基于纳米结构金、钯—铁薄膜功能界面的构建及其电催化与传感性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米金属材料自研制成功以来,已被广泛应用于很多学科和领域。纳米材料具有许多传统材料无法比拟的特性和功能,应用前景十分广阔,在研究及应用领域占据了越来越重要的地位。因此,不断改进和发展新的纳米材料的制备方法,一直是研究者的兴趣所在。相较而言,电化学法在制备纳米金属材料方面有许多优点,如反应条件温和可控、环境友好、适用范围广,产物纯度高,能更好地控制纳米粒子的尺寸和形貌等,是一种非常有前景的制备方法。纳米金属材料具有非常优越的催化性能,如纳米结构的金、钯等均在催化剂领域占有非常重要的地位,已成为相关领域的研究热点。
     本论文旨在通过一些简单、新颖的电化学方法来制备出纳米金薄膜及钯-铁双金属薄膜材料,以此为基础构建新型的功能化界面,研究了其电催化性能,探索所制备的钯-铁双金属薄膜在电化学处理含有机氯代物废水中的应用。并以纳米金薄膜为基底构建了以辣根过氧化物酶、葡萄糖氧化酶等为敏感元件的生物电化学传感器,以4-氯酚和葡萄糖为底物,检测其传感性能,探讨了其在环境监测及生命科学中潜在的应用价值。
     本论文的主要研究内容如下:
     (1)4-氯酚在纳米金薄膜上的电化学行为及安培检测
     近年来随着水污染问题的日益严峻,废水中有机化合物的数量和种类与日俱增。尤其是有机氯代物的“致畸”“致癌”“致突变”效应及其高毒、持久、生物富集等特性,其中多种已被美国环境保护组织EPA列为优先控制污染物。因此,有机氯代物的检测和降解一直是环境工程领域重要的课题。
     氯酚由于苯环上氯原子的存在增强了其化学稳定性及毒性;一旦进入环境,对生态环境危害周期很长。水环境中氯酚的检测得到了越来越多研究者的关注。因此,结合电化学检测的优点,我们建立了一个能够快速检测氯酚的电化学传感器。
     首先利用两步电位阶跃电沉积技术以玻碳电极为基底制备了纳米金薄膜,其微观结构特征可以通过调节电沉积的时间来进行控制。基于所制备的纳米金薄膜,我们重点研究了其对4-氯酚的电催化性能及传感性能。相较于体相金电极及玻碳电极,所制备的纳米金薄膜对4-氯酚表现出更高的电催化活性。4-氯酚对电极的毒化效应首先通过循环伏安法进行研究。研究表明,在含有4-氯酚的酸性溶液中进行连续电位扫描时,第一圈阳极扫描过程中在约0.9V处出现的氯酚的氧化峰会在随后的扫描中消失,而且金氧化物还原峰的电流随扫描次数的增加而逐渐降低,这些现象均表明氯酚的氧化产物会使金薄膜发生钝化。以此为基础,提出了4-氯酚在金薄膜上电化学氧化的反应机理。为了验证纳米金薄膜安培检测4-氯酚方法的可行性,我们用线性伏安法、差分脉冲伏安法及电化学交流阻抗法研究了4-氯酚浓度对金薄膜电化学行为的影响。研究表明在很低的氯酚浓度下,电极不会产生明显钝化。这证明了,所制备的金薄膜电极可用作4-氯酚电化学传感器。安培检测4-氯酚是在+0.85V下进行,线性检测范围为0.2-4.8mM,检测限为0.11mM(S/N=3)。
     通过这种简单的电沉积方法可以方便的控制金薄膜的微观结构特征,从而保证了电化学检测的可重复性。
     (2)辣根过氧化物酶修饰的纳米结构金薄膜电极对4-氯酚的电化学检测
     由于纳米金薄膜在氯酚电氧化过程中易受污染,降低了其检测灵敏度和稳定性,这限制了纳米金在氯酚的电化学检测中的应用。鉴于辣根过氧化物酶对酚类化合物具有优越的催化性能,为了提高电极的抗污染性能及检测灵敏度,我们构建了辣根过氧化物酶/纳米金薄膜生物功能化界面,研究了其对4-氯酚的电催化及传感性能。
     同样首先利用两步电位阶跃电沉积技术制备了纳米金薄膜电极,并以此为基底构建了辣根过氧化物酶/纳米金薄膜生物功能化界面。通过在含有4-氯酚的溶液中进行连续的循环伏安扫描,对比辣根过氧化物酶修饰前后金薄膜的电化学行为可以发现,在辣根过氧化物酶固定后金氧化物还原峰电流减小的趋势明显变缓。这证明了辣根过氧化物酶的固定明显提高了电极的抗污染性能。同时,SEM结果也验证了此项结论:在含氯酚溶液中进行连续电位扫描后金薄膜表面出现了严重粘连现象,而在辣根过氧化物酶固定后此现象得到明显改善。实验发现,在过氧化氢作为共同底物存在时,辣根过氧化物酶修饰的金薄膜对4-氯酚表现出良好的催化活性,并讨论了在过氧化氢为共同底物时4-氯酚在辣根过氧化物酶修饰金薄膜电极上电化学氧化的机理。电化学检测4-氯苯酚是在-0.55V下进行,其在2.5-40μM和62.5-117.5μM两个浓度范围表现出良好的线性关系,检测限为0.39μM(S/N=3)。此电极对4-氯苯酚可以产生快速响应,并且表现出很好的稳定性和可重复性。
     所制备的金薄膜具有良好的生物相容性,为辣根过氧化物酶的固定提供了良好的微环境,有利于酶活性的保持;而所固定的辣根过氧化物酶在4-氯酚电化学检测中发挥了重要作用。
     (3)固定于纳米金薄膜上的葡萄糖氧化酶的直接电化学行为及其在葡萄糖生物电化学传感器中的应用
     生物电化学传感器具有高灵敏度、高选择性、快速响应、可以在复杂的体系中实现连续在线检测等优点,已在食品、医药、环境监测等方面得到广泛应用。而纳米材料的迅速发展促进了生物电化学传感器的微型化。纳米材料独特的吸附性能和良好的生物相容性,被广泛应用于构建纳米-生物功能界面。而其中纳米金由于具有良好的催化性能,可直接作为有机小分子电化学氧化/还原的催化剂外,并且由于其优越的生物相容性、高表面能、光学性质、并且可以快速直接电子传递等独特优点,不仅可以为酶的固定提供大的比表面积,而且能够保持酶的活性,以构建新颖的性能优越的生物-电化学传感器。
     我们利用循环伏安法制备了纳米结构的钴薄膜,然后通过与氯金酸溶液进行自发氧化还原置换制备了分等级的纳米金薄膜电极。通过物理吸附可以使葡萄糖氧化酶吸附在金薄膜的表面,从而构建了葡萄糖氧化酶/纳米金生物功能化界面。基于这种酶修饰电极,我们重点研究了其对葡萄糖的电催化及传感性能。首先利用循环伏安法研究了固定化的葡萄糖氧化酶的直接电化学行为。研究表明,固定化的葡萄糖氧化酶在磷酸缓冲溶液中呈现出一对清晰的、可逆的、表面控制的氧化还原峰。此外,我们利用循环伏安和差分脉冲伏安研究了酶修饰电极对葡萄糖的电催化活性,结果发现葡萄糖的浓度对葡萄糖氧化酶的直接电化学行为会产生明显影响。基于此现象,电化学检测葡萄糖是在-0.55V下进行。其在2.5-32.5μM和60~130μM两个浓度范围表现出良好的线性关系,检测限为0.32μM(S/N=3)。同时所制备的葡萄糖生物电化学传感器表现出优越的稳定性,灵敏度和抗干扰性能。因此我们所制备的葡萄糖氧化酶修饰的金薄膜电极有助于构建高性能的葡萄糖传感器。
     这种方法为制备形貌可控的金薄膜提供了一种便利途径,并且有利于酶电极的制备和应用。所制备的酶电极一个明显的特点就是金薄膜为葡萄糖氧化酶的固定提供了一个良好的微环境,促进了酶活性中心与电极之间的直接电子传递。
     (4)纳米钯-铁双金属薄膜的制备及其对四氯化碳电还原脱氯活性研究
     有机氯代物是环境水体中常见的有机污染物。此类污染物毒性大,化学性质稳定,一旦进入环境水体将对人类及其生态环境造成长期威胁。有机氯代物的降解处理技术已引起了国内外的广泛关注。
     零价铁由于本身所具有非常优秀的物理化学性质,一直是有机物降解领域常用的催化剂。而纳米钯具有良好的储氢性能,在催化反应尤其是催化氢解反应中发挥着极其重要的作用。本论文利用电化学沉积与自发氧化还原置换结合,制备了纳米结构的钯-铁双金属薄膜材料,并以四氯化碳为靶向有机氯化物,研究了其电化学脱氯活性。
     首先在不断改变电解质溶液中Fe2+离子浓度的情况下,通过两步电位阶跃法在玻碳电极表面制备了一系列的纳米铁薄膜。并且利用部分的Fe0与Pd(Ⅱ)之间发生氧化还原置换反应制备了纳米钯-铁双金属薄膜。通过SEM及EDS表征验证了电解质溶液中Fe2+的改变会明显影响Fe薄膜的微观形貌,进而对钯-铁双金属薄膜的形貌及组成起到调控作用。根据钯-铁双金属薄膜在氢区的特征伏安响应,选取了不同的电位进行电化学还原脱氯,讨论了不同类型氢的脱氯活性及反应活化能。研究发现,钯-铁双金属薄膜的组成会明显影响其脱氯活性:当Pd/Fe质量比为5.9时,双金属薄膜表现出最高的脱氯活性。同时还研究了降解时间和温度对四氯化碳去除效率的影响。结果表明,随温度的升高和降解时间的延长,四氯化碳的去除效率增大,且此反应为准一级反应。
     这种电化学沉积法与氧化还原置换反应相结合是一种制备纳米贵金属薄膜材料的重要方法,在制备过程中贵金属(金、钯等)的消耗量极低。所制备的钯-铁双金属薄膜具有优异的电催化脱氯性能和低成本的优点,使其成为环境催化和污水治理等方面很有前景的催化剂。
Since prepared successfully, nano-metallic materials have been widely used in various fields of research and application. Because of their unique properties compared with traditional materials, nano-materials play a more and more important role in the fields of research with bright prospects of application. Therefore, continuously improving and developing the new preparation method of nano-materials are of considerable current research interest. Compared with the traditional chemical synthesis of metal nanostructures, the electrochemical technique has many intrinsic advantages, such as mild reaction conditions, environment friendly, wide application, good controllability, high purity of products, and so on. Due to the superior catalytic property, nano-metallic materials (like nano-structured Au, Pd, etc) hold an important place in catalysis fields and have become a research focus.
     The aim of this paper is to fabricate the nanostructured Au and bimetallic Pd-Fe thin film materials by some simple and novel electrochemical methods, and to construct the new functional interface based on the as-prepared materials. Moreover, the catalytic performance of the as-prepared thin films was investigated. And the potential application of the bimetallic Pd-Fe thin film in electrochemical treatment of wastewater containing chlorinated organic compounds was discussed. Furthermore, as sensing elements, horseradish peroxidase and glucose oxidase were immobilized on the nanostructured Au thin film to construct bioelectrochemical sensors. In order to explore their potential application in the environmental monitoring and the life sciences, the sensing properties of the bioelectrochemical sensors were investigated when4-chlorophenol and glucose were used as the substrate, respectively.
     The main contents of this paper include:
     (1) Electrochemical behavior and amperometric detection of4-chlorophenol on nano-Au thin films modified glassy carbon electrode
     In recent years, with the water pollution becoming more and more serious, the types and amounts of organic pollutants in wastewater are increasing. Especially, due to the effect of "teratogenesis","carcinogenesis","mutagenesis" and the features of high toxicity, persistence and biological concentration, and many of chlorinated organic compounds have been list as the priority pollutants by EPA (United States Environmental Protection Agency). Therefore, the detection and degradation of chlorinated organic compounds have been always the important subjects in the environmental engineering field.
     The nanostructured Au thin film was prepared on glassy carbon electrodes by a template-free, double-potential step technique. And its structural feature can be controlled well by adjusting the deposition time. The nano-Au thin film shows a higher catalytic activity toward the electrooxidation of4-chlorophenol (4-CP) than the bulk Au and glassy carbon electrode. For the electrooxidation of4-CP, fouling of the Au thin film was observed as a dramatic current decrease of oxidation peak in the first anodic sweep and the diminishing reduction peak of Au oxides during the consecutive cyclic voltammetric scan. In order to discuss the feasibility to the amperometric detection, the effect of4-CP concentrations on the electrochemical behavior of nano-Au thin films in H2SO4solutions was investigated by linear sweep voltammetry, differential pulse voltammetry and electrochemical impedance spectroscopy. The results demonstrated that the electrode was hardly suffered from fouling at the low4-CP concentration. With the increase of4-CP concentrations, more serious fouling was observed on the electrode. The nano-Au thin film has a good sensing capability and an electrochemical sensor for4-CP at the mM concentration range with a fast amperometric response was achieved. The amperometric detection of4-CP was performed at+0.85V with a linear detection range from0.2to4.8mM and a detection limit of0.11mM (S/N=3).
     Through this simple electrodeposition method, the structural feature of nano-Au films can be controlled conveniently, which ensures the repeatability of the electrochemical detection.
     (2) Amperometric detection of4-chlorophenol based on horseradish peroxidase modified nanostructured Au thin films
     With the rapid development of nanotechnology, a great number of nanomaterials, especially the noble metal, have been introduced into the bioelectrochemical sensor. However, severe fouling will be caused by oligomers and polymers as a result of chemical coupling of the corresponding phenoxy radicals during the electrooxidation of phenolic compounds on nano-Au thin film electrodes. So in order to enhance the resistance to fouling and improve the detection sensitivity, HRP was immobilized on the nanostructured Au thin film to construct the HRP/nano-Au biological function interface, considering its excellent catalytic activity toward chlorophenols.
     A nano-structured Au film was directly formed on the GCE substrate by double-potential step electrodeposition. The as-prepared nanostructured-Au thin films provide an excellent microenvironment for the immobilized of HRP and retention of its activity. And the immobilized HRP plays an important role in the electrochemical detection of4-CP. From the SEM and CV results, it was demonstrated that the immobilized HRP had a significant positive effect on the anti-fouling performance of the electrode material. In the presence of H2O2as co-substrate, the HRP modified electrode displayed a high catalytic activity toward4-CP. Furthermore, the enzyme modified electrode was used as a4-CP bioelectrochemical sensor, exhibiting a linear relationship in the concentration ranges of2.5to40μM and62.5to117.5μM with a detection limit of0.39μM (S/N=3) at an applied potential of-0.55V. The HRP modified electrode displays an excellent sensing performance with high sensitivity and good stability. A bio-electrochemical sensor of4-CP with a fast amperometric response was achieved.
     (3) Direct electrochemistry of glucose oxidase immobilized on nanostructured gold thin films and its application to bioelectrochemical glucose sensor
     With its intrinsic advantage in high sensitivity and selectivity, fast response, easy operation, and continuous on-line detection, bioelectrochemical sensors have received increasing attention in clinical medicine, biochemistry and environmental monitoring. And the rapid development of nano-materials greatly accelerates the miniaturization of bio-electrochemical sensor. Due to its unique adsorptive properties and good biocompatibility, the nano-material is widely used in constructing the biological function interface. Considering its good catalytic activity, excellent biocompatibility, high surface energy, optical properties and quickly direct electron transfer, nano-Au can not only be directly used as electro-catalyst of a small organic molecules, but also provide a large specific surface for the immobilization of enzymes to construct novel and superior bio-electrochemical sensors.
     Nano/submicron structured Au films with were directly fabricated onto the glassy carbon electrode (GCE) by the combination of electrodeposition and galvanic replacement technology, which can provide a facile method to prepare morphology-controllable Au films and a more convenient boundary for enzyme immobilization than Au nanoparticles. Glucose oxidase (GOx) was stably immobilized via a simple physical adsorption method onto the nanostructured Au thin films. An obvious advantage of the as-prepared enzyme electrode is that the nano-Au films provide a favorable microenvironment for GOx and facilitate the electron transfer between the active center of GOx and electrodes. Cyclic voltammetry results indicate that the immobilized GOx displayed a direct, reversible and surface-confined redox reaction in the phosphate buffer solution. Furthermore, the enzyme modified electrode was used as a glucose bio-electrochemical sensor, exhibiting a linear relationship in the concentration ranges of2.5to32.5μM and60to130μM with a detection limit of0.32μM (S/N=3) at an applied potential of-0.55V. Due to the excellent stability, sensitivity and anti-interference ability, the Au thin films are hopeful in the construction of glucose biosensors.
     (4) Facile fabrication of nanostructured Pd-Fe bimetallic thin films and their electrodechlorination activity
     Nanostructured Pd-Fe bimetallic thin films were directly fabricated on glassy carbon substrates by means of galvanic replacement of partial Fe0nanoparticles by Pd(II) ions. The composition and morphology of such Pd-Fe thin films are strongly dependent on the sacrificial Fe film templates. The nano/submicron structured Fe thin films were fabricated by a template-free, double-potential step electrodeposition technique. The size and morphology of the Fe nanoparticles that constitute the Fe thin films can be controlled well by adjusting the concentration of Fe2+ions in electrolyte solutions. Taking electrochemical reductive dechlorination of carbon tetrachloride (CT) as the research object, we investigated the removal efficiency of the as-prepared bimetallic Pd-Fe nano-catalysts under different conditions. Due to the good synergistic effect between Pd and Fe, the as-prepared Pd-Fe thin films with the novel microstructure display a high activity toward the electrochemical reductive dechlorination of CT. The Pd/Fe weight ratio in the bimetallic films is an important parameter that affects the dechlorination activity of the bimetallic catalysts and can be adjusted by selecting nanostructured Fe film templates with different thickness and surface morphology. When the weight ratio of Pd/Fe is5.9, the bimetallic thin film catalyst exhibits the highest dechlorination activity. The activation energy (Ea) for dechlorination by different types of hydrogen is in accord with the removal efficiency of CT, and a minimum Ea and the highest removal efficiency were obtained at-0.2V. Besides, the removal efficiency of CT increased considerably with increasing temperature. The dechlorination reaction of CT complied with pseudo-first-order kinetics.
     The present study will provide a new path to fabricate low-temperature high-efficiency nano-catalysts for the electrochemical reductive dechlorination of chlorinated organic compounds. The obtained results are of fundamental importance to give an in-depth understanding of electrochemical reductive dechlorination mechanism of chlorinated organic compounds.
引文
[1]吴锦雷,纳米光电功能薄膜.北京大学出版社(北京),2006,p46.
    [2]陈光华,邓金祥,纳米薄膜技术与应用.化学工业出版社(北京),2003,P29-54.
    [3]K.S. Ramaiah, Y.K. Su, S.J. Chang, F.S. Juang, K. Ohdaira, Y Shiraki, H.P. Liu, I.G. Chen, A.K. Bhatnagar, Characterization of Cu doped CdSe thin films grown by vacuum evaporation. J. Cryst. Growth,2001,224 (1-2),74-82.
    [4]Y.H. Liu, T. Fujita, A. Hirata, S. Li, H.W. Liu, W. Zhang, A. Inoue, M.W. Chen, Deposition of multicomponent metallic glass films by single-target magnetron sputtering. Intermetallics,2012,21 (1),105-114.
    [5]G.E. Cirlin, V.A. Egorov, B.V. Volovik, A.F. Tsatsul'nikov, V.M. Ustinov, N.N. Ledentsov, N.D. Zakharov, P. Werner, U. Gosele, Optical and structural properties of Ge submonolayer nano-inclusions in a Si matrix grown by molecular beam epitaxy. Nanotechnology,2001,12 (4),417-420.
    [6]C.M. Jin, S. Nori, W. Wei, R. Aggarwal, D. Kumar, R.J. Narayan, Pulsed laser deposition of nanoporous cobalt thin films. J. Nanosci. Nanotechnol.,2008,8 (11), 6043-6047.
    [7]J.R. Vargas-Garcia, T. Goto, Catalytic materials prepared by chemical vapor deposition. IOP Conf. Ser.:Mater. Sci. Eng.,2011,20 (1),012001.
    [8]M. Natali, G Carta, V. Rigato, G. Rossetto, G. Salmaso, P. Zanella, Chemical, morphological and nano-mechanical characterizations of Al2O3 thin films deposited by metal organic chemical vapour deposition on AISI 304 stainless steel. Electrochim. Acta,2005,50 (23),4615-4620.
    [9]G.R. Gu, B.J. Wu, Z. Jin, T. Ito, Electron field emission characteristics of nano-catkin carbon films deposited by electron cyclotron resonance microwave plasma chemical vapour deposition. Chin. Phys. B,2008,17 (2),716-720.
    [10]W.B. Yang, J.L. Wang, G.L. Zhang, S.H. Fan, C.Z. Liu, S.Z. Yang, Intertwisted fibrillar diamond-like carbon films prepared by electron cyclotron resonance microwave plasma enhanced chemical vapour deposition. Chin. Phys.,2003,12 (11), 1257-1260.
    [11]F.W. Dai, G.C. Chen, H. Lan, J. Askari, J.H. Song, C.M. Li, Y.M, Tong, B. Li, L.F. Hei; F.X. Lu, Micro/nanocrystalline composite free-standing diamond films deposited using DC arc plasma jet CVD, J. Syn. Cryst,2006,35 (6),1200-1208.
    [12]N. Inami, M. A. Mohamed, E. Shikoh, A. Fujiwara, Synthesis-condition dependence of carbon nanotube growth by alcohol catalytic chemical vapor deposition method. Sci. Technol. Adv. Mater.,2007,8 (4),292-295.
    [13]H. Wiesmann, A. K. Ghosh, T. McMahon, M. Strongin, a-Si:H produced by high-temperature thermal decomposition of silane. J. Appl. Phys.,1979,50 (5),3752-3754.
    [14]H. Matsumura, H. Tachibana, Amorphous silicon produced by a new thermal chemical vapor deposition method using intermediate species SiF2. Appl. Phys. Lett., 1985,47(8),833-835.
    [15]H.M. Ji, G.J. Xie, Y. Lv, H.X. Lu, A new phosphor with flower-like structure and luminescent properties of Sr2MgSi2O7:Eu2+, Dy3+ long afterglow materials by sol-gel method. J. Sol-Gel Sci. Technol.,2007,44 (2),133-137.
    [16]K. Nakagawa, H. Matsuyama, T. Maki, M. Teramoto, N. Kubota, Preparation of mesoporous silica membrane by solvent evaporation method for filtration application. Sep. Purif. Technol.,2005,44 (2),145-151.
    [17]M. Sakai, M. Iizuka, M. Nakamura, K. Kudo, Organic nano-transistor fabricated by co-evaporation method under alternating electric field. Synth. Met.,2005,153 (1-3),293-296.
    [18]J.M. Feng, J.J. Han, X.J. Zhao, Synthesis of CuInS2 quantum dots on TiO2 porous films by solvothermal method for absorption layer of solar cells. Prog. Org. Coat.,2009,64 (2-3),268-273.
    [19]S.-H. Lee, M. Kang, S.M. Cho, G.Y. Han, B.-W. Kim, K.J. Yoon, C.-H. Chung, Synthesis of TiO2 photocatalyst thin film by solvothermal method with a small amount of water and its photocatalytic performance. J. Photochem. Photobiol., A, 2001,146(1-2),121-128.
    [20]A. Azam, S.M. Muhamed, A.S. Ahmed, M.L. Singla, A.H. Naqvi, The kinetics of Langmuir-Blodgett ZnO nano-film deposition for sensing electrodes. Mater. Lett., 2011,65(17-18),2721-2723.
    [21]J. Jin, L.S. Li, Y. Li, X. Chen, L. Jiang, Y.Y. Zhao, T.-J. Li, Preparation of titanium dioxide and barium titanate nanothick film by Langmuir-Blodgett technique. Thin Solid Films,2000,379 (1-2),218-223.
    [22]G.G. Cheng, J.N. Ding, G.X. Xie, B. Kan, Z.Y Ling, Z. Fan, Mechanical and electrical properties of the phosphor-doped nano-silicon film under an external electric field. Surf. Interface Anal.,2009,41 (5),384-388.
    [23]V. Gill, P.R. Guduru, B.W. Sheldon, Electric field induced surface diffusion and micro/nano-scale island growth. Int. J. Solids Struct.,2008,45 (3-4),943-958.
    [24]S. Ahmad, U. Riaz, A. Kaushik, J. Alam, Soft template synthesis of super paramagnetic Fe3O4 nanoparticles a novel technique. J. Inorg. Organomet. Polym. Mater,2009,19(3),355-360.
    [25]J.Y. Lee, Y.H. Yun, S.W. Park, S.D. Kim, S.C. Yi, W.J. Kim, Synthesis of nano-sized Pt/C via zeolite-templating method and its application to the cathode catalyst in PEMFC, Microporous Mesoporous Mater.,2010,134 (1-3),1-7.
    [26]S. Sumikura, S. Mori, S. Shimizu, H. Usami, E. Suzuki, Syntheses of NiO nanoporous films using nonionic triblock co-polymer templates and their application to photo-cathodes of p-type dye-sensitized solar cells. J. Photochem. Photobiol., A, 2008,199(1),1-7.
    [27]Y.N. Gao, A. Voigt, M. Zhou, K. Sundmacher, Synthesis of single-crystal gold Nnano- and microprisms using a solvent-reductant-template ionic liquid. Eur. J. Inorg. Chem.,2008,2008 (24),3769-3775.
    [28]Z.X. Luo, Y. Fang, X.F. Zhou, J.N. Yao, Synthesis of highly ordered iron/cobalt nanowire arrays in AAO templates and their structural properties. Mater. Chem. Phys., 2008,107(1),91-95.
    [29]H. Masuda, K. Fukuda, Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science,1995,268 (5216), 1466-1468.
    [30]T. Kyotani, Synthesis of various types of nano carbons using the template technique. Bull. Chem. Soc. Jpn.,2006,79 (9),1322-1337.
    [31]吴辉煌,电化学.化学工业出版社(北京),2004,P195.
    [32]Y. Li, G.Q. Shi, Electrochemical growth of two-dimensional gold nanostructures on a thin polypyrrole film modified ITO electrode. J. Phys. Chem. B,2005,109 (50), 23787-23793.
    [33]B.S. Yin, H.Y. Ma, S.Y. Wang, S.H. Chen, Electrochemical synthesis of silver nanoparticles under protection of poly(N-vinylpyrrolidone). J. Phys. Chem. B,2003, 107 (34),8898-8904.
    [34]H.Y. Ma, B.S. Yin, S.Y. Wang, YL. Jiao, W. Pan, S.X. Huang, S.H. Chen, F.J. Meng, Synthesis of silver and gold nanoparticles by a novel electrochemical method. Chem. Phys. Chem.,2004,5 (1),68-75.
    [35]H.Y Ma, S.X. Huang, X.L. Feng, X.K. Zhang, F. Tian, F.F. Yong, W. Pan, Y. Wang, S.H. Chen., Electrochemical synthesis and fabrication of gold nanostructures based on poly(N-vinylpyrrolidone). Chem. Phys. Chem.,2006,7 (2),333-335.
    [36]X.L. Feng, H.Y. Ma, S.X. Huang, W. Pan, X.K. Zhang, F. Tian, C.X. Gao, Y.W. Cheng, J.L. Luo, Aqueous organic phase-transfer of highly stable gold, silver, and platinum nanoparticles and new route for fabrication of gold nanofilms at the oil/water interface and on solid supports. J. Phys. Chem. B,2006,110 (25), 12311-12317.
    [37]W. Pan, X.K. Zhang, H.Y. Ma, J.Y Zhang, Electrochemical synthesis, voltammetric behavior, and electrocatalytic activity of Pd nanoparticles. J. Phys. Chem. C,2008,112 (7),2456-2461.
    [38]N. Tian, Z.-Y. Zhou, S.-G. Sun, Y. Ding, Z. L. Wang, Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science,2007,316 (5825),732-735.
    [39]Q.-S. Chen, S.-G. Sun, J.-W. Yan, J.-T. Li, Z.-Y. Zhou, Electrochemical preparation and structural characterization of Co thin films and their anomalous IR properties. Langmuir,2006,22 (25),10575-10583.
    [40]J.T. Zhang, C.C. Qiu, H.Y. Ma, X.Y Liu, Facile fabrication and unexpected electrocatalytic activity of palladium thin films with hierarchical architectures. J. Phys. Chem. C,2008,112(36),13970-13975.
    [41]K.-O. Thiel, M. Hintze, A. Vollmer, C. Donner, A new approach on the Cu UPD on Ag surfaces. J. Electroanal. Chem.,2008,621 (1),7-12.
    [42]E. Herrero, S. Glazier, H.D. Abruna, X-ray and electrochemical studies of Cu UPD on Au(111) single-crystal electrodes in the presence of bromide. J. Phys. Chem. B,1998,102(49),9825-9833.
    [43]N.M. Markovic, B.N. Grgur, C.A. Lucas, PN. Ross, UPD of Cu on Pt(100): effects of anions on adsorption isotherms and interface structures. Electrochim. Acta, 1998,44 (6-7),1009-1017.
    [44]J.F. Huang, Facile preparation of an ultrathin nickel film coated nanoporous gold electrode with the unique catalytic activity to oxidation of glucose. Chem. Commun., 2009,10,1270-1272.
    [45]Y.D. Jin, Y. Shen, S.J. Dong, Electrochemical design of ultrathin platinum-coated gold nanoparticle monolayer films as a novel nanostructured electrocatalyst for oxygen reduction. J. Phys. Chem. B,2004,108 (24),8142-8147.
    [46]A. Safavi, F. Farjami, Electrochemical design of ultrathin palladium coated gold nanoparticles as nanostructured catalyst for amperometric detection of formaldehyde. Electroanalysis,2011,23 (8),1842-1848.
    [47]P.P. Liu, X.B. Ge, R.Y. Wang, H.Y Ma, Y. Ding, Fabrication of ultrathin Pt overlayers onto nanoporous metal membranes via repeated Cu UPD and in situ redox replacement reaction. Langmuir,2009,25 (1),561-567.
    [48]X.X. Bi, R.Y. Wang, Y. Ding, Boosting the performance of Pt electro-catalysts toward formic acid electro-oxidation by depositing sub-monolayer Au clusters Electrochim. Acta,2011,56 (27),10039-10043.
    [49]S.H. Yoo, S. Park, Electrocatalytic applications of a vertical Au nanorod array using ultrathin Pt/Ru/Pt layer-by-layer coatings. Electrochim. Acta,2008,53 (10), 3656-3662.
    [50]W.J. Li, H.Y. Ma, J.T. Zhang, X.Y. Liu and X.L. Feng, Fabrication of gold nanoprism thin films and their applications in designing high activity electrocatalysts. J. Phys. Chem. C,2009,113 (5),1738-1745.
    [51]L. Wang, S.J. Guo, J.F. Zhai, X.G. Hu, S.J. Dong, Ultrathin platinum-group metal coated hierarchical flowerlike gold microstructure:Electrochemical design and characterization. Electrochim. Acta,2008,53 (6),2776-2781.
    [52]F. Schlottig, M. Textor, N. D. Spencer, K. Sekinger, U. Schnaut, J.-F. Paulet, Characterization of nanoscale metal structures obtained by template synthesis. Fresenius J. Anal. Chem.,1998,361 (6-7),684-686.
    [53]M. Mazur, P. Krysinski, Electrochemical template synthesis of conjugated polymers. Curr. Top. Electrochem.,2007,12,15-31.
    [54]M.S. Sander, A.L. Prieto, R. Gronsky, T. Sands, A.M. Stacy, Fabrication of high-density, high aspect ratio, large-area bismuth telluride nanowire arrays by electrodeposition into porous anodic alumina templates. Adv. Mater.,2002,14 (9), 665-667.
    [55]N. Tasaltina, S. Oztiirka, N. K(?)na, H. Yuzerb, Z. Z. Oztiirka, Fabrication of Pd-Fe nanowires with a high aspect ratio by AAO template-assisted electrodeposition. J. Alloys Compd.,2011,509 (9),3894-3898.
    [56]N. Tasaltina, S. Ozturka, N. K(?)nca, H. Yuzerb, Z.Z. Ozturka, Fabrication of vertically aligned Pd nanowire array in AAO template by electrodeposition using neutral electrolyte. Nanoscale Res. Lett.,2010,5 (7),1137-1143.
    [57]S.S. Mahshid, S. Mahshid, A. Dolati, M. Ghorbani, L.X. Yang, S.L. Luo, Q.Y. Cai, Template-based electrodeposition of Pt/Ni nanowires and its catalytic activity towards glucose oxidation. Electrochim. Acta,2011,58,551-555.
    [58]L. Soleimany, A. Dolati, M. Ghorbani, A study on the kinetics of gold nanowire electrodeposition in polycarbonate templates. J. Electroanal. Chem.,2010,645 (10), 28-34.
    [59]K.V. Singh, A.A. Martinez-Morales, G.T. Senthil Andavan, K. N. Bozhilov, M. Ozkan, A simple way of synthesizing single-crystalline semiconducting copper sulfide nanorods by using ultrasonication during template-assisted electrodeposition. Chem. Mater.,2007,19 (10),2446-2454.
    [60]I.M.I. Ismail, Synthesis of nanostructured films from template electrodeposition technique. J. Saudi Chem. Soc.,2010,14 (4),351-356.
    [61]V.R. Goncales, M.P. Massafera, T.M. Benedetti, D.G. Moore, S.I.C. de Torresi, R.M. Torresi, Nanostructured thin films obtained by electrodeposition over a colloidal crystal template:applications in electrochemical devices. J. Braz. Chem. Soc.,2009, 20 (4),663-673.
    [62]D. Hung, Z. Liu, N. Shah, Y.W. Hao, P.C. Searson, Finite size effects in ordered macroporous electrodes fabricated by electrodeposition into colloidal crystal templates. J. Phys. Chem. C,2007,111 (8),3308-3313.
    [63]B. Ma, Y. Li, J.P. Zhao, X. Li, W.H. Xin, Novel structural functional films based on self-assembly template and electrodeposition:Synthesis and characterization of porous Ni/YSZ films. Thin Solid Films,2009,517 (17),5172-5175.
    [64]I. Yamaguchi, M. Watanabe, T. Shinagawa, M. Chigane, M. Inaba, A. Tasaka, M. Izaki, Preparation of core/shell and hollow nanostructures of cerium oxide by electrodeposition on a polystyrene sphere template. ACS Appl. Mater. Interfaces, 2009,1 (5),1070-1075.
    [65]G.T. Duan, W.P. Cai, Y.Y. Luo, Z.G. Li, Y. Lei, Hierarchical structured Ni nanoring and hollow sphere arrays by morphology inheritance based on ordered through-pore template and electrodeposition. J. Phys. Chem. B,2006,110 (32), 15729-15733.
    [66]L.H. Wang, C. Chen, Y.C. Fu, Q.J Xie, Z.H. Su, C. Qin, F.Y. Xie, M. Ma, S.Z. Yao, Electrodeposition of three-dimensional porous platinum film on removable polyaniline template for high-performance electroanalysis. Electroanalysis,2011,23 (7),1681-1690.
    [67]C.-Y. Kuo, K.-H. Huang, S.-Y. Lu, Structural effects on magnetic property of reciprocal opalline structures of iron-nickel alloys prepared with template-assisted electrodeposition. J. Taiwan Inst. Chem. Eng.,2011,42 (1),186-189.
    [68]Y. Li, W.-Z. Jia, Y.-Y. Song, X.-H. Xia, Superhydrophobicity of 3D porous copper films prepared using the hydrogen bubble dynamic template. Chem. Mater., 2007,19 (23),5758-5764.
    [69]S. Cherevko, X.L. Xing, C.-H. Chung, Hydrogen template assisted electrodeposition of sub-micrometer wires composing honeycomb-like porous Pb films. Appl. Surf. Sci.,2011,257 (18),8054-8061.
    [70]D.-D. Zhao, M.W. Xu, W.-J. Zhou, J. Zhang, H.L. Li, Preparation of ordered mesoporous nickel oxide film electrodes via lyotropic liquid crystal templated electrodeposition route. Electrochim. Acta,2008,53 (6),2699-2705.
    [71]J.K. Zhao, X. Chen, L.Y. Jiao, Y.C. Chai, G.D. Zhang, J. Liu, Template-directed electrodeposition of lamellar platinum nanostructures. Chem. Lett.,2004,33 (7), 842-843.
    [72]S. Aravamudhan, K. Luongo, P. Poddar, H. Srikanth, S. Bhansali, Porous silicon templates for electrodeposition of nanostructures. Appl. Phys. A,2007,87 (4), 773-780.
    [73]M. A. Ghanem, P.N. Bartlett, P. de Groot, A. Zhukov, A double templated electrodeposition method for the fabrication of arrays of metal nanodots. Electrochem. Commun,2004,6 (5),447-453.
    [74]A. Dursun, D.V.Pugh, S.G. Corcoran, Probing the dealloying critical potential morphological characterization and steady-state current behavior. J. Electrochem. Soc., 2005,152(2),B65-B72.
    [75]D.V. Pugh, A. Dursun, S. G. Corcoran, Electrochemical and morphological characterization of Pt-Cu dealloying. J. Electrochem. Soc.,2005,152 (11), B455-B459.
    [76]W.J. Li, H.Y. Ma, L.H. Huang, Y Ding, Well-defined nanoporous palladium for electrochemical reductive dechlorination. Phys. Chem. Chem. Phys.,2011,13 (13), 5565-5568.
    [77]T. Chen, Z.N. Liu, W.J. Lu, X.F. Zhou, H.Y. Ma, Fabrication of free-standing nanoporous silver by selectively dissolving gold from gold-silver alloys via a novel converse dealloying method. Electrochem. Commun.,2011,13 (10),1086-1089.
    [78]J.L. Cohen, D.J. Volpe, H.D.Abruna, Electrochemical determination of activation energies for methanol oxidation on polycrystalline platinum in acidic and alkaline electrolytes. Phys. Chem. Chem. Phys.2007,9(1),49-77.
    [79]C.X. Xu, Q. Li, Y.Q. Liu, J.P. Wang, H.R. Geng, Hierarchical nanoporous PtFe alloy with multimodal size distributions and its catalytic performance toward methanol electrooxidation. Langmuir,2012,28 (3),1886-1892.
    [80]Y.Y. Li, Z.W. Wang, C.-Y. Chiu, L.Y. Ruan, W.B. Yang, Y Yang, R. E. Palmer, Y Huang, Synthesis of bimetallic Pt-Pd core-shell nanocrystals and their high electrocatalytic activity modulated by Pd shell thickness. Nanoscale,2012,4 (3), 845-851.
    [81]J. Kim, B.Z. Poliquit, H.-S. Nam, S.H. Kim, Y.M. Lee, KM. Kim, J.M. Ko, Electrochemical activities of Pt-Ru-Co and Pt-Ru-Ni electrocatalysts supported by a carbon fiber web. Curr. Appl. Phys.,2012,12 (1),254-258.
    [82]B. Gurau, R. Viswanathan, R. Liu, T. Lafrenz, K. Ley, E. Smotkin, E. Reddington, A. Sapienza, B. Chan, T. Mallouk, S. Sarangapani, Structural and electrochemical characterization of binary, ternary, and quaternary platinum alloy catalysts for methanol electro-oxidationl. J. Phys. Chem. B,1998,102 (49),9997-10003.
    [83]D. Chu, S. Gilman, Methanol electro-oxidation on unsupported Pt-Ru alloys at different temperatures. J. Electrochem. Soc.,1996,143 (5),1685-1690.
    [84]M. Futamata, L.Q. Luo, Adsorbed water and CO on Pt electrode modified with Ru. J. Power Sources,2007,164 (2),532-537.
    [85]C.X. Xu, X.H. Xu, J.X. Su, Y. Ding, Research on unsupported nanoporous gold catalyst for CO oxidation. J. Catal.,2007,252 (2),243-248.
    [86]C.X. Xu, J.X. Su, X.H. Xu, P.P. Liu, H.J. Zhao, F. Tian, Y. Ding, Low temperature CO oxidation over unsupported nanoporous gold. J. Am. Chem. Soc., 2007,129(1),42-43.
    [87]J.T. Zhang, P.P. Liu, H.Y. Ma, Y Ding, Nanostructured porous gold for methanol electro-oxidation. J. Phys. Chem. C,2007,111 (28),10382-10388.
    [88]H.M. Yin, C.Q. Zhou, C.X. Xu, P.P. Liu, X.H. Xu, Y Ding, Aerobic oxidation of d-glucose on support-free nanoporous gold. J. Phys. Chem. C,2008,112 (26), 9673-9678.
    [89]Z.N. Liu, L.H. Huang, L.L. Zhang, H.Y. Ma, Y Ding, Electrocatalytic oxidation of d-glucose at nanoporous Au and Au-Ag alloy electrodes in alkaline aqueous solutions. Electrochim. Acta,2009,54 (28),7286-7293.
    [90]J.T. Zhang, H.Y. Ma, D.J. Zhang, P.P. Liua, F. Tian, Y Ding, Electrocatalytic activity of bimetallic platinum-gold catalysts fabricated based on nanoporous gold. Phys. Chem. Chem. Phys.,2008,10 (22),3250-3255.
    [91]X B Ge, R.Y. Wang, P.P. Liu, Y, Ding, Platinum-decorated nanoporous gold leaf for methanol electrooxidation. Chem. Mater.,2007,19 (24),5827-5829;
    [92]R.Y. Wang, C. Wang, W.B. Cai, Y. Ding, Ultralow-platinum-loading high-performance panoporous electrocatalysts with nanoengineered surface structures, Adv. Mater.,2010,22 (16),1845-1848.
    [93]Y.W. Lee, A.R. Ko, S.B. Han, H.S. Kim, D.Y. Kim, S.J. Kim, K.W. Park, Cuboctahedral Pd nanoparticles on WC for enhanced methanol electrooxidation in alkaline solution. Chem. Commun.,2010,46 (48),9241-9243.
    [94]Y.W. Lee, A.R. Ko, S.B. Han, H.S. Kim, K.W. Park, Synthesis of octahedral Pt-Pd alloy nanoparticles for improved catalytic activity and stability in methanol electrooxidation. Phys. Chem. Chem. Phys.,2011,13 (13),5569-5572.
    [95]R.D. Morgan, A. Salehi-khojin, R.I. Masel, Superior formic acid oxidation using carbon nanotube-supported palladium catalysts. J. Phys. Chem. C,2011,115 (39), 19413-19418.
    [96]Y.Z. Lu, W. Chen, PdAg alloy nanowires:facile one-step synthesis and high electrocatalytic activity for formic acid oxidation. ACS Catal.,2012,2 (1),84-90.
    [97]J. Farrell, N. Melitas, M. Kason, T. Li, Electrochemical and column investigation of iron-mediated reductive dechlorination of trichloroethylene and perchloroethylene. Environ. Sci. Technol.,2000,34 (12),2549-2556.
    [98]H.-L. Lien, W.-X. Zhang, Nanoscale iron particles for complete reduction of chlorinated ethenes. Colloids Surf., A,2001,191 (1-2),97-105.
    [99]L.J. Matheson, P.G. Tratnyek, Reductive dehalogenation of chlorinated methanes by iron metal. Environ. Sci. Technol.,1994,28 (12),2045-2053.
    [100]W.A. Arokl, A.L. Roberts, Pathways and kinetics of chlorinated ethylene and chlorinated acetylene reaction with particles. Environ. Sci. Technol.,2000,34 (91), 1794-1805.
    [101]W.-X. Zhang, C.-B. Wang, H.-L. Lien, Treatment of chlorinated organic contaminants with nanoscale bimetallic particles. Catal. Today,1998,40 (4),387-395.
    [102]X.Y Wang, C. Chen, H.L. Liu, J. Ma, Characterization and evaluation of catalytic dechlorination activity of Pd/Fe bimetallic nanoparticles. Ind. Eng. Chem. Res.,2008,47 (22),8645-8651.
    [103]X.Y. Wang, C. Chen, Y. Chang, H.L. Liu, Dechlorination of chlorinated methanes by Pd/Fe bimetallic nanoparticles. J. Hazard. Mater,2009,161 (2-3), 815-823.
    [104]王静,冯玉杰,崔玉虹,电化学水处理技术的研究应用进展.环境保护,2003,12,19-22.
    [105]汪涵,电化学技术在环保领域的应用.化工环保,2005,25(5),361-363.
    [106]Y.L. Jiao, D.L. Wu, H.Y. Ma, C.C. Qiu, J.T. Zhang, L.M. Ma, Electrochemical reductive dechlorination of carbon tetrachloride on nanostructured Pd thin films. Electrochem. Commun.,2008,10 (10),1474-1477
    [107]庄贞静,肖丹,李毅,无酶葡萄糖电化学传感器的研究进展.化学研究与应用,2009,21(11),1486-1493.
    [108]J.H. Yuan; K. Wang; X.H. Xia, Highly ordered platinum-nanotubule arrays for amperometric glucose sensing. Adv. Funct. Mater.,2005,15 (5),803-809.
    [109]B. Singh, F. Laffir, T. McCormac, E. Dempsey, PtAu/C based bimetallic nanocomposites for non-enzymatic electrochemical glucose detection. Sens. Actuators, B,2010,150(1),80-92.
    [110]S. Cherevko, C.H. Chung, Gold nanowire array electrode for non-enzymatic voltammetric and amperometric glucose detection. Sens. Actuators, B,2009,142 (1), 216-223.
    [111]J.H. Zhu, J. Jiang, J.P. Liu, R.M. Ding, YY. Li, H. Ding, YM. Feng, G.M. Wei, X.T. Huang, CNT-network modified Ni nanostructured arrays for high performance non-enzymatic glucose sensors. RSC Adv.,2011,1 (6),1020-1025.
    [112]J. Yang, W.-D. Zhang, S. Gunasekaran, An amperometric non-enzymatic glucose sensor by electrodepositing copper nanocubes onto vertically well-aligned multi-walled carbon nanotube arrays. Biosens. Bioelectron.,2010,26 (1),279-284.
    [113]X.Y. Wang, Y. Zhang, C. E. Banks, Q.Y Chen, X.B. Ji, Non-enzymatic amperometric glucose biosensor based on nickel hexacyanoferrate nanoparticle film modified electrodes. Colloids Surf, B,2010,78 (2),363-366.
    [114]T. Watanabe, Y. Einaga, Design and fabrication of nickel microdisk-arrayed diamond electrodes for a non-enzymatic glucose sensor based on control of diffusion profiles. Biosens. Bioelectron.,2009,24 (8),2684-2689.
    [115]C.M. A. Brett, Electrochemical sensors for environmental monitoring. Strategy and examples. Pure Appl. Chem,2001,73 (12),1969-1977.
    [116]K. Ashley, Developments in electrochemical sensors for occupational and environmental health applications. J. Hazard. Mater.,2003,102 (1),1-12.
    [117]K. Rajeshwar, J. G. Ibanez, G. M. Swain, Electrochemistry and the environment. J. Appl. Electrochem.,1994,24 (11),1077-1091.
    [118]G. Hanrahan, D.G. Patil, J. Wang, Electrochemical sensors for environmental monitoring:design, development and applications. J. Environ. Monit.,2004,6 (8), 657-664.
    [119]L. Zhuo, Y. Huang, M.S. Cheng, H.K. Lee, C.-S. Toh, Nanoarray membrane sensor based on a multilayer design for sensing of water pollutants. Anal. Chem., 2010,82(11),4329-4332.
    [120]W. Yantasee, K. Hongsirikarn, C.L. Warner, D. Choi, T. Sangvanich, M.B. Toloczko, M.G. Warner, G.E. Fryxell, R.S. Addleman, C. Timchalk, Direct detection of Pb in urine and Cd, Pb, Cu, and Ag in natural waters using electrochemical sensors immobilized with DMSA functionalized magnetic nanoparticles. Analyst,2008,133 (3),348-355.
    [121]W. Yantasee, G.E. Fryxell, M.M. Conner, Y.H. Lin, Nanostructured electrochemical sensors based on functionalized nanoporous silica for voltammetric analysis of lead, mercury, and copper. J. Nanosci. Nanotechnol.,2005,5 (9), 1537-1540.
    [122]M.-H. Chen, C.-C. Liu, T.-C. Chou, Thin film trichloroethylene electrochemical sensor. Biosens. Bioelectron.,2004,20 (1),25-32.
    [123]L. Tang, G.M. Zeng, G.L. Shen, Y.P. Li, Y. Zhang, D.L. Huang, Rapid detection of picloram in agricultural field samples using a disposable immunomembrane-based electrochemical sensor. Environ. Sci. Technol.,2008,42 (4),1207-1212.
    [124]鞠熀先,电分析化学与生物传感技术.科学出版社(北京),2006,P192-197.
    [125]D.N. Tran, K. J. Balkus, Jr., Perspective of recent progress in immobilization of enzymes. ACS Catal.,2011,1 (8),956-968.
    [126]S. Park, H. Booa, T.D. Chung, Electrochemical non-enzymatic glucose sensors. Anal. Chim. Acta,2006,556 (1),46-57.
    [127]L.C. Clark Jr., C. Lyons, Electrode Systems for Continuous monitoring in cardiovascular surgery. Ann. N.Y. Acad. Sci.,1962,102,29-45.
    [128]Y.H. Wu, S.H. Hu, Biosensors based on direct electron transfer in redox proteins. Microchim. Acta,2007,159 (1-2),1-17.
    [129]M. Pumera, S. Sanchez, I. Ichinose, J. Tang, Electrochemical nanobiosensors. Sens. Actuators, B,2007,123 (2),1195-1205.
    [130]刘慧宏,庞代文,氧化还原蛋白质电化学研究.化学进展,2002,14(6),425-432.
    [131]S. Shleev, A. Jarosz-Wilkolazka, A. Khalunina, O. Morozova, A. Yaropolov, T. Ruzgas, L. Gorton, Direct electron transfer reactions of laccases from different origins on carbon electrodes. Bioelectrochemistry,2005,67 (1),115-124.
    [132]S. Shleev, J. Tkac, A. Christenson, T. Ruzgas, A. I. Yaropolov, J. W. Whittaker, L. Gorton, Direct electron transfer between copper-containing proteins and electrodes. Biosens. Bioelectron.,2005,20 (12),2517-2554.
    [133]S. Sajjadi, H. Ghourchian, P. Rahimi, Different behaviors of single and multi wall carbon nanotubes for studying electrochemistry and electrocatalysis of choline oxidase. Electrochim. Acta,2011,56 (26),9542-9548.
    [134]C. Godet, M. Boujtita, N. El Murr, Direct electron transfer involving a large protein:glucose oxidase. New J. Chem.,1999,23 (8),795-797.
    [135]J. N. Butt, M. Filipiak, W.R. Hagen, Direct electrochemistry of megasphaera elsdenii iron hydrogenase. Definition of the enzyme's catalytic operating potential and quantitation of the catalytic behaviour over a continuous potential range. Eur. J. Biochem.,1997,245 (1),116-122.
    [136]K.-F. Aguey-Zinsou, P.V Bernhardt, U. Kappler, A.G. McEwan, Direct electrochemistry of a bacterial sulfite dehydrogenase. J. Am. Chem. Soc.,2003,125 (2),530-535.
    [137]H.Q. Liu, Y. Tian, P.P. Xia, Pyramidal, rodlike, spherical gold anostructures for direct electron transfer of copper, zinc-superoxide dismutase:application to superoxide anion biosensors. Langmuir,2008,24 (12),6359-6366.
    [138]X.-Q. Wu, X.-Y. Meng, Z.-S. Wang, Z.-R. Zhang, Study on the direct electron transfer process of superoxide dismutase. Bioelectrochem. Bioenerg.,1999,48 (1), 227-231.
    [139]J.T. Holland, C. Lau, S. Brozik, P. Atanassov, S. Banta, Engineering of glucose oxidase for direct electron transfer via site-specific gold nanoparticle conjugation. J. Am. Chem. Soc.,2011,133 (48),19262-19265.
    [140]H.F. Zhang, Z.C. Meng, Q. Wang, J.B. Zheng, A novel glucose biosensor based on direct electrochemistry of glucose oxidase incorporated in biomediated gold nanoparticles-carbon nanotubes composite film. Sens. Actuators, B,2011,158 (1), 23-27.
    [141]X. Han, YH. Zhu, X.L. Yang, J.M. Zhang, C.Z. Li, Dendrimer-encapsulated Pt nanoparticles on mesoporous silica for glucose detection. J. Solid State Electrochem., 2011,15(3),511-517.
    [142]C.Y Deng, J.H. Chen, Z. Nie, S.H. Si, A sensitive and stable biosensor based on the direct electrochemistry of glucose oxidase assembled layer-by-layer at the multiwall carbon nanotube-modified electrode. Biosens. Bioelectron.,2010,26 (1), 213-219.
    [143]YL. Wang, L. Liu, M.G. Li, S.D. Xu, F. Gao, Multifunctional carbon nanotubes for direct electrochemistry of glucose oxidase and glucose bioassay. Biosens. Bioelectron.,2011,30 (1),107-111.
    [144]P. Wu, Q. Shao, YJ. Hu, J. Jin, YJ. Yin, H. Zhang, C.X. Cai, Direct electrochemistry of glucose oxidase assembled on graphene and application to glucose detection. Electrochim. Acta,2010,55 (28),8606-8614.
    [1]A.R. Sousa, M.A. Trancoso, Validation of an environmental friendly segmented flow method for the determination of phenol index in waters as alternative to the conventional one. Talanta,2009,79 (3),796-803.
    [2]M.R.H. Nezhad, M. Alimohammadi, J. Tashkhourian, S.M. Razavian, Optical detection of phenolic compounds based on the surface plasmon resonance band of Au nanoparticles. Spectrochim. Acta, Part A,2008,71 (1),199-203.
    [3]A. Shukla, S. Sharma, K. Shrivas, K.S. Patel, P. Hoffmann, Determination of phenol in wastewater. Chem. Anal.,2005,50 (5),905-912.
    [4]Y. Chen, S.Y. Wang, T.Z. Zhou, Spectrophotometric determination of trace phenol in water after preconcentration on an organic solvent-soluble membrane filter. Anal. Lett.,1998,31 (7),1233-1245.
    [5]M.-R. Lee, Y.-C. Yeh, W.-S. Hsiang, C.-C. Chen, Application of solid-phase microextraction and gas chromatography-mass spectrometry for the determination of chlorophenols in urine. J. Chromatogr. B,1998,707 (1-2),91-97.
    [6]G. Bieniek, Simultaneous determination of phenol, cresol, xylenol isomers and napthols in urine by capillary gas chromatography. J. Chromatogr. B,1996,682 (1), 167-172.
    [7]J. Czuczwa, C. Leuenberger, J. Tremp, W. Giger, Determination of trace levels of phenol and cresols in rain by continuous liquid-liquid extraction and high-performance liquid chromatography. J. Chromatogr. A,1987,403,233-241.
    [8]B.L. Lee, H.Y. Ong, C.Y. Shi, C.N. Ong, Simultaneous determination of hydroquinone, catechol and phenol in urine using high-performance liquid chromatography with fluorimetric detection. J. Chromatogr. B,1993,619 (2), 259-266.
    [9]M. Ojala, R. A. Ketola, V. Virkki, H. Sorsa, T. Kotiaho, Determination of phenolic compounds in water using membrane inlet mass spectrometry. Talanta,1997, 44(7),1253-1259.
    [10]T.D. Bucheli, O.P. Haefliger, R. Dietiker, R. Zenobi, Analysis of water contaminants and natural water samples using two-step laser mass spectrometry. Anal. Chem.,2000,72 (15),3671-3677.
    [11]B.O. Opeolu, O.S. Fatoki, J. Odendaal, Development of a solid-phase extraction method followed by HPLC-UV detection for the determination of phenols in water. Int. J. Phys. Sci.,2010,5 (5),576-581.
    [12]M. Suarez, M.-P. Romero, A. Macia, R.M. Valls, S. Fernandez, R. Sola, M.-J. Motilv, Improved method for identifying and quantifying olive oil phenolic compounds and their metabolites in human plasma by microelution solid-phase extraction plate and liquid chromatography-tandem mass spectrometry. J. Chromatogr. B,2009,877 (32),4097-4106.
    [13]T. Heberer, H.-J. Stan, Detection of more than 50 substituted phenols as their t-butyldimethylsilyl derivatives using gas chromatography-mass spectrometry. Anal. Chim. Acta,1997,341 (1),21-34.
    [14]T. Portoles, E. Pitarch, F.J. Lopez, F. Hernandez, Development and validation of a rapid and wide-scope qualitative screening method for detection and identification of organic pollutants in natural water and wastewater by gas chromatography time-of-flight mass spectrometry. J. Chromatogr. A,2011,1218 (2),303-315.
    [15]R.M. Callejon, A.M. Troncoso, M.L. Morales, Analysis for chloroanisoles and chlorophenols in cork by stir bar sorptive extraction and gas chromatography-mass spectrometry. Talanta,2007,71 (5),2092-2097.
    [16]C.M.A. Brett, Electrochemical sensors for environmental monitoring. Strategy and examples. Pure Appl. Chem.,2001,73 (12),1969-1977.
    [17]Z.N. Liu, J.G. Du, C.C. Qiu, L.H. Huang, H.Y. Ma, D.Z. Shen, Y. Ding, Electrochemical sensor for detection of p-nitrophenol based on nanoporous gold. Electrochem. Commun.,2009,11 (7),1365-1368.
    [18]A. Arvinte, M. Mahosenaho, M. Pinteala, A.-M. Sesay, V. Virtanen, Electrochemical oxidation of p-nitrophenol using graphene-modified electrodes, and a comparison to the performance of MWNT-based electrodes. Microchim. Acta,2011, 174(3-4),337-343.
    [19]H.-J. Kim, S.-C. Chang, Y.-B. Shim, α-Cyclodextrin modified screen printed graphite electrodes for detection of phenols. Bull. Korean Chem. Soc.2002,23 (3), 427-431.
    [20]W. Lu, G.G. Wallace, M.D. Imisides, Development of conducting polymer modified electrodes for the detection of phenol. Electroanalysis,2002,14 (5), 325-332.
    [21]T. Alizadeh, M.R. Ganjali, P. Norouzi, M. Zare, A. Zeraatkar, A novel high selective and sensitive para-nitrophenol voltammetric sensor, based on a molecularly imprinted polymer-carbon paste electrode. Talanta,2009,79 (5),1197-1203.
    [22]G. Hanrahan, D.G. Patil, J. Wang, Electrochemical sensors for environmental monitoring:design, development and applications. J. Environ. Monit,2004,6(8), 657-664.
    [23]S.Y. Ai, M.N. Gao, W, Zhang, Z.D. Sun, L.T. Jin, Preparation of fluorine-doped lead dioxide modified electrodes for electroanalytical applications. Electroanalysis, 2003,15(17),1403-1409.
    [24]D.D. Zhang, Y.G. Peng, H.L. Qi, Q. Gao, C.X. Zhang Application of multielectrode array modified with carbon nanotubes to simultaneous amperometric determination of dihydroxybenzene isomers. Sens. Actuators, B,2009,136 (1), 113-121.
    [25]U. Lange, V.M. Mirsky, Chemosensitive nanocomposite for conductometric detection of hydrazine and NADH. Electrochim. Acta,2011,56 (10),3679-3684.
    [26]J.H Bae, T. D. Chung, Conductometric discrimination of electro-inactive metal ions using nanoporous electrodes. Electrochim. Acta,2011,56 (5),1947-1954.
    [27]Y.I. Korpan, O.O. Soldatkin, O.F. Sosovska, H.M. Klepach, E. Csoregi, F. Vocanson, N. Jaffrezic-Renault, M.V. Gonchar, Formaldehyde-sensitive conductometric sensors based on commercial and recombinant formaldehyde dehydrogenase. Microchim. Acta,2010,170 (3-4),337-344.
    [28]E.S. Forzani, X.L. Li, N.J. Tao, Hybrid amperometric and conductometric chemical sensor based on conducting polymer nanojunctions. Anal. Chem.,2007,79 (14),5217-5224.
    [29]A.A. Khan, L. Paquiza, Analysis of mercury ions in effluents using potentiometric sensor based on nanocomposite cation exchanger polyaniline-zirconium titanium phosphate. Desalination,2011,272 (1-3),278-285.
    [30]F. Huma, M. Jaffar, K. Masud, A modified potentiometric method for the estimation of phenol in aqueous systems. Turk. J. Chem.,1999,23 (4),415-422.
    [31]Q. Xu, J.H. Wang, K. Jiao, Determination of phenol with flow injection-potentiometric detection in bromine/bromide redox buffer. Chin. J. Anal. Chem.,2001,29 (2),244.
    [32]I. E. Mulazimoglu, A. D. Mulazimoglu, E. Yilmaz, Determination of quantitative phenol in tap water samples as electrochemical using 3,3'-diaminobenzidine modified glassy carbon sensor electrode. Desalination,2011,268 (1-3),227-232.
    [33]A. Gutes, A.B. Ibanez, F. Cespedes, S. Alegret, M. del Valle, Simultaneous determination of phenolic compounds by means of an automated voltammetric "electronic tongue". Anal. Bioanal. Chem.,2005,382 (2),471-476.
    [34]H.S. Yin, K. Shang, X.M. Meng, S.Y. Ai, Voltammetric sensing of paracetamol, dopamine and 4-aminophenol at a glassy carbon electrode coated with gold nanoparticles and an organophillic layered double hydroxide. Microchim. Acta,2011, 175(1-2),39-46.
    [35]S. Lupu, I. Ion, A.C. Ion, Voltammetric determination of phenol at platinum electrodes modified with polypyrrole doped with ferricyanide. Rev. Roum. Chim., 2009,54(5),351-357.
    [36]Y.-P. Ding, W.-L. Liu, Q.-S. Wu, X.-G. Wang, Direct simultaneous determination of dihydroxybenzene isomers at C-nanotube-modified electrodes by derivative voltammetry. J. Electroanal. Chem.,2005,575 (2),275-280.
    [37]Z.H. Wang, S.J. Li, Q.Z. Lv, Simultaneous determination of dihydroxybenzene isomers at single-wall carbon nanotube electrode. Sens. Actuators, B,2007,127 (2), 420-425.
    [38]L.-Q. Luo, X.-L. Zou, Y.-P. Ding, Q.-S. Wu, Derivative voltammetric direct simultaneous determination of nitrophenol isomers at a carbon nanotube modified electrode. Sens. Actuators, B,2008,135 (1),61-65.
    [39]P.H. Yang, W.Z. Wei, C.Y. Tao, J.X. Zeng, Simultaneous voltammetry determination of dihydroxybenzene isomers by poly-bromophenol blue/carbon nanotubes composite modified electrode. Bull. Environ. Contam. Toxicol.,2007,79 (1),5-10.
    [40]L. Han, X.L. Zhang, Simultaneous voltammetry determination of dihydroxybenzene isomers by nanogold modified electrode. Electroanalysis,2009,21 (2),124-129.
    [41]M.S. Ureta-Zanartu, P. Bustos, M.C. Diez, M.L. Mora, C. Gutierrez, Electro-oxidation of chlorophenols at a gold electrode. Electrochim. Acta,2001,46 (16),2545-2551.
    [42]Z. Ezerskis, Z. Jusys, Oxidation of chlorophenols on Pt electrode in alkaline solution studied by cyclic voltammetry, galvanostatic electrolysis, and gas chromatography-mass spectrometry. Pure Appl. Chem.,2001,73 (12),1929-1940.
    [43]M.S. Ureta-Zanartu, P. Bustos, C. Berrios, M.C. Diez, M.L. Mora, C. Gutierrez, Electrooxidation of 2,4-dichlorophenol and other polychlorinated phenols at a glassy carbon electrode. Electrochim. Acta,2002,47 (15),2399-2406.
    [44]A. Pop, F. Manea, C. Radovan, P. Malchev, A. Bebeselea, C. Proca, G. Burtica, S. Picken, J. Schoonman, Amperometric detection of 4-chlorophenol on two types of expanded graphite based composite electrodes. Electroanalysis,2008,20 (22), 2460-2466.
    [45]R. Woods, Chemisorption at electrodes. Hydrogen and oxygen on noble metals and their alloys, in:A.J. Bard (Ed.), Electroanalytical chemistry, A Series of Advances, vol.9, Marcel Dekker, New York, Basel,1976, pp.124-125.
    [46]G.W. Muna, N. Tasheva, G.M. Swain, Electro-oxidation and amperometric detection of chlorinated phenols at boron-doped diamond electrodes:A comparison of microcrystalline and nanocrystalline thin films. Environ. Sci. Technol.,2004,38 (13), 3674-3682.
    [47]P.I. Iotov, S.V. Kalcheva, Mechanistic approach to the oxidation of phenol at a platinum/gold electrode in an acid medium. J. Electroanal. Chem.,1998,442 (1), 19-26.
    [48]K. Peeters, K. De Wael, D. Bogaert, A. Adriaens, The electrochemical detection of 4-chlorophenol at gold electrodes modified with different phthalocyanines. Sens. Actuat. B,2008,128 (2),494-499.
    [49]M.S. Ureta-Zanartu, M.L. Mora, M.C. Diez, C. Berrios, J. Ojeda, C. Gutierrez, Chlorophenol electrooxidation on iron oxide-covered aluminosilicates deposited on glassy carbon. J. Appl. Electrochem.,2002,32 (11),1211-1218.
    [50]J.D. Rodgers, W. Jedral, N.J. Bunce, Electrochemical oxidation of chlorinated phenols. Environ. Sci. Technol.,1999,33 (9),1453-1457.
    [51]C. Terashima, T.N. Rao, B.V. Sarada, D.A. Tryk, A. Fujishima, Electrochemical oxidation of chlorophenols at a boron-doped diamond electrode and their determination by high-performance liquid chromatography with amperometric detection. Anal. Chem.,2002,74 (4),895-902.
    [52]F. Manea, C. Radovan, I. Corb, A. Pop, G. Burtica, P. Malchev, S. Picken, J. Schoonman, Simultaneous determination of 4-chlorophenol and oxalic acid using an expanded graphite-epoxy composite electrode. Electroanalysis,2008,20 (15), 1719-1722.
    [53]X.-M. Wang, J.-M. Hu, J.-Q. Zhang, C.-N. Cao, Characterization of surface fouling of Ti/IrO2 electrodes in 4-chlorophenol aqueous solutions by electrochemical impedance spectroscopy. Electrochim. Acta,2008,53 (8),3386-3394.
    [54]X.J. Wu, H.Y. Ma, S.H. Chen, Z.Y. Xu, A.F. Sui, General equivalent circuits for Faradaic electrode processes under electrochemical reaction control. J. Electrochem. Soc.,1999,146(5),1847-1853.
    [55]C. Berrios, R. Arce, M.C. Rezende, M.S. Ureta-Zanartu, C. Gutierrez, Electrooxidation of chlorophenols at a glassy carbon electrode in a pH 11 buffer. Electrochim. Acta,2008,53 (6),2768-2775.
    [56]A. Bebeselea, F. Manea, G. Burtica, L. Nagy, G. Nagy, The electrochemical determination of phenolic derivates using multiple pulsed amperometry with graphite based electrodes. Talanta,2010,80 (3),1068-1072.
    [57]A. Pop, F. Manea, C. Radovan, I. Corb, G. Burtica, P. Malchev, S. Picken, J. Schoonman, Determination of 4-chlorophenol using two types of graphite-based composite electrodes. Rev. Roum. Chim.,2008,53 (8),623-628.
    [1]刘佳,殷立峰,代云容,江帆,牛军峰,电化学酶传感器在环境污染监测中的应用.化学进展,2012,24(1),131-143.
    [2]N. Jaffrezic-Renault, S.V. Dzyadevych, Conductometric microbiosensors for environmental monitoring. Sensors,2008,8 (4),2569-2588.
    [3]S. Rodriguez-Mozaz, M.J.L. de Alda, D. Barcelo, Biosensors as useful tools for environmental analysis and monitoring. Anal. Bioanal. Chem.,2006,386 (4), 1025-1041.
    [4]S. Rodriguez-Mozaz, M.-P. Marco, M.J.L. de Alda, D. Barcelo, Biosensors for environmental applications:Future development trends. Pure Appl. Chem.,2004,76 (4),723-752.
    [5]A.K. Wanekaya, W. Chen, A. Mulchandani, Recent biosensing developments in environmental security. J. Environ. Monit.,2008,10 (6),703-712.
    [6]Y. Zhou, X.L. Tian, Y.-S. Li, Y.-Y. Zhang, L. Yang, J.H. Zhang, X.R. Wang, S.-Y. Lu, H.L. Ren, Z.S. Liu, A versatile and highly sensitive probe for Hg(Ⅱ), Pb(Ⅱ) and Cd(II) detection individually and totally in water samples. Biosens. Bioelectron.,2011, 30(1),310-314.
    [7]P.N. Nomngongo, J.C. Ngila, V.O. Nyamori, E.A. Songa, E.I. Iwuoha, Determination of selected heavy metals using amperometric horseradish peroxidase (HRP) inhibition biosensor. Anal. Lett.,2011,44 (11),2031-2046.
    [8]S.B. Han, M. Zhu, Z.B. Yuan, X. Li, A methylene blue-mediated enzyme electrode for the determination of trace mercury(Ⅱ), mercury(Ⅰ), methylmercury, and mercury-glutathione complex. Biosens. Bioelectron.,2001,16 (1-2),9-16.
    [9]Q.-Z. Hu, C.-H. Jang, Liquid crystal-based sensors for the detection of heavy metals using surface-immobilized urease. Colloids Surf., B,2011,88 (2),622-626.
    [10]O. Dominguez-Renedo, M.A. Alonso-Lomillo, L. Ferreira-Goncalves, M.J. Arcos-Martinez, Development of urease based amperometric biosensors for the inhibitive determination of Hg (Ⅱ). Talanta,2009,79 (5),1306-1310.
    [11]D. Ogonczyka, L. Tymecki, I. Wyzkiewicz, R. Koncki, S. Glab, Screen-printed disposable urease-based biosensors for inhibitive detection of heavy metal ions. Sens. Actuators, B,2005,106 (1),450-454.
    [12]C. Chen, Q.J. Xie, L.H. Wang, C. Qin, F.Y. Xie, S.Z. Yao, J.H. Chen, Experimental platform to study heavy metal ion-enzyme interactions and amperometric inhibitive assay of Ag+ based on solution state and immobilized glucose oxidase. Anal. Chem.,2011,83 (7),2660-2666.
    [13]M.R. Guascito, C. Malitesta, E. Mazzotta, A. Turco, Inhibitive determination of metal ions by an amperometric glucose oxidase biosensor:Study of the effect of hydrogen peroxide decomposition. Sens. Actuators, B,2008,131 (2),394-402.
    [14]C. Malitesta, M.R. Guascito, Heavy metal determination by biosensors based on enzyme immobilised by electropolymerisation. Biosens. Bioelectron.,2005,20 (8), 1643-1647.
    [15]R. Koncki, K. Rudnicka, L. Tymecki, Flow injection system for potentiometric determination of alkaline phosphatase inhibitors. Anal. Chim. Acta,2006,577 (1), 134-139.
    [16]F.G. Sanchez, A.N. Diaz, M.C.R. Peinado, C. Belledone, Free and sol-gel immobilized alkaline phosphatase-based biosensor for the determination of pesticides and inorganic compounds. Anal. Chim. Acta,2003,484 (1),45-51.
    [17]C. Chouteau, S. Dzyadevych, C. Durrieu, J.-M. Chovelon, A bi-enzymatic whole cell conductometric biosensor for heavy metal ions and pesticides detection in water samples. Biosens. Bioelectron.,2005,21 (2),273-281.
    [18]A.L. Kukla, N.I. Kanjuk, N.F. Starodub, Y.M. Shirshov, Multienzyme electrochemical sensor array for determination of heavy metal ions. Sens. Actuators, B,1999,57(1-3),213-218.
    [19]N.F. Starodub, N.I. Kanjuk, A.L. Kukla, Y.M. Shirshov, Multi-enzymatic electrochemical sensor:field measurements and their optimization. Anal. Chim. Acta, 1999,385(1-3),461-466.
    [20]D. Quan, R.K. Nagarale, W. Shin, A nitrite biosensor based on coimmobilization of nitrite reductase and viologen-modified polysiloxane on glassy carbon electrode. Electroanalysis,2010,22 (20),2389-2398.
    [21]M.G. Almeida, C.M. Silveira, J.J.G. Moura, Biosensing nitrite using the system nitrite redutase/Nafion/methyl viologen-A voltammetric study. Biosens. Bioelectron., 2007,22(11),2485-2492.
    [22]B. Strehlitz, B. Grundig, W. Schumacher, P.M.H. Kroneck, K.-D. Vorlop, H. Kotte, A nitrite sensor based on a highly sensitive nitrite reductase mediator-coupled amperometric detection. Anal. Chem.,1996,68 (5),807-816.
    [23]A. Salimi, A. Noorbakhsh, M. Ghadermarzi, Amperometric detection of nitrite, iodate and periodate at glassy carbon electrode modified with catalase and multi-wall carbon nanotubes. Sens. Actuators, B,2007,123 (1),530-537.
    [24]A. Zazoua, M. Hnaien, S. Cosnier, N. Jaffrezic-Renault, R. Kherrat, A new HRP/catalase biosensor based on microconductometric transduction for nitrite determination. Mater. Sci. Eng., C,2009,29 (6),1919-1922.
    [25]L. Gilbert, A.T.A. Jenkins, S. Browning, J.P. Hart, Development of an amperometric, screen-printed, single-enzyme phosphate ion biosensor and its application to the analysis of biomedical and environmental samples. Sens. Actuators, B,2011,160(1),1322-1327.
    [26]J.D. Gawronski, D.R. Benson, Microtiter assay for glutamine synthetase biosynthetic activity using inorganic phosphate detection. Anal. Biochem.,2004,327 (1),114-118.
    [27]U. Wollenberger, F. Schubert, F.W. Scheller, Biosensor for sensitive phosphate detection. Sens. Actuators, B,1992,7 (1-3),412-415.
    [28]T. Yao, M. Satomura, T. Nakahara, Simultaneous determination of sulfite and phosphate in wine by means of immobilized enzyme reactions and amperometric detection in a flow-injection system. Talanta,1994,41 (12),2113-2119.
    [29]C. Mousty, S. Cosnier, D. Shan, S.L. Mu, Trienzymatic biosensor for the determination of inorganic phosphate. Anal. Chim. Acta,2001,443 (1),1-8.
    [30]I. Marinov, Y. Ivanov, N. Vassileva, T. Godjevargova, Amperometric inhibition-based detection of organophosphorus pesticides in unary and binary mixtures employing flow-injection analysis. Sens. Actuators, B,2011,160 (1), 1098-1105.
    [31]T. Liu, H.C. Su, X.J. Qu, P. Ju, L. Cui, S.Y. Ai, Acetylcholinesterase biosensor based on 3-carboxyphenylboronic acid/reduced graphene oxide-gold nanocomposites modified electrode for amperometric detection of organophosphorus and carbamate pesticides. Sens. Actuators, B,2011,160 (1),1255-1261.
    [32]A.P. Periasamy, Y. Umasankar, S.-M. Chen, Nanomaterials - acetylcholinesterase enzyme matrices for organophosphorus pesticides electrochemical sensors:A review. Sensors,2009,9 (6),4034-4055.
    [33]H. Zejli, J.L.H.-H. de Cisneros, I. Naranjo-Rodriguez, B.H. Liu, K.R. Temsamani, J.-L. Marty, Alumina sol-gel/sonogel-carbon electrode based on acetylcholinesterase for detection of organophosphorus pesticides. Talanta,2008,77 (1),217-221.
    [34]T. Neufeld, I. Eshkenazi, E. Cohen, J. Rishpon, A micro flow injection electrochemical biosensor for organophosphorus pesticides. Biosens. Bioelectron., 2000,15 (5-6),323-329.
    [35]J.H. Lee, YD. Han, S.Y. Song, T.D. Kim, H.C. Yoon, Biosensor for organophosphorus pesticides based on the acetylcholine esterase inhibition mediated by choline oxidase bioelectrocatalysis. BioChip J.,2010,4 (3),223-229.
    [36]YH. Lin, F. Lu, J. Wang, Disposable carbon nanotube modified screen-printed biosensor for amperometric detection of organophosphorus pesticides and nerve agents. Electroanalysis,2004,16 (1-2),145-149.
    [37]J. Diehl-Faxon, A.L. Ghindilis, P. Atanasov, E. Wilkins, Direct electron transfer based tri-enzyme electrode for monitoring of organophosphorus pesticides. Sens. Actuators, B,1996,36 (1-3),448-457.
    [38]R.P. Deo, J. Wang, I. Block, A. Mulchandani, K.A. Joshi, M. Trojanowicz, F. Scholz, W. Chen, YH. Lin, Determination of organophosphate pesticides at a carbon nanotube/organophosphorus hydrolase electrochemical biosensor. Anal. Chim. Acta, 2005,530(2),185-189.
    [39]R. Solna, P. Skladal, Amperometric Flow-injection determination of phenolic compounds using a biosensor with immobilized laccase, peroxidase and tyrosinase. Electroanalysis,2005,17 (23),2137-2146.
    [40]F. Vianello, A. Cambria, S. Ragusa, M.T. Cambria, L. Zennaro, A. Rigo, A high sensitivity amperometric biosensor using a monomolecular layer of laccase as biorecognition element. Biosens. Bioelectron.,2004,20 (2),315-321.
    [41]N. Pena, A.J. Reviejo, J.M. Pingarron, Detection of phenolic compounds in flow systems based on tyrosinase-modified reticulated vitreous carbon electrodes. Talanta, 2001,55 (1),179-187.
    [42]Q. Zhao, L.H. Guan, Z.N. Gu, Q.K. Zhuang, Determination of phenolic compounds based on the tyrosinase-single walled carbon nanotubes sensor. Electroanalysis,2005,17 (1),85-88.
    [43]C. Apetrei, M.L. Rodriguez-Mendez, J.A. De Saja, Amperometric tyrosinase based biosensor using an electropolymerized phosphate-doped polypyrrole film as an immobilization support. Application for detection of phenolic compounds. Electrochim. Acta,2011,56 (24),8919-8925.
    [44]N.C. Veitch, Horseradish peroxidase:a modern view of a classic enzyme. Phytochemistry,2004,65 (3),249-259.
    [45]N.C. Veitch, A.T. Smith, Horseradish peroxidase. Adv. Inorg. Chem.,2000,51, 107-162.
    [46]O. Ryan, M.R. Smyth, C.O. Fagain, Horseradish peroxidase:the analyst's friend. Essays Biochem.,1994,28,129-146.
    [47]A. Ahmadalinezhad, A.C. Chen, High-performance electrochemical biosensor for the detection of total cholesterol. Biosens. Bioelectron.,2011,26 (11),4508-4513.
    [48]M. Gu, J.W. Wang, Y.F. Tu, J.W. Di, Fabrication of reagentless glucose biosensors:A comparison of mono-enzyme GOD and bienzyme GOD-HRP systems. Sens. Actuators, B,2010,148 (2),486-491.
    [49]L.J. Bai, R. Yuan, Y.Q. Chai, Y.L. Yuan, L. Mao, Y. Zhuo, Highly sensitive electrochemical label-free aptasensor based on dual electrocatalytic amplification of Pt-AuNPs and HRP. Analyst,2011,136(9),1840-1845.
    [50]J. Xu, F.J. Shang, J. H.T. Luong, K. M. Razeeb, J. D. Glennon, Direct electrochemistry of horseradish peroxidase immobilized on a monolayer modified nanowire array electrode. Biosens. Bioelectron.,2010,25 (6),1313-1318.
    [51]M.S. Ureta-Zanartu, P. Bustos, M.C. Diez, M.L. Mora, C. Gutierrez, Electro-oxidation of chlorophenols at a gold electrode. Electrochim. Acta,2001,46 (16),2545-2551.
    [52]C. Pirvn, M. Marcu, A. Banu, Deactivation of gold electrode at chlorophenols electrooxidation. Rev. Chim.,2010,61 (6),585-589.
    [53]G. Bayramoglu, M.Y Anca, Enzymatic removal of phenol and p-chlorophenol in enzyme reactor:Horseradish peroxidase immobilized on magnetic beads. J. Hazard. Mater.,2008,156(1-3),148-155.
    [54]Y.C. Lai, S.C. Lin, Application of immobilized horseradish peroxidase for the removal of p-chlorophenol from aqueous solution. Process Biochem.,2005,40 (3-4), 1167-1174.
    [55]R. Woods, Chemisorption at electrodes. Hydrogen and oxygen on noble metals and their alloys, in:A.J. Bard (Ed.), Electroanalytical chemistry, A Series of Advances, vol.9, Marcel Dekker, New York, Basel,1976, pp.124-125.
    [56]S. Zhang, N. Wang, Y. Niu, C. Sun, Immobilization of glucose oxidase on gold nanoparticles modified Au electrode for the construction of biosensor. Sens. Actuators, B,2005,109 (2),367-374.
    [57]R.K. Shervedani, A.H. Mehrjardi, N. Zamiri, A novel method for glucose determination based on electrochemical impedance spectroscopy using glucose oxidase self-assembled biosensor. Bioelectrochemistry,2006,69 (2),201-208.
    [58]J.-L. Huang, Y.-C. Tsai, Direct electrochemistry and biosensing of hydrogen peroxide of horseradish peroxidase immobilized at multiwalled carbon nanotube/alumina-coated silica nanocomposite modified glassy carbon electrode. Sens. Actuators, B,2009,140 (1),267-272.
    [59]H.S. Yin, S.Y. Ai, W.J. Shi, L.S. Zhu, A novel hydrogen peroxide biosensor based on horseradish peroxidase immobilized on gold nanoparticles-silk fibroin modified glassy carbon electrode and direct electrochemistry of horseradish peroxidase. Sens. Actuators, B,2009,137 (2),747-753.
    [60]C.L. Xiang, Y.J. Zou, L.-X. Sun, F. Xu, Direct electrochemistry and enhanced electrocatalysis of horseradish peroxidase based on flowerlike ZnO-gold nanoparticle-Nafion nanocomposite. Sens. Actuators, B,2009,136 (1),158-162.
    [61]Z.H. Zhu, X. Li, Y. Wang, Y. Zeng, W. Sun, X.T. Huang, Direct electrochemistry and electrocatalysis of horseradish peroxidase with hyaluronic acid-ionic liquid-cadmium sulfide nanorod composite material. Anal. Chim. Acta, 2010,670(1-2),51-56.
    [62]X.B. Lu, Q. Zhang, L. Zhang, J.H. Li, Direct electron transfer of horseradish peroxidase and its biosensor based on chitosan and room temperature ionic liquid. Electrochem. Commun.,2006,8 (5),874-878.
    [63]E. Laviron, The use of linear potential sweep voltammetry and of a.c. voltammetry for the study of the surface electrochemical reaction of strongly adsorbed systems and of redox modified electrodes. J. Electroanal. Chem.,1979,100 (1-2),263-270.
    [64]X.J. Zhao, Z.B. Mai, X.H. Kang, X.Y. Zou, Direct electrochemistry and electrocatalysis of horseradish peroxidase based on clay-chitosan-gold nanoparticle nanocomposite. Biosens. Bioelectron.,2008,23 (7),1032-1038.
    [65]M.S. El-Deab, T. Ohsaka, Hydrodynamic voltammetric studies of the oxygen reduction at gold nanoparticles-electrodeposited gold electrodes. Electrochim. Acta, 2002,47 (26),4255-4261.
    [66]R. Toniolo, A. Pizzariello, S. Susmel, N. Dossi, G. Bontempelli, Simultaneous detection of peracetic acid and hydrogen peroxide by amperometry at Pt and Au electrodes. Electroanalysis,2006,18 (21),2079-2084.
    [67]B. Serra, B. Benito, L. Agui, A.J. Reviejo, J.M. Pingarroon, Graphite-teflon-peroxidase composite electrochemical biosensors. A tool for the wide detection of phenolic compounds. Electroanalysis,2001,13 (8-9),693-700.
    [68]S. Korkut, B. Keskinler, E. Erhan, An amperometric biosensor based on multiwalled carbon nanotube-poly(pyrrole)-horseradish peroxidase nanobiocomposite film for determination of phenol derivatives. Talanta,2008,76 (5),1147-1152.
    [69]Z. Ezerskis, Z. Jusys, Oxidation of chlorophenols on Pt electrode in alkaline solution studied by cyclic voltammetry, galvanostatic electrolysis, and gas chromatography-mass spectrometry. Pure Appl. Chem.,2001,73 (12),1929-1940.
    [70]X.M. Wang, J.M. Hu, J.Q. Zhang, C.N. Cao, Characterization of surface fouling of Ti/IrO2 electrodes in 4-chlorophenol aqueous solutions by electrochemical impedance spectroscopy. Electrochim. Acta,2008,53 (8),3386-3394.
    [71]T.I. Davidenko, O.V. Oseychuk, O.V. Sevastyanov, I.I. Romanovskaya, Peroxidase oxidation of phenols. Appl. Biochem. Microbiol.,2004,40 (6),542-546.
    [72]M.D. Morales, M.C. Gonzalez, B. Serra, J.B. Zhang, A.J. Reviejo, J.M. Pingarron, Biosensing of aromatic amines in reversed micelles with self-generation of hydrogen peroxide at glucose oxidase-peroxidase bienzyme electrodes. Electroanalysis,2005,17 (19),1780-1788.
    [73]J.H. Pei, X.Y. Li, Amperometric glucose enzyme sensor prepared by immobilizing glucose oxidase on CuPtCl6 chemically modified electrode. Electroanalysis,1999,11 (17),1266-1272.
    [1]庄贞静,肖丹,李毅,无酶葡萄糖电化学传感器的研究进展.化学研究与应用,2009,21(11),1486-1493.
    [2]S. Park, H. Boo, T.D. Chung, Electrochemical non-enzymatic glucose sensors. Anal. Chim. Acta,2006,556 (1),46-57.
    [3]M. Meyer, G. Wohlfahrt, J. Knablein, D. Schomburg, Aspects of the mechanism of catalysis of glucose oxidase:a docking, molecular mechanics and quantum chemical study. J. Comput.-Aided Mol. Des.,1998,12 (5),425-440.
    [4]R. Wilson, A.P.F. Turner, Glucose oxidase:an ideal enzyme. Biosens. Bioelectron., 1992,7(3),165-185.
    [5]D. Goodsell, Glucose oxidase. Molecule of the month:PCSB Protein Data Bank, 2006. Available:http://www.rcsb.org/pdb/101/motm.do?momID=77. doi: 10.2210/rcsb_pdb/mom_2006_5.
    [6]CM. Wong, K.H. Wong, X.D. Chen, Glucose oxidase:natural occurrence, function, properties and industrial applications. Appl. Microbiol. Biotechnol.,2008, 78 (6),927-38.
    [7]Z.X. Cao, Y.J. Zou, C.L. Xiang, L.-X. Sun, F. Xu, Amperometric glucose biosensor based on ultrafine platinum nanoparticles. Anal. Lett.,2007,40 (11), 2116-2127.
    [8]Y.X. Huang, W.J. Zhang, H. Xiao, G.X. Li, An electrochemical investigation of glucose oxidase at a CdS nanoparticles modified electrode. Biosens. Bioelectron., 2005,21 (5),817-821.
    [9]Z.H. Dai, J. Ni, X.H. Huang, G.F. Lu, J.C. Bao, Direct electrochemistry of glucose oxidase immobilized on a hexagonal mesoporous silica-MCM-41 matrix. Bioelectrochemistry,2007,70 (2),250-256.
    [10]P.A. Ash, K.A. Vincent, Spectroscopic analysis of immobilised redox enzymes under direct electrochemical control. Chem. Commun.,2012,48 (10),1400-1409.
    [11]M.J. Barber, A.J. Trimboli, S. Nomikos, E.T. Smith, Direct electrochemistry of the flavin domain of assimilatory nitrate reductase:effects of NAD+ and NAD+ analogs. Arch. Biochem. Biophys.,1997,345 (1),88-96.
    [12]F.A. Armstrong, G.S. Wilson, Recent developments in faradaic bioelectrochemistry. Electrochim. Acta,2000,45 (15-16),2623-2645.
    [13]H. Faridnouri, H. Ghourchian, S. Hashemnia, Direct electron transfer enhancement of covalently bound tyrosinase to glassy carbon via Woodward's reagent K. Bioelectrochemistry,2011,82 (1),1-9.
    [14]A.-E. Radi, X. Munoz-Berbel, M. Cortina-Puig, J.-L. Marty, Novel protocol for covalent immobilization of horseradish peroxidase on gold electrode surface. Electroanalysis,2009,21 (6),696-700.
    [15]Z.J. Yang, Y.Y. Ren, Y.C. Zhang, J. Li, H.B. Li, X.C. Huang, X.Y. Hu, Q. Xu, Nanoflake-like SnS2 matrix for glucose biosensing based on direct electrochemistry of glucose oxidase. Biosens. Bioelectron.,2011,26 (11),4337-4341.
    [16]Z.H. Dai, G.J. Shao, J.M. Hong, J.C. Bao, J. Shen, Immobilization and direct electrochemistry of glucose oxidase on a tetragonal pyramid-shaped porous ZnO nanostructure for a glucose biosensor. Biosens. Bioelectron.,2009,24 (5),1286-1291.
    [17]B.-Y. Wu, S.-H. Hou, F. Yin, Z.-X. Zhao, Y.-Y. Wang, X.-S. Wang, Q. Chen, Amperometric glucose biosensor based on multilayer films via layer-by-layer self-assembly of multi-wall carbon nanotubes, gold nanoparticles and glucose oxidase on the Pt electrode. Biosens. Bioelectron.,2007,22 (12),2854-2860.
    [18]C. Dhand, M. Das, M. Datta, B.D. Malhotra, Recent advances in polyaniline based biosensors. Biosens. Bioelectron.,2011,26 (6),2811-2821.
    [19]Q. Ran, R. Peng, C. Liang, S.Q. Ye, YZ. Xian, W.J. Zhang, L.T. Jin, Covalent immobilization of horseradish peroxidase via click chemistry and its direct electrochemistry. Talanta,2011,83 (5),1381-1385.
    [20]H.Y Liu, N.F. Hu, Study on direct electrochemistry of glucose oxidase stabilized by cross-linking and immobilized in silica nanoparticle films. Electroanalysis,2007, 19(7-8),884-892.
    [21]S.B. Bankar, M.V. Bule, R.S. Singhal, L.Ananthanarayan, Glucose oxidase-An overview. Biotechnol. Adv.,2009,27 (4),489-501.
    [22]J.W. Li, J.J. Yu, F.Q. Zhao, B.Z. Zeng, Direct electrochemistry of glucose oxidase entrapped in nano gold particles-ionic liquid-N,N-dimethylformamide composite film on glassy carbon electrode and glucose sensing. Anal. Chim. Acta, 2007,587 (1),33-40.
    [23]Y. Wang, R. Yuan, Y.Q. Chat, W.J. Li, Y. Zhuo, Y.L. Yuan, J.J. Li, Direct electron transfer:Electrochemical glucose biosensor based on hollow Pt nanosphere functionalized multiwall carbon nanotubes. J. Mol. Catal. B:Enzym.,2011,71 (3-4), 146-151.
    [24]Y.L. Zhai, S.Y. Zhai, G.F. Chen, K. Zhang, Q.L. Yue, L. Wang, J.F. Liu, J.B. Jia, Effects of morphology of nanostructured ZnO on direct electrochemistry and biosensing properties of glucose oxidase. J. Electroanal. Chem.,2011,656 (1-2), 198-205.
    [25]F.X. Hu, S.H. Chen, C.Y, Wang, R. Yuan, Y.Q. Chai, Y. Xiang, C. Wang, ZnO nanoparticle and multiwalled carbon nanotubes for glucose oxidase direct electron transfer and electrocatalytic activity investigation. J. Mol. Catal. B:Enzym.,2011,72 (3-4),298-304.
    [26]Q. Liu, X. Lu, J. Li, X. Yao, J. Li, Direct electrochemistry of glucose oxidase and electrochemical biosensing of glucose on quantum dots/carbon nanotubes electrodes. Biosens. Bioelectron.,2007,22 (12),3203-3209.
    [27]Y. Shao, J. Wang, H. Wu, J. Liu, I.A. Aksay, Y. Lin, Graphene based electrochemical sensors and biosensors:A review. Electroanalysis,2010,22 (10), 1027-1036.
    [28]C.Y. Deng, J.H. Chen, X.L. Chen, C.H. Xiao, L.H. Nie, S.Z. Yao, Direct electrochemistry of glucose oxidase and biosensing for glucose based on boron-doped carbon nanotubes modified electrode. Biosens. Bioelectron.,2008,23 (8),1272-1277.
    [29]X.D. Shangguan, H.F. Zhang, J.B. Zheng, Direct electrochemistry of glucose oxidase based on its direct immobilization on carbon ionic liquid electrode and glucose sensing. Electrochem. Commun.,2008,10 (8),1140-1143.
    [30]Y.Y. Li, H J. Schluesener, S. Xu, Gold nanoparticle-based biosensors. Gold Bull. 2010,43 (1),29-41.
    [31]鞠熀先,纳米生物传感研究.化学传感器,2008,28(4),10-12.
    [32]M.M. Rahman, A.J.S. Ahammad, J.-H. Jin, S.J. Ahn, J.-J. Lee, A comprehensive review of glucose biosensors based on nanostructured metal-oxides. Sensors,2010,10 (5),4855-4886.
    [33]J.R. Chen, Y.Q. Miao, N.Y He, X.H. Wu, S.J. Li, Nanotechnology and biosensors. Biotechnol. Adv.,2004,22 (7),505-518.
    [34]X.Q. Zhang, Q. Guo, D.X. Cui, Recent advances in nanotechnology applied to biosensors. Sensors,2009,9 (2),1033-1053.
    [35]D. Feng, F. Wang, Z.L. Chen, Electrochemical glucose sensor based on one-step construction of gold nanoparticle-chitosan composite film. Sens. Actuators, B,2009, 138 (2),539-544.
    [36]O. Yehezkeli, Y.-M. Yan, I. Baravik, R. Tel-Vered, I. Willner, Integrated oligoaniline-cross-linked composites of Au nanoparticles/ glucose oxidase electrodes: a generic paradigm for electrically contacted enzyme systems. Chem. Eur. J.,2009,15 (11),2674-2679.
    [37]X. Chu, D.X. Duan, G.L. Shen, R.Q. Yu, Amperometric glucose biosensor based on electrodeposition of platinum nanoparticles onto covalently immobilized carbon nanotube electrode. Talanta,2007,71 (5),2040-2047.
    [38]Z.H. Wen, S.Q. Ci, J.H. Li, Pt nanoparticles inserting in carbon nanotube arrays: nanocomposites for glucose biosensors. J. Phys. Chem. C,2009,113 (31), 13482-13487.
    [39]C.-H. Lee, S.-C. Wang, C.-J. Yuan, M.-F. Wen, K.-S. Chang, Comparison of amperometric biosensors fabricated by palladium sputtering, palladium electrodeposition and Nafion/carbon nanotube casting on screen-printed carbon electrodes. Biosens. Bioelectron.,2007,22 (6),877-884.
    [40]胡军,我国电化学血糖传感器的产业化发展.传感器世界,2008,12,6-11.
    [41]J.D. Newman, A.P.F. Turner, Home blood glucose biosensors:a commercial perspective. Biosens. Bioelectron.,2005,20 (12),2435-2453.
    [42]F.S. Saleh, L.Q. Mao, T. Ohsaka, Development of a dehydrogenase-based glucose anode using a molecular assembly composed of nile blue and functionalized SWCNTs and its applications to a glucose sensor and glucose/O2 biofuel cell. Sens. Actuators, B,2011,152(1),130-135.
    [43]R.F. de Oliveira, M. L. de Moraes, ON. Oliveira, Jr., M. Ferreira, Exploiting cascade reactions in bienzyme layer-by-layer films. J. Phys. Chem. C,2011,115 (39), 19136-19140.
    [44]M.J. Moehlenbrock, M.T. Meredith, S.D. Minteer, Bioelectrocatalytic oxidation of glucose in CNT impregnated hydrogels:advantages of synthetic enzymatic metabolon formation. ACS Catal.,2012,2 (1),17-25.
    [45]J.T. Zhang, C.C. Qiu, H.Y. Ma, X.Y. Liu, Facile fabrication and unexpected electrocatalytic activity of palladium thin films with hierarchical architecture. J. Phys. Chem. C,2008,112 (36),13970-13975.
    [46]Q.S. Chen, S.G. Sun, J.W. Yan, J.T. Li, Z.Y. Zhou, Electrochemical preparation and structural characterization of Co thin films and their anomalous IR properties. Langmuir,2006,22 (25),10575-10583.
    [47]S.X. Zhang, N. Wang, Y.M. Niu, C.Q. Sun, Immobilization of glucose oxidase on gold nanoparticles modified Au electrode for the construction of biosensor. Sens. Actuators, B,2005,109 (2),367-374.
    [48]R.K. Shervedani, A.H. Mehrjardi, N. Zamiri, A novel method for glucose determination based on electrochemical impedance spectroscopy using glucose oxidase self-assembled biosensor. Bioelectrochemistry,2006,69 (2),201-208.
    [49]F. Patolsky, M. Zayats, E. Katz, I. Willner, Precipitation of an insoluble product on enzyme monolayer electrodes for biosensor applications:characterization by Faradaic impedance spectroscopy, cyclic voltammetry, and microgravimetric quartz crystal microbalance analyse. Anal. Chem.,1999,71 (15),3171-3180.
    [50]H.Y. Ma, C. Yang, S.H. Chen, Y.L. Jiao, S.X. Huang, D.G. Li, J.L. Luo, Electrochemical investigation of dynamic interfacial processes at 1-octadecanethiol-modified copper electrodes in halide-containing solutions. Electrochim. Acta,2003,48 (28),4277-4289.
    [51]H.Y. Ma, L.-Y. Ou Yang, N. Pan, S.-L. Yau, J.Z. Jiang, K. Itaya, Ordered molecular assemblies of substituted bis(phthalocyaninato) rare earth complexes on Au(111):in situ scanning tunneling microscopy and electrochemical studies. Langmuir,2006,22 (5),2105-2111.
    [52]X.J. Wu, H.Y. Ma, S.H. Chen, Z.Y. Xu, A.F. Sui, General equivalent circuits for Faradaic electrode processes under electrochemical reaction control. J. Electrochem. Soc.,1999,146 (5),1847-1853.
    [53]G. Wang, N.M. Thai, S.-T. Yau, Preserved enzymatic activity of glucose oxidase immobilized on unmodified electrodes for glucose detection. Biosens. Bioelectron., 2007,22(9-10),2158-2164.
    [54]I. Tinoco, K. Kauer, J.C. Wang, Physical chemistry-principles and applications in biological sciences, Prentice-Hall, Englewood Cliffs, New Jersey,1978, p.606.
    [55]E. Laviron,.The use of linear potential sweep voltammetry and of a.c. voltammetry for the study of the surface electrochemical reaction of strongly adsorbed systems and of redox modified electrodes. J. Electroanal. Chem.,1979,100 (1-2),263-270.
    [56]R.F. Gao, J.B. Zheng, Amine-terminated ionic liquid functionalized carbon nanotube-gold nanoparticles for investigating the direct electron transfer of glucose oxidase. Electrochem. Commun.,2009,11 (3),608-611.
    [57]F.H. Li, J.X. Song, F. Li, X.D. Wang, Q.X. Zhang, D.X. Han, A. Ivaska, L. Niu, Direct electrochemistry of glucose oxidase and biosensing for glucose based on carbon nanotubes@SnO2-Au composite. Biosens. Bioelectron.,2009,25 (4),883-888.
    [58]Y.H. Wu, S.S. Hu, Direct electrochemistry of glucose oxidase in a colloid Au-dihexadecylphosphate composite film and its application to develop a glucose biosensor. Bioelectrochemistry,2007,70 (2),335-341.
    [59]Q.J. Chi, S.J. Dong, Flow-injection analysis of glucose at an amperometric glucose sensor based on electrochemical deposition of palladium and glucose oxidase on a glassy carbon electrode. Anal. Chim. Acta,1993,278 (1),17-23.
    [60]C.X. Lei, H. Wang, G.L. Shen, R.Q. Yu, Immobilization of enzymes on the nano-Au film modified glassy carbon electrode for the determination of hydrogen peroxide and glucose. Electroanalysis,2004,16 (9),736-740.
    [61]R.A. Kamin, G.S. Wilson, Rotating ring-disk enzyme electrode for biocatalysis kinetic studies and characterization of the immobilized enzyme layer. Anal. Chem. 1980,52(8),1198-1205.
    [62]J.H. Pei, X.-Y. Li, Amperometric glucose enzyme sensor prepared by immobilizing glucose oxidase on CuPtl6 chemically modified electrode. Electroanalysis,1999,11 (17),1266-1272.
    [1]K. Rajeshwar, J.G. Ibanez, G.M. Swain, Electrochemistry and the environment. J. Appl. Electrochem.,1994,24 (11),1077-1091.
    [2]Z. Sun, B. Li, X. Hu, M. Shi, Q. Hou, Y. Peng, Electrochemical dechlorination of chloroform in neutral aqueous solution on palladium/foam-nickel and palladium/polymeric pyrrole film/foam-nickel electrodes. J. Environ. Sci.,2008,20 (3),268-272.
    [3]李炳焕,黄艳娥,刘会媛,电化学催化降解水中有机污染物的研究进展.环境污染治理技术与设备,2002,3(2),23-27.
    [4]D. Simonsson, Electrochemistry for a cleaner environment. Chem. Soc. Rev., 1997,26(3),181-189.
    [5]张胜寒,边娜,韩丽燕,电化学水处理技术的研究和应用.电力环境保护,2009,25(5),46-48.
    [6]汪涵,电化学技术在环保领域的应用.化工环保,2005,25(5),361-363.
    [7]贾金平,申哲民,周红,电化学方法治理废水的研究与进展.上海环境科学,1999,18(1),29-32.
    [8]Y.X. Wei, Y.M. Wang, X. Zhang, T.W. Xu, Treatment of simulated brominated butyl rubber wastewater by bipolar membrane electrodialysis. Sep. Purif. Technol., 2011,80(2),196-201.
    [9]S.K. Nataraj, K.M. Hosamani, T.M. Aminabhavi, Potential application of an electrodialysis pilot plant containing ion-exchange membranes in chromium removal. Desalination,2007,217 (1-3),181-190.
    [10]S. Koter, A. Warszawski, Electromembrane processes in environment protection. Pol. J. Environ. Stud.,2000,9 (1),45-56.
    [11]E. Butler, Y.-T. Hung, R.Y.-L. Yeh, M.S. Al Ahmad, Electrocoagulation in wastewater treatment. Water,2011,3 (2),495-525.
    [12]C.P. Nanseu-Njiki, S.R. Tchamango, P.C. Ngom, A. Darchen, E. Ngameni, Mercury(Ⅱ) removal from water by electrocoagulation using aluminium and iron electrodes. J. Hazard. Mater.,2009,168 (2-3),1430-1436.
    [13]M.Y.A. Mollah, P. Morkovsky, J.A.G. Gomes, M. Kesmez, J. Parga, D.L. Cocke, Fundamentals, present and future perspectives of electrocoagulation. J. Hazard. Mater.,2004,114(1-3),199-210.
    [14]M.Y.A. Mollah, R. Schennach, J.R. Parga, D.L. Cocke, Electrocoagulation (EC)-science and applications. J. Hazard. Mater.,2001,84 (1),29-41.
    [15]L.H. Cheng, X.J. Bi, C.Q. Liu, Advanced treatment of secondary sewage effluent by iron-carbon internal electrolysis. Adv. Mater. Res.,2011,183-185,291-295.
    [16]X.Z. Cao, Y.M. Li, Treatment of linear alkylbenzene sulfonate (LAS) wastewater by internal electrolysis-biological contact oxidation process. Water Sci. Technol., 2011,64(1),147-154.
    [17]S.H. Yuan, J. Kang, X.H. Wu, L.L. Wang, J. Chen, X.H. Lu, Development of a novel internal electrolysis system by iron connected with carbon:treatment of nitroaromatic compounds and case of engineering application. J. Environ. Eng.,2010, 136 (9),975-982.
    [18]G.H. Chen, Electrochemical technologies in wastewater treatment. Sep. Purif. Technol.,2004,38(1),11-41.
    [19]C.A. Martinez-Huitle, S. Ferro, Electrochemical oxidation of organic pollutants for the wastewater treatment:direct and indirect processes. Chem. Soc. Rev.,2006,35 (12),1324-1340.
    [20]S.J. Chung, K.C. Pillai, I.S. Moon, A sustainable environmentally friendly NOx removal process using Ag(Ⅱ)/Ag(Ⅰ)-mediated electrochemical oxidation. Sep. Purif. Technol.,2009,65 (2),156-163.
    [21]T. Raju, S.J. Chung, I.S. Moon, Novel process for simultaneous removal of NOx and SO2 from simulated flue gas by using a sustainable Ag(Ⅰ)/Ag(Ⅱ) redox mediator. Environ. Sci. Technol.,2008,42 (19),7464-7469.
    [22]M. Matheswaran, S. Balaji, S.J. Chung, I.S. Moon, Mediated electrochemical oxidation of phenol in continuous feeding mode using Ag (Ⅱ) and Ce (Ⅳ) mediator ions in nitric acid:A comparative study. Chem. Eng. J.,2008,144 (1),28-34.
    [23]C.M. Goncea, Phenol mediated electrooxidation with Ce4+/3+. Polarization curves. Rev. Chim.,2001,52 (1-2),38-40.
    [24]V.V. Kokovkin, S.J. Chung, S. Balaji, M. Matheswaran, I.S. Moon, Electrochemical cell current requirements for toxic organic waste destruction in Ce(Ⅳ)-mediated electrochemical oxidation process. Korean J. Chem. Eng.,2007,24 (5),749-756.
    [25]C.A.C. Sequeira, D.M.F. Santos, P.S.D. Brito, Mediated and non-mediated electrochemical oxidation of isopropanol. Appl. Surf. Sci.,2006,252 (17), 6093-6096.
    [26]M. Matheswaran, S.J. Chung, I.S. Moon, Cobalt(Ⅲ)-mediated oxidative destruction of phenol using divided electrochemical cell. Korean J. Chem. Eng.,2008, 25(5),1031-1035.
    [27]F. Bringmann, K. Ebert, U. Galla, H. Schmieder, Electrochemical mediators for total oxidation of chlorinated hydrocarbons:formation kinetics of Ag(Ⅱ), Co(Ⅲ), and Ce(IV). J. Appl. Electrochem.,1995,25 (9),846-851.
    [28]C.T. Wang, Y.J. Hua, Y.X. Tong, A novel Electro-Fenton-Like system using PW11O39Fe(Ⅲ)(H2O)4-as an electrocatalyst for wastewater treatment. Electrochim. Acta,2010,55 (22),6755-6760.
    [29]朱晓军,朱建华,脱氯技术现状与研究进展.化工生产与技术,2005,12(1),24-28.
    [30]何艳,徐颖华,马淳安,氯代有机污染物的电化学还原脱氯降解技术研究进展.广州化工,2011,39(9),27-30.
    [31]D. Wei, T. Kameya, K. Urano, Environmental management of pesticidal POPs in China:Past, present and future. Environ. Int.,2007,33 (7),894-902.
    [32]W.K. Chu, M.H. Wong, J. Zhang, Accumulation, distribution and transformation of DDT and PCBs by phragmites australis and oryza sativa L.:Ⅱ. Enzyme study. Environ. Geochem. Health,2006,28 (1-2),169-181.
    [33]B.-W. Zhu, T.-T. Lim, J. Feng, Reductive dechlorination of 1,2,4-trichlorobenzene with palladized nanoscale Fe0 particles supported on chitosan and silica. Chemosphere,2006,65 (7),1137-1145.
    [34]H.-L. Lien, W.-X. Zhang, Nanoscale Pd/Fe bimetallic particles:Catalytic effects of palladium on hydrodechlorination. Appl. Catal. B:Environ.,2007,77 (1-2), 110-116.
    [35]L.J. Matheson, P.G. Tratnyek, Reductive dehalogenation of chlorinated methanes by iron metal. Environ. Sci. Technol.,1994,28 (12),2045-2053.
    [36]W.X. Zhang, Nanoscale iron particles for environmental remediation:An overview. J. Nanopart. Res.,2003,5 (3-4),323-332.
    [37]W.-X. Zhang, C.-B. Wang, H.-L. Lien, Treatment of chlorinated organic contaminants with nanoscale bimetallic particles. Catal. Today,1998,40 (4),387-395.
    [38]X.Y. Wang, C. Chen, H.L. Liu, J. Ma, Characterization and evaluation of catalytic dechlorination activity of Pd/Fe bimetallic nanoparticles. Ind. Eng. Chem. Res.,2008,47 (22),8645-8651.
    [39]C. Grittini, M. Malcomson, Q. Fernando, N. Korte, Rapid dechlorination of polychlorinated biphenyls on the surface of a Pd/Fe bimetallic system. Environ. Sci. Technol.,1995,29(11),2898-2900.
    [40]J. Xu, A. Dozier, D. Bhattacharyya, Synthesis of nanoscale bimetallic particles in polyelectrolyte membrane matrix for reductive transformation of halogenated organic compounds. J. Nanopart. Res.,2005,7 (4-5),449-467.
    [41]B. Schrick, A.D. Blough, J.L. Jones, T.E. Mallouk, Hydrodechlorination of trichloroethylene to hydrocarbons using bimetallic nickel-iron nanoparticles. Chem. Mater.,2002,14 (12),5140-5147.
    [42]L.-H. Chen, C.-C. Huang, H.-L. Lien, Bimetallic iron-aluminum particles for dechlorination of carbon tetrachloride. Chemosphere,2008,73 (5),692-697.
    [43]C.J. Lin, S.L. Lo, Y.H. Liou, Dechlorination of trichloroethylene in aqueous solution by noble metal-modified iron. J. Hazard. Mater.,2004,116 (3),219-228.
    [44]N. Hoshi, K. Sasaki, S. Hashimoto, Y. Hori, Electrochemical dechlorination of chlorobenzene with a mediator on various metal electrodes. J. Electroanal. Chem., 2004,568,267-271.
    [45]J. Farrell, N. Melitas, M. Kason, T. Li, Electrochemical and column investigation of iron-mediated reductive dechlorination of trichloroethylene and perchloroethylene. Environ. Sci. Technol.,2000,34 (12),2549-2556.
    [46]Y.L. Jiao, C.C. Qiu, L.H. Huang, K.X. Wu, H.Y. Ma, S.H. Chen, L.M. Ma, D.L. Wu, Reductive dechlorination of carbon tetrachloride by zero-valent iron and related iron corrosion. Appl. Catal., B,2009,91 (1-2),434-440.
    [47]B. Yang, G. Yu, J. Huang, Electrocatalytic reductive dechlorination of 2,4,5-PCB in aqueous solution by palladium-modified titanium mesh as the cathode. Acta Phys. Chim. Sin.,2006,22 (3),306-311.
    [48]A.I. Tsyganok, K. Otsuka, Selective dechlorination of chlorinated phenoxy herbicides in aqueous medium by electrocatalytic reduction over palladium-loaded carbon felt. Appl. Catal., B,1999,22 (1),15-26.
    [49]A.Z. Li, X. Zhao, Y.N. Hou, H.J. Liu, L.Y. Wu, J.H. Qu, The electrocatalytic dechlorination of chloroacetic acids at electrodeposited Pd/Fe-modified carbon paper electrode. Appl. Catal., B,2012,111-112,628-635.
    [50]D. Mishra, Z.H. Liao, J. Farrell, Understanding reductive dechlorination of trichloroethene on boron-doped diamond film electrodes. Environ. Sci. Technol., 2008,42 (24),9344-9349.
    [51]X.H. Mao, A. Ciblak, K. Baek, M. Amiri, R. Loch-Caruso, A.N. Alshawabkeh, Optimization of electrochemical dechlorination of trichloroethylene in reducing electrolytes. Water Res.,2012,46 (6),1847-1857.
    [52]L.F. Yin, Y.R. Dai, J.F. Niu, Y.P. Bao, Z.Y. Shen, Rapid dechlorination of chlorophenols in aqueous solution by [Ni/Cu] microcell. J. Hazard. Mater.,2012, 209-210,414-420.
    [53]W.J. Li, H.Y. Ma, L.H. Huang, Y. Ding, Well-defined nanoporous palladium for electrochemical reductive dechlorination. Phys. Chem. Chem. Phys.,2011,13 (13), 5565-5568.
    [54]Y.L. Jiao, D.L. Wu, H.Y. Ma, C.C. Qiu, J.T. Zhang, L.M. Ma, Electrochemical reductive dechlorination of carbon tetrachloride on nanostructured Pd thin films. Electrochem. Commun.,2008,10 (10),1474-1477.
    [55]J. Choi, K. Choi, W. Lee, Effects of transition metal and sulfide on the reductive dechlorination of carbon tetrachloride and 1,1,1-trichloroethane by FeS. J. Hazard. Mater.,2009,162(2-3),1151-1158.
    [56]Y.-X. Chen, S.-P. Chen, Q.-S. Chen, Z.-Y. Zhou, S.-G. Sun, Electrochemical preparation of iron cuboid nanoparticles and their catalytic properties for nitrite reduction. Electrochim. Acta,2008,53 (23),6938-6943.
    [57]D. Grujicic, B. Pesic, Iron nucleation mechanisms on vitreous carbon during electrodeposition from sulfate and chloride solutions. Electrochim. Acta,2005,50 (22),4405-4418.
    [58]Y.-X. Chen, S.-P. Chen, Z.-Y. Zhou, N. Tian, Y.-X. Jiang, S.-G. Sun, Y. Ding, Z.L. Wang, Tuning the shape and catalytic activity of Fe nanocrystals from rhombic dodecahedra and tetragonal bipyramids to cubes by electrochemistry. J. Am. Chem. Soc.,2009,131 (31),10860-10862.
    [59]R. Woods, Chemisorption at electrodes. Hydrogen and oxygen on noble metals and their alloys, In:Electroanalytic Chemistry:A Series of Advances; A.J. Bard (Ed.), Marcel Dekker, New York,1976, Vol.9, p.49-117.
    [60]Y.-H. Shih, Y.-C. Chen, M.-Y. Chen, Y.-T. Tai, C.-P. Tso, Dechlorination of hexachlorobenzene by using nanoscale Fe and nanoscale Pd/Fe bimetallic particles. Colloids Surf., A,2009,332 (2-3),84-89.
    [61]H. Choi, S.R. Al-Abed, S. Agarwal, D.D. Dionysiou, Synthesis of reactive nano-Fe/Pd bimetallic system-impregnated activated carbon for the simultaneous adsorption and dechlorination of PCBs. Chem. Mater.,2008,20 (11),3649-3655.
    [62]P.N. Bartlett, B. Gollas, S. Guerin, J. Marwan, The preparation and characterisation of H1-e palladium films with a regular hexagonal nanostructure formed by electrochemical deposition from lyotropic liquid crystalline phases. Phys. Chem. Chem. Phys.,2002,4 (15),3835-3842.
    [63]T. Li, J. Farrell, Reductive dechlorination of trichloroethene and carbon tetrachloride using iron and palladized-iron cathodes. Environ. Sci. Technol.,2000,34 (1),173-179.
    [64]J. Feng, T.-T. Lim, Iron-mediated reduction rates and pathways of halogenated methanes with nanoscale Pd/Fe:Analysis of linear free energy relationship. Chemosphere,2007,66 (9),1765-1774.
    [65]X.Y. Wang, C. Chen, Y. Chang, H.L. Liu, Dechlorination of chlorinated methanes by Pd/Fe bimetallic nanoparticles. J. Hazard. Mater.,2009,161 (2-3), 815-823.
    [66]Y.-H. Kim, E.R. Carraway, Dechlorination of pentachlorophenol by zero valent iron and modified zero valent irons. Environ. Sci. Technol.,2000,34 (10),2014-2017.
    [67]G.V. Lowry, M. Reinhard, Hydrodehalogenation of 1-to 3-carbon halogenated organic compounds in water using a palladium catalyst and hydrogen gas. Environ. Sci. Technol.,1999,33 (11),1905-1910.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700