的动力学模型,以安全、舒适为约束条件,分别求解了最短时间和最小能量的最优控制问题,在理论分析的基础上给出了工程化求解方法。针对最小能量控制下确定惰行切换点的关键问题,给出了两种求解方法。基于求解不同定时条件下的最小能量得到了能耗随运行时间变化的曲线,为铺画列车运行图提供了重要的依据。
     (4)利用反馈线性化技术,处理了磁浮列车系统的非线性动力学模型,设计了非线性补偿器和PI控制器。仿真结果表明,所设计的控制系统实现了列车速度良好地跟踪目标速度曲线。
     (5)在分析几种典型轨道交通的列车自动控制系统特点的基础上,提出了一种更完善、安全性和可靠性更高的新型运行控制系统体系结构。分析了新结构中的列车运行仿真系统的核心功能,并基于磁浮列车最优速度曲线的理论和算法设计了运行速度曲线优化模块的功能,为铺画高速磁浮交通系统的运行图提供了技术支撑。
     综上所述,本文对磁浮列车最优速度曲线及其相关研究成果,为高速磁浮列车研究提供有益的参考,具有重要的理论意义和应用价值。
High-speed Maglev train traffic system is one of the important development directions in the future. High-speed Maglev transportation technology has been listed as major projects of "Tenth Five-Year" 863 Plan. In order to drive the Maglev train on time, safety, energy saving and comfortable automatically, the optimum speed curve of high-speed Maglev-train, its tracking control and other issues were studied, with the German high-speed Maglev-train system as the research object. The major research and innovation points are summarized below.
     Firstly, the non-linearity dynamic model of the running Maglev train was approximately treated using the fitting method convenient for analyzing and calculating the Maglev train running rule. The uniform non-linearity dynamic approximate model, useful to express different train system with same type and different organization, was obtained. The general expression of analytical solutions was obtained. The running rule of the Maglev train under the constant force was studied, and an iterative search algorithm was designed to calculate the control force with known running rule.
     Secondly, the safety speed protection curve algorithm was proposed based the dynamic model of Maglev train, and the train safety speed range was determine by systematic analysis of the limited-speed Maglev train protection. The protection measure was studied to treat the over-speed Maglev train, and the switching algorithm of eddy-current brake for protecting the Maglev train over-speed was given.
     Thirdly, based on the dynamic model of maglev train and bond with safe and comfortable conditions, the optimal control problems of the shortest time and the smallest energy were studied, and the practical method was given based on theoretical analysis. To the question of determining the switching sliding point under minimum energy control, two methods were given. The important foundation for drawing the operation chart was provided, for the changing energy consumption curve with the running time interval was obtained based on calculating the smallest energy consumption to different interval time.
     Fourthly, after linearizing the Maglev train system input-output model using feedback linearization techniques, the nonlinear compensator and nonlinear PI controller were designed. The simulation results show that the target speed curve was tracked well.
    
     Fifthly, a new structure of operation control system, with perfect function, high security and reliability was proposed based on analyzing some typical rail transportation system and its features of ATC system. The key function of traffic simulation system was designed, and the function of optimizing running speed curve was designed, based on the theory and arithmetic of optimum speed curve of high-speed Maglev train. The technology basement for drawing the operation chart of high-speed Maglev train was provided.
     In short, the optimum speed curve of high speed Maglev train and related research results given in this thesis has important theoretical and practical value for providing a useful reference to high-speed maglev train researching.
引文
[1] 卢乃宽.高速轮轨和磁悬浮技术在世界轨道交通运输体系中的发展[J].中国铁道科学,2003(6):105-110.
    [2] 邵丙衡,陶生桂,庄红元.轮轨系统高速列车与磁浮列车的主要技术经济比较[J].机车电传动,1997(2):1-4.
    [3] M Fujino, T Mizuma. Total test operation of HSST-1O0 and planning project in Nagoya[C]. Proceedings MAGLEV' 95, Bremen Germany, 1995: 129-133.
    [4] 刘云,简水生.新型磁浮列车运行控制系统基本理论研究[D].北京:北京交通大学,2004.
    [5] 吴祥明.磁浮列车[M].上海:上海科学技术出版社,2003.
    [6] 魏庆朝,冯雅薇.直线电机交通模式及技术经济特性[J].都市快轨交通,2004,17(1):15-21.
    [7] J Meins, L Miller. The High Speed Maglev Transportation System Transrapid[J]. IEEE Transactions on Magnetic, 1988, 24 (2): 808-811.
    [8] J L He, H T Coffey, Rote D M. Analysis of the Combined Maglev Levitation, Propulsion, and Guidance System[J]. IEEE Trans. on Magn., 1995, 31 (2): 981-987.
    [9] 张瑞华,严陆光,徐善纲等.几种典型的高速磁悬浮方案比较[J].电工电能新技术,2004(2):46-50.
    [10] Motoharu Ono, Shunsaku Koga, Hisao Ohtsuki. Japan's Superconducting MAGLEV TRAIN[J]. IEEE Instrumentation & Measurement Magazine, 2002 (3): 9-15.
    [11] Tsuchishima H, Herai T. Superconducting magnet and On-Board Refrigeration System On Japanese Maglev Vehicle[J]. IEEE Transactions on Magnetic, 1991, 27 (2): 2272-2275.
    [12] 连级三.磁浮列车原理及技术特征[J].电力机车技术,2001,24(3):23-26.
    [13] 王延安,陈世元,苏战排.EMS式与EDS式磁浮列车系统的比较分析[J].铁道车辆,2001, 39(10):17-20.
    [14] Yoshihide Yasuda, Masaaki Fujino, Masao Tanaka. The first HSST Maglev Commercial Train in Japan[C]. Proceedings Maglev' 2004, Shanghai, China, 2004: 76-85.
    [15] 王洁.常导磁悬浮系统HSST[J].地铁与轻轨,2001(1):51-52.
    [16] 刘绍勇,李大宝编译.日本常导磁浮列车[J].现代城市轨道交通,2006(2):57-61.
    [17] 钱立新.磁浮系统的分类及工作原理[J].世界轨道交通,2004(2):53-56.
    [18] 吴祥明,常文森.上海高速磁浮列车及磁浮技术发展刍议[J].综合运输,2005(1):28-31.
    [19] 刘华清编译.德国磁浮列车Transrapid[M].成都:电子科技大学出版社,1995.
    [20] U Wiescholek, D Rogg. High-Seed Magnetic Levitation System TRANSRAPID [C]. Proceedings Maglev' 95, Bremen, Germany, 1995: 17-24.
    [21] K GlatzeI, G Khurdok, D Rogg. The Development of the Magnetically Suspended Transportation System in the Federal Republic of the Germany[J] . IEEE Transactions on Vehicle Technology, 1980 (29): 3-16.
    [22] D Rogg. The Development of High-Speed Magnetic Levitation System in the Federal Republic of the Germany, Objectives and Present State[C]. The 10~(th) international Conference on Maglev Systems, 1988: 3-17.
    [23] J Meins, L Miller, W J Mayer. The high Speed Maglev Transportation System Transrapid[J]. IEEE Transations on Magnetic, 1998, 24 (2): 808-811.
    [24] A Mongini. The maglev deployment of the United States[C]. The 16~(th) International Conference on magnetically levitated systems and linear drives, MAGLEV'2000. Rio de Janeiro, Brazil, 2000: 21-26.
    [25] J R Powell, G R Danby. High-sPeed transport by magnetically suspended train,[J]: ASME Paper 66-WA/RR-5, 1996.
    [26] H G Raschbichler, L Miller, M Wackers. Analysis of prospective transrapid applications[C]. Proceedings 13~(th) International on magnetically levitated systems and linear drives, Agronne, Illinois, 1993, pp: 29-34.
    [27] HT Coffey. Maglev: status and opportunities [J]. IEEE Transactions on Application Superconductivity, 1993, 3 (1): 863-868.
    [28] K Kaminishi, K Takahashi, A Seki, et al. Main test results on the Yamanashi maglev test line[C]. The 16~(th) International on magnetically levitated systems and linear drives, MAGLEV'2000. Rio de Janeiro, Brazil, 2000: 83-88.
    [29] H Soejima, K Isoura. Development of the maglev system in Japan: past present and future[C].The 15~(th) International Conference on magnetically levitated systems and linear drives, MAGLEV' 1998. Mr. Fuji, Japan, 1998: 8-11.
    [30] K Takao, M Yoshimura, N Tagawa. Development of superconducting maglev vehicles (MLX01 type) on the Yamanashi Test Line-Carbody structure and Equipment of the first train set[J]. Quarterly Report of RTRI, 1996, 37(2): 63-70.
    [31] K Takao,. M Yoshimura, N Tagawa, et al. Development of the superconducting maglev vehicles on Yamanashi test line[C]. The 14~(th) International Conference on magnetically levitated systems and linear drives, MAGLEV' 1995, Bremen, Germay, 1995:233-238.
    [32] 阳建鸣编译.日本常导磁悬浮直线电动机车辆33年的实用化进程[J].现代城市轨道交通,2004(5):48-50.
    [33] 邹振民.新世纪城市理想的交通工具——介绍日本HSST磁浮列车系统[J].铁道通信信号,2001,37(11):37-39.
    [34] Syunzo ishimoto, Masato kato. The First Urban Maglev Transport Application in Japan[C]. Proceedings of the Maglev' 2004, Shanghai, China, 2004: 298-306.
    [35] M Fujino, M Tanaka, S. Iahimoto. Total test operation of HSST 100 and the project of East Hill-Side Line in Nagoya[C]. The 16~(th) International Conference on magnetically levitated systems and linear drives. MAGLEV'2000. Rio de Janeiro, Brazil, 2000:35-43
    [36] E Masada, M Kitamoto, M Kawashima, J Kato. Present status of maglev development in Japan and HSST-03 project[A]. IMechE Conference Publication:Maglev Transport: Now and for the Future[C]. Solihull, England, 1984: 9-22.
    [37] 张志洲,龙志强.日本首条城市磁浮运营线车辆技术[J].电力机车与城轨车辆,2005, 28(6):44-46.
    [38] 张志洲,龙志强.日本东部丘陵线磁悬浮系统技术综述[J].国外铁道车辆,2005,42(6):7-11.
    [39] I K Kim, M H Yoo. Maglev Development and commercial application in Korea[C]. The 16~(th) International Conference on magnetically levitated systems and linear drives, MAGLEV'2000, Rio de Janeiro, Brazil, 2000: 40-43.
    [40] M Mossi, N Macabrey. Update of the Swissmetro project. The 16~(th) International Conference on magnetically levitated systems and linear drives, MAGLEV'2000. Rio de Janeiro, Brazil, 2000:27-34
    [41] M Jufer. SwissMetro Project[C]. The 15~(th) International Conference on magnetically levitated systems and linear drives, MAGLEV' 1998. Mt. Fuji,.Japan, 1998:15-18
    [42] 赵春发,翟婉明.磁悬浮车辆系统动力学研究[D].成都:西南交通大学,2002.
    [43] 吴祥明.磁浮—21世纪的新型交通[A].2003’第二届中国电机发展论坛专题报告集[C].北京:中国电工技术学会,2003:12-14.
    [44] 魏庆朝,孔永健编著.磁悬浮铁路系统与技术[M].北京:中国科学技术出版社,2003.
    [45] J S Wang, S Y Wang, M Zhu, et al. Research and development of high temperature superconducting maglev in China[C]. The 16~(th) International Conference on magnetically levitated systems and linear drives. MAGLEV'2000, Rio de Janeiro, Brazil, 2000:44-08
    [46] 张永,徐善纲.高温超导磁悬浮模型车[J].低温与超导,1998,26(4):35-39.
    [47] 王家素,王素玉,连级三.高温超导磁浮车[J].低温与超导,1997,25(1):17-22.
    [48] 杨建勇,连级三.磁浮列车自动控制(ATC)系统研究[D].成都:西南交通大学,2000.
    [49] 徐安,李永善.磁悬浮技术在德国的发展[J].城市轨道交通研究.2001(2):64-68.
    [50] K H Kraft, E Schnieder. Requirements of Operations Control for MAGLEV Transit Systems[A]. 4~(th) IFAC Proceedings Series[C]. Baden-Baden: Elsevier Science Ltd, 1983: 83-87.
    [51] 刘进,吴汶麒.高速磁浮交通二维速度防护曲线及其算法研究[J].中国铁道科学,2002 (4):106-110.
    [52] 袁海州,刘少克.磁浮列车速度控制系统的研究与设计[D].长沙:国防科技大学,2000.
    [53] 罗成,尹力明.磁浮列车自动保护系统的研究[D].长沙:国防科技大学,2002.
    [54] 王洪坡,尹力明.磁浮列车速度控制与自动驾驶系统研究[D].长沙:国防科技大学,2002.
    [55] 赵志远,尹力明.磁浮列车ATP系统研究[D].长沙:国防科技大学,2004.
    [56] 佘龙华,李剑锋.中低速磁浮列车运行控制系统的方案及其实现[J].城市轨道交通,2006(2):38-40.
    [57] 刘智勇,韦巍.高速磁浮列车安全速度曲线算法及紧急制动控制研究[D].浙江:浙江大学,2004.
    [58] 虞翊,王晓勇等.运行控制系统长大干线适用性分析[J].磁浮交通,2004(1):46-51.
    [59] 李达,韦巍.磁浮列车运行速度曲线优化设计和特殊路况下的紧急制动性能研究[D].浙江:浙江大学,2005.
    [60] 李强.上海磁浮示范线运营线列车速度曲线监控功能分析[J].城市轨道交通,2006(2):47-49.
    [61] 程家兴.长途列车节能操纵的建模[J].系统仿真学报,1999,11(4):286-288.
    [62] I.P. Milroy. Aspects of automatic train control. Ph.D thesis, Loughborough University, 1980
    [63] BR. Benjamin, I.P. Milroy, and P.J. Pudney Energy-Eficient Operation of Long Haul Trains. Proceedings of the Fourth International Heavy Haul Railway Conference, Institute of Engineers Australia, pages 369-372, 1989
    [64] 丁勇,毛保华.列车运行计算与操纵优化模拟系统的研究[D].北京:北京交通大学,2004.
    [65] 陈万里,程家兴.列车节能控制问题的参数调整与数值计算研究[D].安徽:安徽大学,2002.
    [66] 陈万里,程家兴.基于模拟退火算法(SAA)求解列车控制问题[J].安徽大学学报,2000(9):46-49.
    [67] 程家兴,陈万里.列车控制问题的计算分析及自适应算法[J].安徽大学学报,2002(6):1-8.
    [68] 程锦松.一种解列车节能操纵问题的改进算法[J].微机发展,2001(2):8-11.
    [69] 金炜东,王自力,李崇维等.列车节能操纵优化方法研究[J].铁道学报,1997(6):58-62.
    [70] 金炜东,靳蕃,李崇维等.列车优化操纵速度模式曲线生成的智能计算研究[J].铁道学报,1998(5):47-52.
    [71] 武建军,郑晓静,周又和等.两级悬浮EMS型磁悬浮控制系统的非线性动力学特性[J].固体力学学报.2003,24 (1):68-74
    [72] R M Katz, V D Nene, R J Ravera, et. Performance of magnetic suspensions for high speed vehicles operating over flexible guideways[J]. Journal of Dynamic System Measurement and Control, Transations ASME, 1974 (96): 204-212.
    [73] Y Cai, S S Chen, D M Rote. Vehicle/Guideway dynamic interaction for high speed vehicles on a flexible guideway[J]. Journal of Sound and Vibration, 1994 (175): 625-646.
    [74] Burchard Ripke. High Frequency Vehicle-Track Interaction in Consideration of Nonlinear Contact Mechanics[C]. The International Conference on Speedup Technology for Railway and Maglev Vehicles, Yokohama, Japan, 1993. The Japan Society of Mechanical Engineers, 1994: 132-137.
    [75] 方华.上海磁浮交通牵引系统综述[J].机车车辆工艺,2005(2):1-4.
    [76] 常文森,佘龙华.磁浮列车技术发展与自动控制[A].第十二届中国控制会议论文集[C].武汉:武汉理工大学出版社,2003:27-30.
    [77] 许建国.磁浮列车电力拖动技术的创新及发展趋势[J].武汉科技学院学报,2005,18(8):20-23.
    [78] 无.德国TR磁悬浮高速铁路的运行控制系统[J].交通工程科技,2001(4):37-40.
    [79] 吴丹.高速磁浮列车运行控制与传统轮轨列车运行控制的比较[J].交通运输系统工程与信息,2003(4):85-88.
    [80] 朱忠英.列车自动运行(ATO)系统在上海磁浮列车示范线的应用[J].城市轨道交通研究,2004(4):75-78.
    [81] 孙中央著.列车牵引计算实用教程[M].北京:中国铁道出版社,2005年.
    [82] 吴丹,宁滨.高速磁浮列车运行控制系统的研究与仿真[D].北京:北京交通大学,2004.[83] J P Howell. Aerodynamic response of Maglev train modelsto a crosswind gust[J]. J Wind Eng Ind Aerodyn, 1986 (22): 205-213.
    [84] A P Gaylard. The application of computational fluid dynamic to railway aerodynamics[J]. In: Proceedings of the Institution of Mechanical Engineers, Journal of Rail and Rapid Transit, 1993 (207): 133-141.
    [85] R G Gawthorpe. Wind effects on ground transportation[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1994 (52): 73-92.
    [86] J S Tyll, D Liu, J A Schetz. Experimental studies of Maglev aerodynamics[J]. AIAA, 1996, 34 (2): 2465-2470.
    [87] 毕海权,雷波,张卫华.TR型磁浮列车气动力特性数值计算研究[J].铁道学报,2004,26(8):51-54.
    [88] 周书芹,磁浮列车长定子驱动功率的计算[J].磁浮交通,2004(3):29-32.
    [89] 朱仙福,张秀荣.高速列车轨道涡流制动的制动力分析与计算[J].上海铁道大学学报,1996,17(4):1-8.
    [90] 范承志,吴国兴,胡赣娟.基于状态方程的长定子直线同步电机特性分析[J].微电机,2005,38(1):26-28.
    [91] 卢琴芬,陈宇,叶云岳等.长定子直线同步电机的电抗计算与力的分析[J].中小型电机,2003,30(3):17-22.
    [92] 朱仙福,罗会美,邵丙衡.磁浮列车的涡流制动问题[J].机车电传动,2001(4):32-34.
    [93] Tsunashima H. Static and dynamic performance of permanent magnet suspension for maglev transport vehicle[J]. Vehicle System Dyn. 1998, 29 (2): 83-111.
    [94] 唐松柏,黄问盈.我国高速列车速度分级[J].中国铁道科学,2006,27(2):77-82.
    [95] 陈宝林.最优化理论与算法[M].北京:清华大学出版社,2005.
    [96] 刘华峰.便于司机驾驶的ATP推荐速度曲线[J].铁道通信信号,2003,39(10):14-15
    [97] 任善虎,吴汶麒.上海轨道交通5号线点式列车运行控制系统[J].城市轨道交通研究,2004(4):54-57.
    [98] 梁东升.ATP/ATO在广州地铁1号线信号系统中的应用[J].地铁与轻轨,2002(3):33-39.
    [99] Tang Tao, Gao Chunhai. A new train speed automatic control system for Chinese railway[J]. ICIT'96, 1996:76-79.
    [100] K Sato, H Arai. Development of a next generation ATP system [J].Railroad Conference, 2001. Proceedings of the 2001 IEEE/ASME Joint, 2001:1-7
    [101] 胡中楫.最优控制原理及应用[M].浙江:浙江大学出版社,1988.
    [102] 龙志强,洪华杰,周晓兵.磁浮列车的非线性控制问题研究[J].控制理论与应用,2003,20(3):399-402.
    [103] 刘恒坤,常文森,余龙华.磁浮列车的非线性自适应控制[J],测控技术,2006,25(1):55-57.
    [104] 吴云飞,盛蓉蓉.磁浮列车非线性控制研究[J].宜春学院学报,2005,27(6):40-42,57.
    [105] 刘德生,李杰,张锟.基于反馈线性化的EMS型磁浮列车非线性悬浮控制器设计[J].国防科技大学学报,2005,27(2):96-101.
    [106] Alberto Isidori著.王奔,庄圣贤译.非线性控制系统[M].北京:电子工业出版,2005.
    [107] 王万良.自动控制原理[M].北京:科学出版社,2001.
    [108] 魏克新,王云亮,陈志敏.MATLAB语言与自动控制系统设计[M].北京:机械工业出版社,2002.
    [109] 刘金琨.先进PID控制及其matlab仿真[M].北京:电子工业出版社,2003.
    [110] 王毅.我国城市轨道交通发展综述[J].综合运输,2003(9):18-22.
    [111] 卢渝,金辰虎.我国城市轨道交通的建设与展望[J],铁道运输与经济,2004,26(5):21-23.
    [112] 沈景炎.城市轨道交通多种制式的特征与评价大纲[J].城市轨道交通研究,2003(5):1-6.
    [113] 沈景炎.城市轨道交通多种制式的特征与评价大纲(续)[J].城市轨道交通研究,2003(6):7-16.
    [114] 段蔚芳.地铁信号系统车载设备的发展[A].车辆、设备及其国产化[C].第十四届快速轨道交通委员会学术交流会,2001:812-816.
    [115] 姜坚华.上海轨道交通ATC系统的比较[J].城市轨道交通研究,2003(2):56-59.
    [116] 金浩.明珠线地铁车辆安全保护装置[J].机车电传动,2003(4):33-35.
    [117] 曾嵘,李铭.国产化北京地铁列车控制及网络系统[J].机车电传动,2006(2):40-43.
    [118] 黄争艳,杨建国.我国城轨交通列车自动控制系统状况分析及展望[J].电气化铁道,2003(1):42-44.
    [119] 卢乃宽.欧洲铁路运输管理系统ERTMS—21世纪的全球解决方案(上)[J].铁道通信信号,2001,37(7):37-39.
    [120] 奥村几正.欧洲铁路的列车控制系统[J].哈尔滨铁道科技,2003(3):35-36.
    [121] H Sporleder. Continuous automatic train control and cab signalling with the LZB80[C]. International Conference "Main Line Railway Electrificatio", 1989: 40-46.
    [122] Anon. ETCS Level 2 with TVM430 on TGV Est [J]. Railway Gazette International. 2006, 162 (3): 136-138.
    [123] S Shah, Ali Akhtar. IT based toll plaza operation strategy with ETCS[J]. IETE Technical Review, 2005, 22 (5): 357-365.
    [124] K Mindel. Migrating from LZB to ETCS[J]. Alcatel Telecommunications Review, 2004 (2): 69-173.
    [125] A G Hessami著,诸红编译.ERTMS安全性研究[J].铁道通信信号,2003,39(5):40-42.
    [126] 刘虎兴,范明.中国铁路列控系统现状及发展[J].铁道通信信号,2003(2):1-4.
    [127] 傅世善.闭塞与列控概论:第三讲列控系统的系统构成与分级[J].铁路通信信号工程2005(1):43-45.
    [128] 毛俊杰主编.高速铁路列车速度自动控制系统[M].北京:中国铁道出版社,1994.
    [129] 钱仲候.高速铁道概论[M].北京:铁道出版社,1999.
    [130] A Plattner. A Millimetrewave Communication System for MAGLEV Application [J]. IEEE MTT-S Digest, 1994 (2): 745-748.
    [131] K Morishita, MHirakawa, T Nakashima. Train Traffic Control System on the Yamanashi Maglev Test Line[A]. Computers in Railways VII [C]. ItalY:Computational Mechanics Inc, 2000: 641-649.
    [132]邹振民编译.21世纪的超导磁浮列车[J].铁道通信信号,2002(6):39—41.
    
    [133]Motoharu Ono. The operation control system for the yamanashi maglev test line[J]. Hitachi Review, 1997, 46 (2): 101-108.
    [134]Hisana Kurobe. Train control system in yamanashi maglev test line[J]. QR of RTRI, 1996, 37 (2): 94-98.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700