低维(氢)氧化镍/碳杂化纳米材料的可控制备及其在葡萄糖传感器中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,杂化纳米材料因其独特的形态和结构而呈现出诸多奇异的物理、化学性质,在催化、生物、医学以及光电磁等领域具有广阔的应用前景。研究表明,杂化纳米材料可实现各纳米材料间优势互补,从而研制出性能优异的新型功能材料,因此探索杂化纳米材料的可控制备具有重要的理论及实际意义。本论文重点研究低维石墨烯/Ni(OH)_2及NiO/C杂化纳米材料的可控制备及其在葡萄糖传感器中的应用,探讨杂化纳米材料形态结构与其电化学性质之间的关系。
     石墨烯/Ni(OH)_2杂化纳米材料的制备及其电化学应用。先分别合成含叠氮端基的聚乙烯基吡咯烷酮(PVP-N_3)和炔基修饰的氧化石墨烯,而后通过两者之间的click反应,将PVP键接到氧化石墨烯表面;随后以NiCl2为镍源,氧化石墨烯表面接枝的PVP为模板和成核中心,在碱性条件下制备氧化石墨烯/Ni(OH)_2复合物,并经化学还原制得石墨烯/Ni(OH)_2杂化纳米材料。在此基础上,用所制得的石墨烯/Ni(OH)_2杂化纳米材料修饰玻碳电极,构筑无酶葡萄糖传感器,用于葡萄糖检测,显示出较高的灵敏度和较宽的线性响应,其线性响应浓度范围和检测限分别为0.3–750μM和30nM(S/N=3)。
     核壳结构Ni(SO_4)_(0.3)(OH)_(1.4)/C杂化纳米带合成研究。先以硫酸镍和乙酸钠为原料,经水热法合成Ni(SO_4)_(0.3)(OH)_(1.4)纳米带,研究发现SO42–离子在反应体系中起结构导向作用并诱使晶体各向异性生长,在[Ni2+]=0.025M,[Ni2+]/[OAc]=1/4,反应温度和时间分别为180oC和48h的最佳条件下,成功合成出超长纳米带。随后以葡萄糖为碳源,采用水热碳化法对所合成的Ni(SO_4)_(0.3)(OH)_(1.4)纳米带前驱体进行碳包覆,成功制备出具有核壳结构的Ni(SO_4)_(0.3)(OH)_(1.4)/C杂化纳米带。系统研究了葡萄糖浓度对核壳结构纳米带碳层厚度的调控情况,实验结果表明,当葡萄糖浓度在1.125–6.750g/L范围变化时, Ni(SO_4)_(0.3)(OH)_(1.4)/C杂化纳米带的碳层厚度可由2nm渐增至18nm,葡萄糖浓度与碳层厚度几乎呈线性增长关系。此外,采用XRD、SEM、TEM、XPS和FTIR等现代分析测试技术分别对Ni(SO_4)_(0.3)(OH)_(1.4)纳米带水热碳包覆前后进行了研究。
     核壳结构NiO/C杂化纳米带合成及其葡萄糖传感作用。以前面合成的具有核壳结构的Ni(SO_4)_(0.3)(OH)_(1.4)/C杂化纳米带为原料,经热处理制备同样具有核壳结构的NiO/C杂化纳米带。系统考察了热处理温度对NiO结构和性能的影响,先采用FTIR及XRD研究纯Ni(SO_4)_(0.3)(OH)_(1.4)纳米带在热处理条件下的结构转变情况,而后采用SEM、循环伏安法及计时安培法研究纯NiO及核壳NiO/C杂化纳米带的形态及电化学性能。在此基础上,分别用所合成的NiO及NiO/C杂化纳米带构筑葡萄糖无酶传感器,并用于葡萄糖检测。系统研究了葡萄糖检测条件,在最佳测试条件下,NiO无酶传感器的葡萄糖氧化峰电流与其浓度在1–170μM范围内呈良好的线性关系,检测限为210nM。而NiO/C无酶葡萄糖传感器的线性范围为0.5–180μM,检测限为25.5nM。将NiO/C无酶传感器应用于血样中葡萄糖测定,其回收率在92.9–98.7%之间。
In recent years, hybrid nanomaterials have found prosperous applications in diversefields, such as catalysis, biology, iatrology, and photoelectromagnetic devices becauseof their peculiar morphologies and structures together with their fascinating physicaland chemical properties. Considering the fact that the synergistic effect has existed inhybrid nanomaterials as demonstrated by previous researches, it is therefore possible todevelop novel functional materials by integrating multicomponent nanoscale entitiesinto hybrid system. In this work, we focused our research on the synthesis of graphene/Ni(OH)_2and NiO/C nanomaterials with low-dimension and their application in glucosesensing. Additionally, the relationships between electrochemical properties and themorphology and structure of the resultant hybrid materials were also discussed.Synthesis and electrochemical performance of graphene/Ni(OH)_2hybrid nanomaterials.In this chapter, we demonstrated a facile method for the preparation of graphene/Ni(OH)_2hybrid nanomaterials. Firstly, azide-terminated poly(vinylpyrrolidone)(PVP-N_3) and alkyne functionalized graphene oxide (AGO) were separately prepared. Thenpolymer functionalized graphene oxide (PGO) was prepared by Cu(I) catalyzed clickcoupling of AGO with PVP-N_3. Subsequently, Ni(OH)_2nanoparticles were depositedonto graphene nanosheets using PGO as a template. Upon reduction with sodiumborohydride, graphene/Ni(OH)_2hybrid nanostructure was constructed. The as-preparedgraphene/Ni(OH)_2hybrid nanosheets were directly immobilized onto the surface ofglassy carbon electrode for glucose determination. This nonenzymatic glucose sensorexhibited a wider linearity range from0.3to750μM with a detection limit of30nM(S/N=3).
     Synthesis of Ni(SO_4)_(0.3)(OH)_(1.4)/C core‐shell nanobelts. Ni(SO_4)_(0.3)(OH)_(1.4)nanobelts havebeen synthesized via a simple template-free hydrothermal reaction in an aqueoussolution containing nickel sulfate and sodium acetate. It is found that the sulfate ions can play a capping agent role in crystal growth and result in anisotropic crystal growthin the dissolution-crystallization process. Under optimized conditions ([Ni2+]=25mM,[Ni2+]/[Ac]=1/4,180oC,48h), Ni(SO_4)_(0.3)(OH)_(1.4)nanobelts have been successfullysynthesized. Subsequently, core-shell Ni(SO_4)_(0.3)(OH)_(1.4)/C composite nanobelts havebeen synthesized from the carbonization and polymerization of glucose under a mildhydrothermal condition in the presence of newly produced Ni(SO_4)_(0.3)(OH)_(1.4)nanobelt.The shell thickness of the core-shell nanobelts can be varied from2to18nm byadjusting the concentration of glucose ranged from1.125–6.750g/L. In addition, XRD,SEM, TEM, XPS, and FTIR techniques were used to characterize the nanobelts beforeand after carbon deposition.
     Synthesis of NiO/C core‐shell nanobelts and their applications for glucose sensing. Thestructural evolution from core-shell Ni(SO_4)_(0.3)(OH)_(1.4)/C to NiO/C has been performedvia ex situ heat treatment. The influences of heat treatment temperature on the structureand properties of resultant NiO have been systematically investigated. Firstly, thestructural evolution from Ni(SO_4)_(0.3)(OH)_(1.4)to NiO has been studied by using FTIR andXRD spectroscopy. Subsequently, the morphology and electrochemical properties havebeen elevated by using SEM, cyclic voltammtery and chronoamperometry. Theas-prepared NiO and NiO/C composites were directly deposited onto the surface ofglassy carbon electrode (GCE) for nonenzymatic glucose determination. Underoptimized conditions, the as-fabricated NiO/GCE sensor exhibited a linearity rangefrom1to170μM glucose with a detection limit of210nM (S/N=3), while theNiO/C/GCE sensor exhibited a wider linearity range from0.5to180μM glucose witha detection limit of25.5nM (S/N=3). Additionally, the NiO/C/GCE sensor has beensuccessfully used for the assay of glucose in serum samples with good recovery,ranging from92.9%to98.7%.
引文
[1] Varghese B, Reddy MV, Yanwu Z, Lit C, Hoong TC, Subba Rao GV, Chowdari BVR, WeeATS, Lim CT, Sow CH. Fabrication of NiO nanowall electrodes for high performancelithium ion battery. Chem. Mater.2008,20:3360-3367.
    [2] Lee JW, Ko JM, Kim JD. Hierarchical microspheres based on α-Ni(OH)2nanosheetsintercalated with different anions: Synthesis, anion exchange, and effect of intercalatedanions on electrochemical capacitance. J. Phys. Chem. C2011,115:19445-1945.
    [3] Zhang K, Wang J, Lu X, Li L, Tang Y, Jia Z. Structural evolution of hydrothermal-synthesized Ni(SO4)0.3(OH)1.4nanobelts during ex situ heat treatment and in situ electronirradiation. J. Phys. Chem. C2009,113:142-147.
    [4] Yang M, Li J, Li H, Su LW, Wei JP, Zhou Z. Mesoporous slit-structured NiO forhigh-performance pseudocapacitors. Phys. Chem. Chem. Phys.2012,14:11048-11052.
    [5] Cui Y, Wang C, Wu S, Liu G, Zhang F, Wang T. Lotus-root-like NiO nanosheets andflower-like NiO microspheres: Synthesis and magnetic properties. CrystEngComm2011,13:4930-4934.
    [6] Buscaglia MT, Buscaglia V, Bottino C, Viviani M, Fournier R, Sennour M, Presto S,Marazza R, Nanni P. Morphological control of hydrothermal Ni(OH)2in the presence ofpolymers and surfactants: Nanocrystals, mesocrystals, and superstructures. Cryst. GrowthDes.2008,8:3847-3855.
    [7] Kuang D, Lei B, Pan Y, Yu X, Su C. Fabrication of novel hierarchical β-Ni(OH)2and NiOmicrospheres via an easy hydrothermal process. J. Phys. Chem. C2009,113:5508-5513.
    [8] Wang Y, Zhu Q, Zhang H. Fabrication of β-Ni(OH)2and NiO hollow spheres by a faciletemplate-free process. Chem. Commun.2005,5231-5233.
    [9] Anandan K, Rajendran V. Morphological and size effects of NiO nanoparticles viasolvothermal process and their optical properties. Mater. Sci. Semiconductor. Process.2011,14:43-47.
    [10] Song X, Gao L. Facile route to nanoporous NiO structures from the α-Ni(OH)2/EGprecursor and application in water treatment. J. Am. Ceram. Soc.2008,91:4105-4108.
    [11] Zhuo L, Ge J, Cao L, Tang B. Solvothermal synthesis of CoO, Co3O4, Ni(OH)2andMg(OH)2nanotubes. Cryst. Growth Des.2009,9:1-6.
    [12] Zhu T, Chen J, David Lou X. Highly efficient removal of organic dyes from wastewaterusing hierarchical NiO spheres with high surface area. J. Phys. Chem. C2012,116:6873-6878.
    [13] Song X, Gao L. Facile synthesis of polycrystalline NiO nanorods assisted by microwaveheating. J. Am. Ceram. Soc.2008,91:3465-3468.
    [14] Zhu Z, Zhang Y, Liu H, Wei N. Synthesis of original spherical α-Ni(OH)2architectures bymicrowave-assisted hydrothermal method and their in situ thermal convention to NiO.Superlattice Microst.2012,51:232-238.
    [15] Vijayakumar S, Nagamuthu S, Muralidharan G. Supercapacitor studies on NiO nanoflakessynthesized through a microwave route. ACS Appl. Mater. Inter.2013,5:2188-2196.
    [16] Zhu Z, Wei N, Liu H, He Z. Microwave-assisted hydrothermal synthesis of Ni(OH)2architectures and their in situ thermal convention to NiO. Adv. Powder Technol.2011,22:422-426.
    [17] Ren Y, Gao L. From three-dimensional flower-like α-Ni(OH)2nanostructures tohierarchical porous NiO nanoflowers: Microwave-assisted fabrication and supercapacitorproperties. J. Am. Ceram. Soc.2010,93:3560-3564.
    [18] Cao C, Guo W, Cui Z, Song W, Cai W. Microwave-assisted gas/liquid interfacial synthesisof flowerlike NiO hollow nanosphere precursors and their application as supercapacitorelectrodes. J. Mater. Chem.2011,21:3204-3209.
    [19] Zhang G, Chen Y, Qu B, Hu L, Mei L, Lei D, Li Q, Chen L, Li Q, Wang T. Synthesis ofmesoporous NiO nanospheres as anode materials for lithium ion batteries. Electrochim.Acta2012,80:140-147.
    [20] Spinner N, Mustain WE. Effect of nickel oxide synthesis conditions on its physicalproperties and electrocatalytic oxidation of methanol. Electrochim. Acta2011,56:5656-5666.
    [21] Xia C, Jun X, Ning W. Facile synthesis of NiO nanoflowers and their electrocatalyticperformance. Sensor. Actuat. B-Chem.2011,153:434-438.
    [22] Lee JW, Ahn T, Kim JH, Ko JM, Kima J-D. Nanosheets based mesoporous NiOmicrospherical structures via facile and template-free method for high performancesupercapacitors. Electrochim. Acta2011,56:4849-4857.
    [23] Inamdar AI, Kim Y, PawarSM, Kim JH, Im H, Kim H. Chemically grown, porous, nickeloxide thin-film for electrochemical supercapacitors. J. Power Sources2011,196:2393-2397.
    [24] Zhou W, YaoM, GuoL, Li Y, Li J, Yang S. Hydrazine-linked convergent self-assembly ofsophisticated concave polyhedrons of β-Ni(OH)2and NiO from nanoplate building blocks.J. Am. Chem. Soc.2009,131:2959-2964.
    [25] Cheng J, Cao G, Yang Y. Characterization of sol-gel-derived NiOx xerogels assupercapacitors. J. Power Sources2006,159:734-741.
    [26] Garcia-Miquel JL, Zhang Q, Allen SJ, Rougier A, Blyr A, Davies HO, Jones AC, LeedhamTJ, Williams PA, Impey SA. Nickel oxide sol-gel films from nickel diacetate forelectrochromic applications. Thin Solid Films2003,424:165-170.
    [27] Zayim OE, Turhan I, Tepehan FZ, Ozer N. Sol-gel deposited nickel oxide films forelectrochromic applications. Solar Energy Mater. Solar Cells2008,92:164-169.
    [28] Koro ec RC, Bukovec P. The role of thermal analysis in optimization of the electrochromiceffect of nickel oxide thin films, prepared by the sol-gel method. Thermochim. Acta2004,410:65-71.
    [29] Needham SA, Wang GX, Liu HK. Synthesis of NiO nanotubes for use as negativeelectrodes in lithium ion batteries. J. Power Sources2006,159:254-257.
    [30] Aravindan V, Kumar PS, Sundaramurthy J, Wong CL. Electrospun NiO nanofibers as highperformance anode material for Li-ion batteries. J. Power Sources2013,227:284-290.
    [31] Wang Y, Qin QZ. A nanocrystalline NiO thin-film electrode prepared by pulsed laserablation for Li-ion batteries. J. Electrochem. Soc.2002,149:873-878.
    [32] Nuli YN, Zhao SL, Qin QZ. Nanocrystalline tin oxides and nickel oxide film anodes forLi-ion batteries. J. Power Sources2003,114:113-120.
    [33] Zou Y, Wang Y. NiO nanosheets grown on graphene nanosheets as superior anode materialsfor Li-ion batteries. Nanoscale2011,3:2615-2620.
    [34] Zhong J, Wang XL, Xia XH, Gu CD. Self-assembled sandwich-like NiO film and itsapplication for Li-ion batteries. J. Alloy. Compd.2011,509:3889-3893.
    [35] Huang XH, Tu JP, Zhang CQ, Zhou F. Hollow microspheres of NiO as anode materials forlithium-ion batteries. Electrochim. Acta2010,55:8981-8985.
    [36] Huang XH, Wu JB, Lin Y, Guo RQ. NiO hollow spheres with stable capacity retention andenhanced rate capability for lithium ion batteries. Int. J. Electrochem. Sci.2013,8:1691-1700.
    [37] Wang C, WangD, Wang Q, Chen HJ. Fabrication and lithium storage performance ofthree-dimensional porous NiO as anode for lithium-ion battery. J. Power Sources2010,195:7432-7437.
    [38] Yuan YF, Xia XH, Wu JB, Yang JL. Hierarchically ordered porous nickel oxide array filmwith enhanced electrochemical properties for lithium ion batteries. Electrochem. Commun.2010,12:890-893.
    [39] Wu MS, Lin YP. Monodispersed macroporous architecture of nickel-oxide film as an anodematerial for thin-film lithium-ion batteries. Electrochim. Acta2011,56:2068-2073.
    [40] Varghese B, Reddy MV, Zhu YW, Chang SL. Fabrication of NiO nanowall electrodes forhigh performance lithium ion battery. Chem. Mater.2008,20:3360-3367.
    [41] Wang XH, Yang ZB, Sun XL, Li XW. NiO nanocone array electrode with high capacity andrate capability for Li-ion batteries. J. Mater. Chem.2011,21:9988-9996.
    [42] Huggins RA. Supercapacitors and electrochemical pulse sources. Solid State Ionics2000,134:179-195.
    [43] Arbizzani C, Mastragostino M, Soavi F. New trends in electrochemical supercapacitors. J.Power Sources2001,100:164-170.
    [44] Nomoto S, Nakata H, Yoshioka K, Yoshida A, Yoneda H. Advanced capacitors and theirapplication. J. Power Sources2001,97:807-811.
    [45] Conway BE. Transition from "supercapacitor" to "battery" behavior in electrochemicalenergy storage. J. Electrochem. Soc.1991,138:1539-1548.
    [46]朱修锋,景晓燕,张密林.金属氧化物超级电容器及其应用研究进展.功能材料与器件学报2002,8:326-330.
    [47] Patil UM, Salunkhe RR, Gurav KV, Lokhande CD. Chemically deposited nanocrystallineNiO thin films for supercapacitor application. Appl. Surf. Sci.2008,255:2603-2607.
    [48] Ren Y, Gao L. From three-dimensional flower-like α-Ni(OH)2nanostructures tohierarchical porous NiO nanoflowers: Microwave-assisted fabrication and supercapacitorproperties. J. Am. Ceram. Soc.2010,93:3560-3564.
    [49] Xia X, Tu J. Graphene sheet/porous NiO hybrid film for supercapacitor applications.Chem.-Eur. J.2011,17:10898-10905.
    [50] Lee JW, Ahn T, Kim JH, Ko JM, Kim JD. Nanosheets based mesoporous NiOmicrospherical structures via facile and template-free method for high performancesupercapacitors. Electrochim. Acta2011,56:4849-4857.
    [51] Han D, Jing X, Wang J, Yang P, Song D, Liu J. Porous lanthanum doped NiO microspheresfor supercapacitor application. J. Electroanal. Chem.2012,682:37-44.
    [52] Yan X, Tong X, Wang J, Gong C, Zhang M, Liang L. Rational synthesis of hierarchicallyporous NiO hollow spheres and their supercapacitor application. Mater. Lett.2013,95:1-4.
    [53] Paravannoor A. Chemical and structural stability of porous thin film NiO nanowire basedelectrodes for supercapacitors. Chem. Eng. J.2013,220:360-366.
    [54] Hasan M, Jamal M, Razeeb K M. Coaxial NiO/Ni nanowire arrays for high performancepseudocapacitor applications. Electrochim. Acta2012,60:193-200.
    [55] Zhu J, Jiang J, Jing p. Direct synthesis of porous NiO nanowall arrays on conductivesubstrates for supercapacitor application. J. Solid State Chem.2011,184:578-583.
    [56] Wu X, Xing W, Zhang L, Zhuo S. Nickel nanoparticles prepared by hydrazine hydratereduction and their application in supercapacitor. Adv. Powder Technol.2012,224:162-167.
    [57] Han D, Xu P, Jing X, Wang J. Trisodium citrate assisted synthesis of hierarchical NiOnanospheres with improved supercapacitor performance. J. Power Sources2013,235:45-53.
    [58] Kim SI, Lee JS, Ahn HJ, Song HK, Jang JH. Facile route to an efficient NiO supercapacitorwith a three-dimensional nanonetwork morphology. ACS Appl. Mater. Inter.2013,5:1596-1603.
    [59] Vijayakumar S, Nagamuthu S, Muralidharan G. Supercapacitor studies on NiO nanoflakessynthesized through a microwave route. ACS Appl. Mater. Inter.2013,5:2188-2196.
    [60] Ren B, Fan M, Liu Q, Wang J, Song D, Bai X. Hollow NiO nanofibers modified by citricacid and the performances as supercapacitor electrode. Electrochim. Acta2013,92:197-204.
    [61] Yan J, Fan Z. Advanced asymmetric supercapacitors based on Ni(OH)2/graphene andporous graphene electrodes with high energy density. Adv. Funct. Mater.2012,22:2632-2641.
    [62] Wang Y, Gai S, Li C, He F, Zhang M. Controlled synthesis and enhanced supercapacitorperformance of uniform pompon-like β-Ni(OH)2hollow microspheres. Electrochim. Acta2013,90:673-681.
    [63] Wang C, Nisar J, Ahuja R. Molecular simulation for gas adsorption at NiO (100) surface,ACS Appl. Mater. Inter.2012,4:5691-5697.
    [64] Hu JC, Zhu K, Chen LF, Yang JH, Li Z, Suchopar A, Richards R. Preparation and surfaceactivity of single-crystalline NiO (111) nanosheets with hexagonal holes: a semiconductornanospanner. Adv. Mater.2008,20:267-271.
    [65] Mattei G, Mazzoldi P, Post ML, Buso D, Guglielmi M, Martucci A. Cookie-like Au/NiOnanoparticles with optical gas-sensing properties. Adv. Mater.2007,19:561-564.
    [66] Wang ZJ, Li ZY, Sun JH, Zhang HN, Wang W, Zheng W, Wang C. Improved hydrogenmonitoring properties based on p-NiO/n-SnO2heterojunction composite nanofibers. J. Phys.Chem. C.2010,114:6100-6105.
    [67] Soleimanpour AM, Khare SV, Jayatissa AH. Enhancement of hydrogen gas sensing ofnanocrystalline nickel oxide by pulsed-laser irradiation. ACS Appl. Mater. Inter.2012,4:4651-4657.
    [68] Korotcenkov J, Han SD, Stetter JR. Review of electrochemical hydrogen sensor. Chem. Rev.2009,109:1402-1433.
    [69] Mu SX, Wu DZ, Wang Y, Wu ZP, Yang XP, Yang WT. Fabrication of nickel oxidenanocomposite layer on a flexible polyimide substrate via ion exchange technique. ACSAppl. Mater. Inter.2010,2:111-118.
    [70] Nalage SR, Chougule MA, Sen S, Patil VB. Novel method for fabrication of NiO sensor forNO2monitoring. J. Mater. Sci. Mater. Electron.2013,24:368-375.
    [71] Buso D, Guglielmi M, Martucci A, Mattei G, Mazzoldi P, Sada C, Post LM. Growth ofcookie-like Au/NiO nanoparticles in SiO2sol–gel films and their optical gas sensingproperties. Cryst. Growth Des.2008,8:744-749.
    [72] Jun YX, Sheng HT, Zhou Y, Ping HS. Room temperature H2S micro-sensors withanti-humidity properties fabricated from NiO-In2O3composite nanofibers. Chin. Sci. Bull.2013,58:821-826.
    [73] Xu L, Zheng RF, Liu SH, Song J, Chen JS, Dong B, Song HW. NiO/ZnO heterostructurednanotubes: coelectrospinning fabrication, characterization, and highly enhanced gas sensingproperties. Inorg. Chem.2012,51:7733-7740.
    [74] Lia L, Zhang G, Chen L, Bi HM, Shi KY. Ni(NiO)/single-walled carbon nanotubescomposite: synthesis of electrodeposition, gas sensing property for NO gas and densityfunctional theory calculation. Mater. Res. Bull.2013,48:504-511.
    [75] Farzaneh F, Haghshenas S. Facile synthesis and characterization of nanoporous NiO withfolic acid as photodegredation catalyst for congored. Mater. Sci. Appl.2012,3:697-703.
    [76] Yuan GH, Jiang ZH, Aramata A, Gao YZ, Electrochemical behavior of activated-carboncapacitor material loaded with nickel oxide. Carbon2005,43:2913-2917.
    [77] Zhang J, Kong LB, Cai JJ, Li H, Luo YC, Kang L. Hierarchically porous nickelhydroxide/mesoporous carbon composite materials for electrochemical capacitors.Micropor. Mesopor. Mat.2010,132:154-162.
    [78] Yuan GH, Jiang ZH, Aramata A, Gao YZ. Electrochemical behavior of activated-carboncapacitor material loaded with nickel oxide. Carbon2005,43:2913-2917.
    [79] Park J, Park O, Shin K, Jin C, Kim J. An electrochemical capacitor based on aNi(OH)2/activated carbon composite electrode. Electrochem. Solid-State Lett.2002,5:7-10.
    [80] Liu H, He P, Li Z, Liu Y, and Li J. A novel nickel-based mixed rare-earth oxide/activatedcarbon supercapacitor using room temperature ionic liquid electrolyte. Electrochim. Acta2006,51:1925-1931.
    [81] Li H, Yu D, Hu Y, Sun P, J Xia, Huang H. Effect of preparation method on the structure andcatalytic property of activated carbon supported nickel oxide catalysts. Carbon2010,48:4547-4555.
    [82] Zheng Y, Zhang M, Gao P. Preparation and electrochemical properties of multiwalledcarbon nanotubes–nickel oxide porous composite for supercapacitors. Mater. Res. Bull.2007,42:1740-1747.
    [83] Xu CH, Sun J, Gao L. Large scale synthesis of nickel oxide/multiwalled carbon nanotubecomposites by direct thermal decomposition and their lithium storage properties. J. PowerSources2011,196:5138-5142.
    [84] Wen BH, Zhang SC, Fang H, Liu WB, Du ZJ. Electrochemically dispersed nickel oxidenanoparticles on multi-walled carbon nanotubes. Mater. Chem. Phys.2011,131:8-11.
    [85] Zheng YZ, Zhang ML, Gao P. Preparation and electrochemical properties of multiwalledcarbon nanotubes-nickel oxide porous composite for supercapacitors. Mater. Res. Bull.2007,42:1740-1747.
    [86] Su AD, Zhang X, Rinaldi A, Nguyen ST, Liu HH, Lei ZB, Lua L, Duong HM, Hierarchicalporous nickel oxide-carbon nanotubes as advanced pseudocapacitor materials forsupercapacitors. Chem. Phys. Lett.2013,13:68-73.
    [87] Roroa KT, Tile N, Mwakikungac B, Yalisi B, Forbes A. Solar absorption and thermalemission properties of multiwall carbon nanotube/nickel oxide nanocomposite thin filmssynthesized by sol-gel process. Mater. Sci. Eng. B2012,177:581-587.
    [88] Nam KW, Lee ES, Kim JH, Lee YH, Kim KB. Synthesis and electrochemical investigationsof Ni1xO thin films and Ni1xO on three-dimensional carbon substrates for electrochemicalcapacitors. J. Electrochem. Soc.2005,152:2123-2129.
    [89] Gao B, Yuan CZ, Su LH, Chen L, Zhang XG. Nickel oxide coated on ultrasonicallypretreated carbon nanotubes for supercapacitor. J. Solid State Electrochem.2009,13:1251-1257.
    [90] Ryu M, Jang J. Effect of solution processed graphene oxide/nickel oxide Bi-layer on cellperformance of bulk-heterojunction organic photovoltaic. Sol. Energy Mater. Sol. Cells2011,95:2893-2896.
    [91] Lv W, Sun F, Tang DM, Fang HT, Liu C, Yang QH, Cheng HM. A sandwich structure ofgraphene and nickel oxide with excellent supercapacitive performance. J. Mater. Chem.2011,21:9014-9019.
    [92] Zhu XJ, Hu J, Dai HL, Ding L, Jiang L. Reduced grapheme oxide and nanosheet-basednickel oxide microsphere composite as an anode material for lithium ion battery.Electrochim. Acta2012,64:23-28.
    [93] Sun ZP, Lu XM. A solid-state reaction route to anchoring Ni(OH)2nanoparticles on reducedgraphene oxide sheets for supercapacitors. Ind. Eng. Chem. Res.2012,51:9973-9979.
    [94] Bu YF, Wang S, Jin HL, Zhang WM, Lin JJ, Wang JC. Synthesis of porous NiO/reducedgraphene oxide composites or supercapacitors. J. Electrochem. Soc.2012,159:990-994.
    [95] Lee J, Ahn T, Soundararajan D, Ko J, Kim JD. Non-aqueous approach to the preparation ofreduced graphene oxide/α-Ni(OH)2hybrid composites and their high capacitance behavior.Chem. Comm.2011,47:6305-6307.
    [96] Zhang HT, Zhang X, Zhang DC, Sun XZ, Lin H, Wang CH, Ma YW. One-stepelectrophoretic deposition of reduced graphene oxide and Ni(OH)2composite films forcontrolled syntheses supercapacitor electrodes. J. Phys. Chem. B2013,117:1616-1627.
    [97] Qiao N, Zheng J. Nonenzymatic glucose sensor based on glassy carbon electrode modifiedwith a nanocomposite composed of nickel hydroxide and grapheme. Microchim. Acta2012,177:103-109.
    [98] Ryu J, Suh YW, Suh DJ, Ahn DJ. Hydrothermal preparation of carbon microspheres frommono-saccharides and phenolic compounds. Carbon2010,48:1990-1998.
    [99] Wang Q, Li H, Chen L, Huang X. Monodispersed hard carbon spherules with uniformnanopores. Carbon2001,39:2211-2214.
    [100] Zheng M, Liu Y, Jiang K, Xiao Y, Yuan D. Alcohol-assisted hydrothermal carbonizationto fabricate spheroidal carbons with a tunable shape and aspect ratio. Carbon2010,48:1224-1233.
    [101] Zheng M, Liu Y, Xiao Y, Zhu Y, Guan Q, Yuan D, Zhang J. An easy catalyst-freehydrothermal method to prepare monodisperse carbon microspheres on a large scale. J.Phys. Chem. C2009,113:8455–8459.
    [102] Shin Y, Wang LQ, Bae IT, Arey BW, Exarhos GJ. Hydrothermal syntheses of colloidalcarbon spheres from cyclodextrins. J. Phys. Chem. C2008,112:14236-14240.
    [103] Sun X, Li Y. Colloidal carbon spheres and their core/shell structures with noble-metalnanoparticles. Angew. Chem. Int. Ed.2004,43:597-601.
    [104] Noh M, Kwon Y, Lee H, Cho J, Kim Y, Kim MG. Amorphous carbon-coated tin anodematerial for lithium secondary battery. Chem. Mater.2005,17:1926-1929.
    [105] Huang XH, Tu JP, Zhang CQ, Chen XT, Yuan YF, Wu HM. Spherical NiO-C compositefor anode material of lithium ion batteries. Electrochim. Acta2007,52:4177-4181.
    [106] Huang XH, Tu JP, Zhang CQ, Xiang JY. Net-structured NiO–C nanocomposite asLi-intercalation electrode material. Electrochem. Commun.2007,9:1180-1184.
    [107] Kottegoda IRM, Idris NH, Lua L, Wanga JZ, Liua HK. Synthesis and characterization ofgraphene-nickel oxide nanostructures for fast charge-discharge application. Electrochim.Acta2011,56:5815-5822.
    [108] Zhu XJ, Hu J, Dai HL, Ding L, Jiang L. Reduced graphene oxide and nanosheet-basednickel oxide microsphere composite as an anode material for lithium ion battery.Electrochim. Acta2012,64:23-28.
    [109] Xu CH, Sun J, Gao L. Large scale synthesis of nickel oxide/multiwalled carbon nanotubecomposites by direct thermal decomposition and their lithium storage properties. J. PowerSources2011,196:5138-5142.
    [110] Yang H B, Guai GH, Guo CX, Song QL, Jiang SP, Wang YL, Zhang W, Li CM.NiO/graphene composite for enhanced charge separation and collection in p-type dyesensitized solar cell. Phys. Chem.2011,115:12209-12215.
    [111] Roroa KT, Tile N, Forbesa A. Preparation and characterization of carbon/nickel oxidenanocomposite coatings for solar absorber applications. Appl. Surf. Sci.2012,258:7174-7180.
    [112] Roroa KT, Tile N, Mwakikungac B, Yalisi B, Forbesa A. Solar absorption and thermalemission properties of multiwall carbon nanotube/nickel oxide nanocomposite thin filmssynthesized by Sol–Gel process. Mater. Sci. Eng., B2012,177:581-587.
    [113] Sun Z, Lu XM. A solid-state reaction route to anchoring Ni(OH)2nanoparticles onreduced graphene oxide sheets for supercapacitors. Ind. Eng. Chem. Res.2012,51:9973-9979.
    [114] Yang YY, Hu ZA, Zhang ZY, Zhang FH, Zhang Y, Liang PJ, Zhang HY, Wu HY. Reducedgraphene oxide-nickel oxide composites with high electrochemical capacitive performance.Mater. Chem. Phys.2012,133:363-368.
    [115] Zhang HT, Zhang X, Zhang DC, Sun XZ, Lin H, Wang CH, Ma YW. One-stepelectrophoretic deposition of reduced graphene oxide and Ni(OH)2composite films forcontrolled syntheses supercapacitor electrodes. Phys. Chem.2013,117:1616-1627.
    [116] Yang SB, Wu XL, Chen CL, Dong HL, Hub WP, Wang XK. Spherical alpha-Ni(OH)2nanoarchitecture grown on graphene as advanced electrochemical pseudocapacitormaterials. Chem. Comm.2012,48:2773-2775.
    [117] Zhang LL, Xiong ZG, Zhao XS. A composite electrode consisting of nickel hydroxide,carbon nanotubes and reduced graphene oxide with an ultrahigh electrocapacitance. J.Power Sources2013,222:326-332.
    [118] Wei LV, Jin FM, Guo Q, Yang QH, Kang F. DNA-dispersed graphene/NiO hybridmaterials for highly sensitive non-enzymatic glucose sensor. Electrochim. Acta2012,73:129-135.
    [119] Chen H, Mei Q, Hou Y, Koh K, Lee J, Chen B, Fang L, Zhao X. Building a sensitiveimmunosensing platform based on oriented immobilization of histidine-tagged antibody onNiO-decorated SWNTs. Sens. Actuators, B2013,181:38-43.
    [120] Shahmiri M R, Bahari A, Karimi-Malehb H, Hosseinzadeh R, Mirnia N.Ethynylferrocene–NiO/MWCNT nanocomposite modified carbon paste electrode as anovel voltammetric sensor for simultaneous determination of glutathione andacetaminophen. Sens. Actuators, B2013,177:70-77.
    [121] Luo LQ, Li F, Zhu LM, Ding YP, Zhang Z, Deng DM, Lu B. Nonenzymatic glucosesensor sased on nickel(II) oxide/ordered mesoporous carbon modified glassy carbonelectrode. Colloids Surf., B2013,102:307-311.
    [122] Zhang WD, Chen J, Zhang JQ. A hghly sensitive nonenzymatic glucose sensor based onNiO-modified multi-walled carbon nanotubes. Microchim. Acta2010,168:259-265.
    [1] Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV,Firsov AA. Electric field effect in atomically thin carbon films. Science2004,306:666-669.
    [2] Kuilla T, Bhadra S, Yao DH, Kim NH, Bosed S, Lee JH. Recent advances in graphenebased polymer composites. Prog. Polym. Sci.2010,35:1350-1375.
    [3] Tapas K, Saswata B, Ananta KM, Partha K, Nam HK, Joong HL. Recent advances ingraphene-based biosensors. Biosens. Bioelectron.2011,26:4637-4648.
    [4] Song B, Chen SQ, Shen XP, Zhu GX. Nanocomposites of hematite (α-Fe2O3) nanospindleswith crumpled reduced graphene oxide nanosheets as high-performance anode material forlithium-ion batteries. RSC. Adv.2012,2:10977-10984.
    [5] Berger C, Song ZM, Li XB, Wu XS, Brownl N, Naud C, Mayou D, Li TB, Hass J,Marchenkov AN, Conrad EH, First PN, Heer WAD. Electronic confinement and coherencein patterned epitaxial graphene. Science2006,312:1191-1196.
    [6] Li D, Mueller MB, Gilje S, Kaner RB, Wallace GG. Processable aqueous dispersions ofgraphene nanosheets. Nat. Nanotechnol.2008,3:101-105.
    [7] Park S, An JH, Piner RD, Jung I, Yang, DX, Velamakanni A, Nguyen ST, Ruoff RS.Aqueous suspension and characterization of chemically modified graphene sheets. Chem.Mater.2008,20:6592-6594.
    [8] Reina A, Jia XT, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS, Kong J. Large-scalearrays of single layer graphene resonators. Nano. Lett.2009,9:30-35.
    [9] Mattevi C, Kim H, Chhowalla M. A review of chemical vapour deposition of graphene oncopper. J. Mater. Chem.2011,21:3324-3334.
    [10] Lu X, Yu M, Huang H, Rouff RS. Tailoring graphite with the goal of achieving singlesheets. Nanotechnology1990,10:269-272.
    [11] Sutter PW, Flege JI, Sutter EA. Epitaxial graphene on ruthenium. Nat. Mater.2008,7:406-411.
    [12] Shivaraman S, Barton RA, Yu X, Alden J, Herman L, Chandrashekhar MVS, Park J,McEuen PL, Parpia JM, Craighead HG, Spencer MG. Free-standing epitaxial graphene.Nano. Lett.2009,9:3100-3105.
    [13] Park S, Ruoff RS. Chemical methods for the production of graphemes. Nat. Nanotechnol.2009,4:217-224.
    [14] Stankovich S, Piner RD, Chen X, Wu N, Nguyen ST, Ruoff RS. Stable aqueous dispersionsof graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence ofpoly(sodium4-styrenesulfonate). J. Mater. Chem.2006,16:155-158.
    [15] Chang HX, Wang GF, Yang, A, Tao XM, Liu XQ, Shen YD, Zheng ZJ. A transparent,flexible, low-temperature, and solution-processible graphene composite electrode. Adv.Funct. Mater.2010,20:2893-2902.
    [16] Zeng Q, Cheng JS, Tang LH, Liu XF, LiuYZ, Li JH, Jiang JH. Self-assembledgraphene-enzyme hierarchical nanostructures for electrochemical biosensing. Adv. Funct.Mater.2010,20:3366-3372.
    [17] Yang Q, Pan XJ, Huang F, Li KC. Fabrication of high-concentration and stable aqueoussuspensions of graphene nanosheets by noncovalent functionalization with lignin andcellulose derivatives. J. Phys. Chem. C2010,114:3811-3816.
    [18] Geng JX, Jung HT. Porphyrin functionalized graphene sheets in aqueous suspensions: fromthe preparation of graphene sheets to highly conductive graphene films. J. Phys. Chem. C2010,114:8227-8234.
    [19] Stankovich S, Piner RD, Nguyen ST, Ruoff RS. Synthesis of graphene-based nanosheetsvia chemical reduction of exfoliated graphite oxide. Carbon2006,44:3342-3347.
    [20] Liu JH, Chen GS, Jiang M. Supramolecular hybrid hydrogels from noncovalentlyfunctionalized graphene with block copolymers. Macromolecules2011,44:7682-7691.
    [21] Ren LL, Huang S, Zhang C, Wang RY, Liu TX. Functionalization of graphene and graftingof temperatureresponsive surfaces from graphene by ATRP on water. J. Nanopart. Res.2012,14:940-949.
    [22] Pan YZ, Bao HQ, Sahoo NG, Wu TF, Li L. Water-soluble poly(N-isopropylacrylamide)-graphene sheets synthesized via click chemistry for drug delivery. Adv. Funct. Mater.2011,21:2754-2763.
    [23] Sun ST, Cao YW, Feng JC, Wu PY. Click chemistry as a route for the immobilization ofwell-defined polystyrene onto graphene sheets. J. Mater. Chem.2010,20:5605-5607.
    [24] Zhu JW, Chen S, Zhou H. Fabrication of a low defect density graphene-nickel hydroxidenanosheet hybrid with enhanced electrochemical performance Nano. Res.2012,5:11-19.
    [25] Newman JD, Turner APF. Home blood glucose biosensors: a commercial perspective.Biosens. Bioelectron.2005,20:2435.
    [26] Zhang Y, Xu FG, Sun YJ, Shi Y, Wen ZW, Li Z. Assembly of Ni(OH)2nanoplates onreduced graphene oxide: a two dimensional nanocomposite for enzyme-free glucosesensing. J. Mater. Chem.2011,21:16949-16954.
    [27] Safavi A, Maleki N, Farjami E. Fabrication of a glucose sensor based on a novelnanocomposite electrode. Biosens. Bioelectron.2009,24:1655-1660.
    [28] Luo J, Jiang S, Zhang HY, Jiang JQ, Liu XY. A novel non-enzymatic glucose sensor basedon Cu nanoparticle modified graphene sheets electrode. Anal. Chim. Acta2012,709:47-53.
    [29] Liu JY, Nie ZH, Gao Y, Adronov A, Li HM. Click coupling between alkyne-decoratedmultiwalled carbon nanotubes and reactive PDMA-PNIPAM micelles. J. Polym. Sci. Part A:Polym. Chem.2008,46:7187-7199.
    [30]朱文渊,崔英德,方岩雄.含NVP聚合物水凝胶的研究及其应用,广州化工2002,30:1-4.
    [31]韩慧芳,崔英德,蔡立彬.聚乙烯吡咯烷酮的应用.精细石油化工进展2003,4:43-47.
    [32] Wan DC, Satoh K, Kamigaito M, Okamoto Y. Xanthate-mediated radical polymerization ofN-vinylpyrrolidone in fluoroalcohols for simultaneous control of molecular weight andtacticity. Macromolecules2005,38:10397-10405.
    [33] Huang CF, Nicolacy R, Kwak Y, Chang FC, Matyjaszewski K. Homopolymerization andblock copolymerization of vinylpyrrolidone by ATRP and RAFT with haloxanthate inifers.Macromolecules2009,42:8198-8210.
    [34] Martin AL, Hickey JL, Ablack AL, Lewis JD, Luyt LG, Gillies ER. Synthesis ofbombesin-functionalized iron oxide nanoparticles and their specific uptake in prostatecancer cells. J. Nanopart. Res.2009,12:1599-1608.
    [35]朱丹,黄韩英,王国建.两亲性嵌段共聚物P(NVP-b-tBMA)的制备.建筑材料学报2002,5:248-252.
    [36] Gao W, Alemany L, Ci LJ, Ajayan PM. New insights into the structure and reduction ofgraphite oxide. Nat. Chem.2009,1:403-408.
    [37] Dreyer RD, Park S, Bielawski CW, Ruoff RS. The chemistry of graphene oxide. Chem. Rev.Soc.2010,39:228-240.
    [38] Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, NguyenST, Ruoff RS. Synthesis of graphene-based nanosheets via chemical reduction of exfoliatedgraphite oxide. Carbon2007,45:1558-1565.
    [39] Feng RR, Wang CC, Xu XC, Yang FL, Xu GJ, Jiang T. Highly effective antifoulingperformance of N-vinyl-2-pyrrolidone modified polypropylene non-woven fabricmembranes by ATRP method. J. Membr. Sci.2011,369:233-242.
    [40] Bekyarova E, Itkis ME, Ramesh P, Berger C, Sprinkle M, de Heer WA, Haddon RC.Chemical modification of epitaxial graphene: spontaneous grafting of aryl groups. J. Am.Chem. Soc.2009,131:1336-1337.
    [41] Zhou XJ, Zhang JL, Wu HX, Yang HJ, Zhang JY, Guo SW. Reducing graphene oxide viahydroxylamine: A simple and efficient route to graphene. J. Phys. Chem. C2011,115:11957-11961.
    [42] Iwase A, Ng YH, Ishiguro Y, Kudo A, Amal R. Reduced graphene oxide as a solid-stateelectron mediator in Z-Scheme photocatalytic water splitting under visible light. J. Am.Chem. Soc.2011,133:11054-11057.
    [43] Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, NguyenST, Ruoff RS. Synthesis of graphene-based nanosheets via chemical reduction of exfoliatedgraphite oxide. Carbon2007,45:1558-1565.
    [44] Liu Y, Teng H, Hou HQ, You TY. Nonenzymatic glucose sensor based on renewableelectrospun Ni nanoparticle-loaded carbon nanofiber paste electrode. Biosens. Bioelectron.2009,24:3329-3334.
    [45] Anson FC. Cyclic and differential pulse voltammetric behavior of reactants confined to theelectrode surface. Anal. Chem.1964,36:932-934.
    [46] Bard AJ, Faulkner LR. Electrochemical Methods, John Wiley&Sons, New York,1980.
    [47] Zhao CZ, Shao CL, Li MH, Jiao K. Flow-injection analysis of glucose without enzymebased on electrocatalytic oxidation of glucose at a nickel electrode. Talanta2007,71:1769-1773.
    [1] Cheng Y, Xiong P, Yun CS, Strouse GF, Zheng JP, Yang RS, Wang ZL. Mechanism andoptimization of pH sensing using SnO2nanobelt field effect transistors. Nano Lett.2008,8:4179-4184.
    [2] Lavik E, Recum HV. The role of nanomaterials in translational medicine. ACS Nano2011,5:3419-3424.
    [3] Li J, Zhang Y, To S, You L, Sun Y. Effect of nanowire number, diameter, and doping densityon nano-FET biosensor sensitivity. ACS Nano2011,5:6661-6668.
    [4] Tsai DS, Lin CA, Lien WC, Chang HC, Wang YL, He JH. Ultra-high-responsivity broadbanddetection of Si metal semiconductor metal schottky photodetectors improved by ZnO nanorodarrays. ACS Nano2011,5:7748-7753.
    [5] Yoriya S, Grimes CA. Self-assembled TiO2nanotube arrays by anodization of titanium indiethylene glycol: Approach to extended pore widening. Langmuir2009,26:417-420.
    [6] Wu P, Zhang H, Du N, Ruan L, Yang D. A versatile approach for the synthesis of ZnOnanorod-based hybrid nanomaterials via layer-by-layer assembly. J. Phys. Chem. C2009,113:8147-8151.
    [7] Tian F, Zhu J, Wei D. Fabrication and magnetism of radial-easy-magnetized Ni nanowirearrays. J. Phys. Chem. C2007,111:12669-12672.
    [8] Shimizu T, Xie T, Nishikawa J, Shingubara S, Senz S, G sele U. Synthesis of verticalhigh-density epitaxial Si (100) nanowire arrays on a Si (100) substrate using an anodicaluminum oxide template. Adv. Mater.2007,19:917-920.
    [9] Zheng M, Xu DS, Ouyang JH, Guo GL, Zhao XS, Tang YQ. Electrochemically inducedsol-gel preparation of single-crystalline TiO2nanowires. Nano Lett.2002,2:717-720.
    [10] Wang Z, Li HL. Highly ordered zinc oxide nanotubules synthesized within the anodicaluminum oxide template. Appl. Phys. A2002,74:201-203.
    [11] Huczko A. Template-based synthesis of nanomaterials. Appl. Phys. A2000,70:365-376.
    [12] Jana NR, Gearheart L, Murphy CJ. Seed-mediated growth approach for shape-controlledsynthesis of spheroidal and rod-like gold nanoparticles using a surfactant template. Adv. Mater.2001,13:1389-1393.
    [13] Feng Y, Zhang M, Guo M, Wang X. Studies on the PEG-assisted hydrothermal synthesis andgrowth mechanism of ZnO microrod and mesoporous microsphere arrays on the substrate.Cryst. Growth Des.2010,10:1500-1507.
    [14] Sun YG, Mayers B, Herricks T, Xia YN. Polyol synthesis of uniform silver nanowires: Aplausible growth mechanism and the supporting evidence. Nano Lett.2003,3:955-960.
    [15] Yao J, Tjandra W, Chen YZ, Tam KC, Ma J, Soh B. Hydroxyapatite nanostructure materialsderived using cationic surfactant as a template. J. Mater. Chem.2003,13:3053-3057.
    [16] Avansi Jr W, Ribeiro C, Leite ER, Mastelaro VR. Vanadium pentoxide nanostructures: Aneffective control of morphology and crystal structure in hydrothermal conditions. Cryst.Growth Des.2009,9:3626-3631.
    [17] Shi W, Wang C, Wang H, Zhang H. Hexagonal nanodisks of cadmium hydroxide and oxidewith nanoporous structure. Cryst. Growth Des.2006,6:915-918.
    [18] Oca a M. Preparation and characterization of uniform needle-like particles of nickel basicsulfate. J. Colloid. Interf. Sci.2000,228:259-262.
    [19] Yang D, Wang R, Zhang J, Liu Z. Synthesis of nickel hydroxide nanoribbons with a newphase: A solution chemistry approach. J. Phys. Chem. B2004,108:7531-7533.
    [20]卢亚骏,王浩然,顾煜,徐岚,孙晓骏,邓意达.水热合成α-Ni(OH)2纳米线的形成机理研究.化学学报.2012,70:1731-1736.
    [21] Sun D, Zhang J, Ren H, Cui Z, Sun D. Influence of OH and SO24anions on morphologies ofthe nanosized nickel hydroxide. J. Phys. Chem. C2010,114:12110-12116.
    [22] Zhang K, Wang JB, Lu XL, Li LY, Tang YW, Jia Z. Structural evolution ofhydrothermal-synthesized Ni(SO4)0.3(OH)1.4nanobelts during ex situ heat treatment and in situelectron irradiation. J. Phys. Chem. C2009,113:142-147.
    [23] Tang YW, Jia ZY, Jiang Y, Li LY, Wang JB. Simple template-free solution route for thesynthesis of Ni(SO4)0.3(OH)1.4nanobelts and their thermal degradation. Nanotechnology2006,17:5686-5690.
    [24] Khan Y, Durrani SK, Mehmood M, Jan A, Abbasi MA. pH-dependent structural andmorphology evolution of Ni(OH)2nanostructures and their morphology retention uponthermal annealing to NiO. Mater. Chem. Phys.2011,130:1169-1174.
    [25] Qian HS, Yu SH, Luo LB, Gong JY, Fei LF, Liu XM. Synthesis of uniform Te@carbon-richcomposite nanocables with photoluminescence properties and carbonaceous nanofibers by thehydrothermal carbonization of glucose. Chem. Mater.2006,18:2102-2108.
    [26] Zhou J, Liu J, Yang R, Lao CS, Gao P, Tummala R, Xu NS, Wang ZL. SiC-shell nanostructuresfabricated by replicating ZnO nano-objects: A technique for producing hollow nanostructuresof desired shape. Small.2006,2:1344-1347.
    [27] Xue XY, Chen ZH, Xing LL, Yuan S, Chen YJ. SnO2/α-MoO3core-shell nanobelts and theirextraordinarily high reversible capacity as lithium-ion battery anodes. Chem. Commun.2011,47:5205-5207.
    [28] Zhang YF, Fan MJ, Liu XH, Huang C, Li HB. Belt-like V2O3@C core-shell structuredcomposite: design, preparation, characterization, phase, transition, and improvement ofelectrochemical properties of V2O3. Eur. J. Inorg. Chem.2012,10:1650-1659.
    [29] Yang DG, Liu PC, Gao Y, Wu H, Cao Y, Xiao QZ, Li HM. Synthesis, characterization, andelectrochemical performances of core-shell Ni(SO4)0.3(OH)1.4/C and NiO/C nanobelts. J.Mater. Chem.2012,22:7224-7231.
    [30]赵慧君,杨永珍,刘旭光,许并社.葡萄糖水热碳化制备表面分子印迹基质材料多孔碳微球.中国科技论文2012,7:898-903.
    [31] Sevilla M, Fuertes AB. Chemical and structural properties of carbonaceous products obtainedby hydrothermal carbonization of saccharides. Chem-A Eur. J.2009,15:4195-4203.
    [32] Demir-Cakan R, Baccile N, Antonietti M, Titirici MM. Carboxylate-rich carbonaceousmaterials via one-step hydrothermal carbonization of glucose in the presence of acrylic acid.Chem. Mater.2009,21:484-490.
    [33] Titirici MM, Antonietti M. Chemistry and materials options of sustainable carbon materialsmade by hydrothermal carbonization. Chem. Soc. Rev.2010,39:103-116.
    [34] Mi YZ, Hu WB, Dan YM, Liu YG. Synthesis of carbon micro-spheres by a glucosehydrothermal method. Mater. Lett.2008,62:1194-1196.
    [35] Zheng MT, Liu YL, Jiang K, Xiao Y, Yuan DS. Alcohol-assisted hydrothermal carbonization tofabricate spheroidal carbons with a tunable shape and aspect ratio. Carbon2010,48:1224-1233.
    [36]梁吉雷,吴明铂,刘以红.生物质水热合成炭微球研究进展.化工新型材料2011,39:1-4.
    [37] Shin Y, Wang LQ, Bae IT, Arey BW, Exarhos GJ. Hydrothermal syntheses of colloidal carbonspheres from cyclodextrins. J. Phys. Chem. C2008,112:14236-14240.
    [38] Yu L, Falco C, Weber J, White RJ, Howe JY, Titirici M-M. Carbohydrate-derivedhydrothermal carbons: A thorough characterization study. Langmuir2012,28:12373-12383.
    [39]王丽丽.生物质基胶体碳的制备及应用研究[博士学位论文].吉林大学物理化学专业,2012.
    [40] Chen CY, Sun XD, Jiang XC, Niu D, Yu A, Liu ZG, Li JG. A Two-step hydrothermal synthesisapproach to monodispersed colloidal carbon spheres. Nanoscale Res. Lett.2009,4:971-976.
    [41]马江华,李玉平,李会泉,张懿.[EMIM]HSO4离子液体的合成及其在氧化铝电解中的应用.过程工程学报2007,7:1083-1088.
    [1] zkan G, z elik E. CO2adsorption on porous NiO as a cathode material for molten carbonatefuel cells. J. Power Sources2005,140:28-33.
    [2] Wang XG, Li XW, Sun XL, Li F, Liu QM, Wang Q, He D. Nanostructured NiO electrode forhigh rate Li-ion batteries. J. Mater. Chem.2011,21:3571-3573.
    [3] El-Safty SA, Kiyozumi Y, Hanaoka T, Mizukami F. Nanosized NiO particles wrapped intouniformly mesocaged silica frameworks as effective catalysts of organic amines. Appl. Catal. A2008,337:121-129.
    [4] Wu M-S, Huang Y-A, Yang C-H, Jow J-J. Electrodeposition of nanoporous nickel oxide filmfor electrochemical capacitors. Int. J. Hydrogen Energy2007,32:4153-4159.
    [5] Mu Y, Jia D, He Y, Miao Y, Wu HL. Nano nickel oxide modified non-enzymatic glucosesensors with enhanced sensitivity through an electrochemical process strategy at high potential.Biosens. Bioelectron.2011,26:2948-2952.
    [6] Li C, Liu Y, Li L, et al. A novel amperometric biosensor based on NiO hollow nanospheres forbiosensing glucose. Talanta2008,77:455-459.
    [7] Nakaoka K, Ueyama J, Ogura K. Semiconductor and electrochromic properties ofelectrochemically deposited nickel oxide films. J. Electroanal. Chem.2004,571:93-99.
    [8] Purushothaman KK, Muralidharan G. Nanostructured NiO based all solid state electrochromicdevice. J. Sol-Gel. Sci. Technol.2008,46:190-194.
    [9] Koro ec RC, Bukovec P. Sol-gel prepared NiO thin films for electrochromic applications. ActaChim. Slov.2006,53:136-147.
    [10] Han XJ, Xie XM, Xu CQ, Zhou D, Ma YL. Morphology and electrochemical performance ofnano-scale nickel hydroxide prepared by supersonic coordination-precipitation method. Opt.Mater.2003,23:465-470.
    [11] Safavi A, Maleki N, Farjami E. Fabrication of a glucose sensor based on a novelnanocomposite electrode. Biosens. Bioelectron.2009,24:1655-1660.
    [12] Oh SW, Bang HJ, Bae YC, Sun YK. Effect of calcination temperature on morphology,crystallinity and electrochemical properties of nano-crystalline metal oxides (Co3O4, CuO, andNiO) prepared via ultrasonic spray pyrolysis. J. Power Sources2007,173:502-509.
    [13] Stopi S, Ili I, Uskokovi D. Structural and morphological transformations during NiO and Niparticles generation from chloride precursor by ultrasonic spray pyrolysis. Mater. Lett.1995,24:369-376.
    [14] Jin GP, Ding YF, Zheng PP. Electrodeposition of nickel nanoparticles on functional MWCNTsurfaces for ethanol oxidation. J. Power Sources2007,166:80-86.
    [15] Moghaddam AB, Ganjali MR, Saboury AA, Moosavi-Movahedi AA, Norouzi P.Electrodeposition of nickel oxide nanoparticles on glassy carbon surfaces: Application to thedirect electron transfer of tyrosinase. J. Appl. Electrochem.2008,38:1233-1239.
    [16] Wu LL, Wu YS, Wei HY, Shi YC, Hu CX. Synthesis and characteristics of NiO nanowire by asolution method. Mater. Lett.2004,58:2700-2703.
    [17] Liu B, Yang HQ, Zhao H, An LJ, Zhang LH, Shi RY, Wang L, Bao L, Chen Y. Synthesis andenhanced gas-sensing properties of ultralong NiO nanowires assembled with NiO nanocrystals.Sensor. Actuat. B-Chem.2011,156:251-262.
    [18] Shi CS, Wang GQ, Zhao NQ, Du XW, Li JJ. NiO nanotubes assembled in pores of porousanodic alumina and their optical absorption properties. Chem. Phys. Lett.2008,454:75-79.
    [19] Needham SA, Wang GX, Yang L. Nickel oxide nanotubes: Synthesis and electrochemicalperformance for use in lithium ion batteries. J. Nanosci. Nanotechnol.2006,6:77-81.
    [20] Zhang K, Wang JB, Lu XL, Li LY, Tang YW, Jia Z. Structural evolution ofhydrothermal-synthesized Ni(SO4)0.3(OH)1.4nanobelts during ex situ heat treatment and in situelectron irradiation. J. Phys. Chem. C2009,113:142-147.
    [21]卢小莉,张珂,李露颖,王建波,唐一文,贾志勇.离线热处理和原位电子辐照下羟基硫酸镍纳米带结构演变的TEM研究.电子显微学报2008,27:275-281.
    [22] Zhao B, Ke XK, Bao JH, Wang CL, Dong L, Chen HL. Synthesis of flower-like NiO andeffects of morphology on its catalytic properties. J. Phys. Chem. C2009,113:14440-14447.
    [23] Wang L, Zhao Y, Lai QY, Hao YJ. Preparation of3D rose-like NiO complex structure and itselectrochemical property. J. Alloy. Compd.2010,495:82-87.
    [24] Kumar Meher S, Justin P, Ranga Rao G. Nanoscale morphology dependent pseudocapacitanceof NiO: Influence of intercalating anions during synthesis. Nanoscale2011,3:683-692.
    [25] Justin P, Meher SK, Rao GR. Tuning of capacitance behavior of NiO using anionic, cationic,and nonionic surfactants by hydrothermal synthesis. J. Phys. Chem. C2010,114:5203-5210.
    [26] Tang YW, Jia ZY, Jiang Y, Li LY, Wang JB. Simple template-free solution route for thesynthesis of Ni(SO4)0.3(OH)1.4nanobelts and their thermal degradation. Nanotechnology2006,17:5686-5690.
    [27]马江华,李玉平,李会泉,张懿.[EMIM]HSO4离子液体的合成及其在氧化铝电解中的应用.过程工程学报2007,7:1083-1088.
    [28] Wang GM, Lu XH, Zhai T, Ling YC, Wang HY, Tong YX, Li Y. Free-standing nickel oxidenanoflake arrays: synthesis and application for highly sensitive non-enzymatic glucose sensors.Nanoscale2012,4:3123-3127.
    [29] Kohmotoa O, Nakagawaa H, Isagawaa Y, Chayahara A. Effect of heat treatment on the oxygencontent and resistivity in sputtered NiO films. J. Magn. Magn. Mater.2001,226-230:1629-1630.
    [30] Wang X, Li Y, Wang GZ, Xiang R, Jiang DL, Fu SC, Wu K, Yang XY, DuanMu QD, Tian JQ,Fu LC. Characterization of NiO thin film grown by two-step processes. Physica B2009,404:1058-1060.
    [31] Zhang YQ, Wang YZ, Jia JB, Wang JG. Nonenzymatic glucose sensor based on graphene oxideand electrospun NiO nanofibers. Sensor. Actuat. B-Chem.2012,171-172:580-587.
    [32] Zhang Y, Xu FK, Sun YJ, ShiY, Wen ZW, Li Z. Assembly of Ni(OH)2nanoplates on reducedgraphene oxide: a two dimensional nanocomposite for enzymefree glucose sensing. J. Mater.Chem.2011,21:16949-16954.
    [33] Cao F, Guo S, Ma HY, Shan DC, Yang SX, Gong J. Nickel oxide microfibers immobilizedonto electrode by electrospinning and calcination for nonenzymatic glucose sensor and effectof calcination temperature on the performance. Biosens. Bioelectron.2011,26:2756-2760.
    [34] Mu Y, Jia DL, He YY, Miao YQ, Wu HL. Nano nickel oxide modified non-enzymatic glucosesensors with enhanced sensitivity through an electrochemical process strategy at high potential.Biosens. Bioelectron.2011,26:2948-2952.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700