流通色谱介质的研制和生物大分子色谱分离
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要研究了以双乳化法制备新型流通色谱介质及其在生物大分子的分离过程中的应用。
     以甲基丙烯酸缩水甘油酯为单体,二甲基丙烯酸乙二醇酯为交联剂,甘油溶液为超孔致孔剂,甲苯与正庚烷为微孔致孔剂,安息香乙醚为引发剂,采用双乳化法制备乳化体系,紫外光引发悬浮聚合制备出刚性双孔介质。介质明显地含有超孔与微孔。经二乙胺修饰后,获得的阴离子交换介质,对BSA的静态吸附容量与不含超孔的微孔介质接近,但在高的流速下它有比微孔介质大大高出的动态吸附容量,并用混合模型蛋白溶液来考查介质的分离效果,发现增加流动相流速对双孔介质的分离效果影响不大。
     再采用碳酸钙悬浮液为超孔致孔剂,环己醇和十二醇为微孔致孔剂,紫外光悬浮聚合制备出双孔介质,比使用甘油溶液为超孔致孔剂,甲苯与正庚烷为微孔致孔剂制备双孔介质,并使制备过程中的乳化体系更加稳定。经乙二胺修饰制得阴离子交换介质,实验证明流速对双孔介质的动态吸附容量影响更小。为了进一步考察自制双孔介质性能,它被用来分离纯化蛋白(分子伴侣GroEL)和核酸(质粒DNA)。
     先发酵带有分子伴侣GroEL基因质粒的大肠杆菌,然后利用超声法对菌体进行破碎并制得澄清的待分离液,经过小量进样与梯度洗脱确定了对GroEL的洗脱条件,然后在不同的流速下(150和1500 cm/h)对分离液进行穿透吸附,并使用阶跃洗脱得到了电泳纯的GroEL产品。
     对于质粒DNA的分离也是先发酵带有pcDNA3质粒(5.4 kb)的大肠杆菌,利用碱裂解法制得粗提液,使用梯度洗脱的方法可以得到电泳纯的质粒DNA,并考察了流速、样品盐浓度对分离结果的影响,最后在不同的流速下(150和1500 cm/h)对粗提液进行穿透吸附,并使用阶跃洗脱法得到了电泳纯的质粒DNA产品(0.014和0.113 mg plasmid DNA/min·mL bed)。从而证明了自制双孔介质能够对生物大分子进行很好的分离纯化。
The thesis focuses on the fabrication of bipores beads for high-speed flow- through chromatography and its application in the purification of biomacromolecules.
     A novel rigid biporous bead (BiPB) had been fabricated by double emulsification to prepare a (w/o)/w emulsion and a subsequent polymerization. The polymerization of monomers, glycidyl methacrylate and ethylene glycol dimethacrylate, was initiated with benzoin ethyl ether by ultraviolet irradiation. The BiPB with an average diameter of 42.8μm was characterized to possess two types of pores, i.e., micropores (20-100 nm) and superpores (300-4000 nm). Comparing with the traditional beads (micropores beads, MiPB), BiPB have the similar static adsorption capacity. However, frontal analysis demonstrated that the dynamic binding capacity of the BiPB column was 1.6-2.4 times higher than that of the MiPB at high flow rates ranging from 1200 to 2400 cm/h. Moreover, separation of a model protein mixture (myoglobin and BSA) was conducted at mobile phase velocities up to 3000 cm/h to compare the performance of the two stationary phases.
     To obtain more stable emulsion, we choose the calcium carbonate suspension and cyclohexanol / dodecanol to create superpores and micropores. Derivatized with diethyl amine (DEA), the biporous beads were changed into a kind of anion-exchange matrix (denoted as DEA-B). The static adsorption capacity of the DEA-B was close to that of the DEA-M for BSA (bovine serum albumin). However, frontal analysis demonstrated that the dynamic binding capacity of the DEA-B column was two times higher than that of the DEA-M at a flow rate of 1800 cm/h. The results showed that the velocity of mobile phase have a little effect on the dynamic adsorption capacity of DEA-B.
     To test the property of our customized bipores beads, we use it to purify the biomacromolecules from the E. coli broth. After fermentation, ultrasonication and centrifugation of E. coli, the supernatant containing the GroEL was obtained. After some experiment for purification of GroEL, electrophoresis purity of GroEL was got at mobile phase velocities of 150 cm/h and 1500 cm/h. To obtain the pcDNA3 plasmid DNA (5.4 kb) solution, the E. coli was lysed by alkalinelysate method. Purified by customized biporous beads (DEA-B) column with gradient elution, the electrophoresis purity of plasmid DNA was obtained. And the effects of velocity of mobile phase and salt concentration of sample on the purification of plasmid DNA were studied. Finally, we breakthrough the biporous beads column using alkaline lysate at 150 cm/h and 1500 cm/h, and got electrophoresis purity 0.014 and 0.113 mg plasmid DNA/min·mL bed after step elution at 63% buffer B, respectively.
     All the results indicate that the bipores bead contains interconnected flow-through pores is promising for high-speed flow-through chromatography.
引文
[1] 程备久. 现代生物技术概论.北京:中国农业出版社, 2003.
    [2] 国家发展计划委员会高技术产业发展司和中国生物工程学会编. 中国生物技术产业发展报告.北京:化学工业出版社, 2002.
    [3] Berger SA, Goldsmith W, Lewis Berger ER, Stanley A. Introduction to bioengineering. Oxford: Oxford University Press, 2000.
    [4] 岑沛霖. 生物工程导论. 北京: 化学工业出版社, 2004.
    [5] 徐炎华,欧阳平凯,韦萍. 我国生物分离纯化技术现状及发展方向. 江苏化工, 1996, 24(3):4-6.
    [6] 毛忠贵. 生物工业下游技术:中国轻工业出版社, 1999.
    [7] Bullock WO, Dibber MD. State of the us biotechnology industry. Trends in Biotechnol. 1995, 13:463.
    [8] 佟晓冬. 流化床吸附分离过程的基础研究[博士学位论文].天津:天津大学化工学院生物化工系, 2002.
    [9] 薛博. 磁性介质的研制及磁分离过程理论研究[博士学位论文].天津:天津大学化工学院, 2002.
    [10] 师治贤, 王俊德. 生物大分子的液相色谱分离和制备.北京:科学出版社,1999.
    [11] 孙彦. 生物分离工程.北京:化学工业出版社, 1998.
    [12] Himmelhoch SR. Chromatography of proteins on ion-exchange adsorbents. Meth Enzymol. 1971, 22:273-286.
    [13] Ion exchange chromatography principles and methods. Uppsala Sweden: Amersham Pharmacia Biotech, 1997.
    [14] He B, Huang W. Ion exchange and adsorption resin. Shanghai Science and Technology Education Press.Shanghai, 1995.
    [15] Spedding FH, Fulmer EI, Butler TA, Gladrow EM, Gobush M, Porter PE, Powell JE, and Wright JM. The Separation of Rare Earths by Ion Exchange.1 III. Pilot Plant Scale Separations. J. Am. Soc. 1947, 69: 2812-2816.
    [16] 刘国诠. 生物工程下游技术. 第二版.北京:化学工业出版社, 2003.
    [17] Bonnerjera J, Oh S, Hoare M, et al. The right step at the right time. Bio/Technology, 1986, 4:954-958.
    [18] Locascio GA, Tigier HA, Batlle AMdC. Estimation of molecular weights of proteins by agarose gel filtration. J Chromatogr. 1969, 40:453.
    [19]Fischer L. Gel filtration chromatography. Amsterdam: Elsevier, 1980.
    [20] Narayanan SR. Preparative affinity chromatography of proteins. J. Chromatogr. A, 1994, 658:237.
    [21] Affinity chromatography: Principles and Methods. Vol. 18-1022-29: Amersham Pharmacia Biotech.
    [22] Patro SY, Przybycien TM. Self-interaction chromatography: A tool for the studying of protein-protein interaction in bioprocessing enviornments. Biotechnol. Bioeng. 1996, 52(2):193.
    [23] Caldas, Teresa Dantas; Yaagoubi El, Abdelhamid; Kohiyama, Masamichi; Richarme, Gilbert. Purification of Elongation Factors EF-Tu and EF-G fromEscherichia coliby Covalent Chromatography on Thiol-Sepharose. Protein Expression and Purification, 1998, 14(1):65-70.
    [24] Marcel Kuiper, Raquel M Sanches, James A. Walford, Nigel KH Slater. Purification of a functional gene therapy vector derived from Moloney murine leukaemia virus using membrane filtration and ceramic hydroxyapatite chromatography. Biotechnol. Bioeng. 2002, 80(4):445-453.
    [25] Vernille JP, Schneider JW, Sequence-Specific Oligonucleotide Purification Using Peptide Nucleic Acid Amphiphiles in Hydrophobic Interaction Chromatography. Biotechnol. Prog. 2004, 20(6):1776-1782.
    [26] Narhi LO, Kita, Y. Arakawa, T. Hydrophobic Interaction Chromatography in alkaline pH. Anal. Biochem. 1989, 182:266-270.
    [27] Janson JC, Ryden L. Protein purification: principles, high resolution methods, and applications. New York: John Wiley & Sons, Inc.1998.
    [28] Apriletti JW, Baxter JD and Lavin TN. Large scale purification of the nuclear thyroid hormone receptor from rat liver and sequence-specific binding of the receptor to DNA. J. Biol. Chem. 1988, 263(19):9409-9417.
    [29] TJ Sereda, CT Mant, FD Sonnichsen, RS Hodges. Reversed-phase chromatography of synthetic amphipathic alpha-helical peptides as a model for ligand/receptor interactions. J. Chromatogr. A, 1994, 676(1):139-153.
    [30] Olson CV, Reifsnyder DH, Canonva-Davis E. Preparative isolation of recombinant human insulin-like growth factor I by reversed-phase high-performance liquid chromatography. J. Chromatgr. A, 1994, 675(1): 101.
    [31] Corradini D. Peptide mapping by reversed phase chromatography. LC-GCIntl. 1996, 9: 732.
    [32] Garcia MC, Marina ML, Torre M. Perfusion chromatography: an emergent technique for the analysis of food proteins. J. Chromatogr. A, 2000, 880(1-2): 169-187.
    [33] Horvath J, Boschetti E, Guerrier L, Cooke N. J. Chromatogr. A, 1994, 679: 11.
    [34] Boschetti E, Guerrier L, Girot P, Horvath J. Preparative high-performance liquid chromatographic separation of proteins with HyperD ion-exchange supports. J. Chromatogr. B, 1995, 664:225.
    [35] Peterson EA, Sober HA. Chromatography of proteins. I. Cellulose ion-exchange adsorbents. J. Am. Chem. Soc. 1956, 78: 751.
    [36] Porath J, Flodin P. Gel filtration: a method for desalting and group separation. Nature, 1959, 47:1657.
    [37] Jungbauer A, Feng W, Regnier F, Gooding K (Eds.). HPLC of Biological Macromolecules. New York: Marcel Dekker, 281, 2002.
    [38] Levison Peter R, Hopkins Anne K, Hathi Prit, Badger Stephen E, Mann Fred, Dickson Nicola. Suspended bed chromatography, a new approach in downstream processing. J. Chromatogr. A, 2000, 890: 45-51.
    [39] Sober HA, Peterson EA. Chromatography of proteins on cellulose ion- exchangers. J. Am. Chem. Soc. 1954, 76: 1711.
    [40] Porath J, Flodin P. Gel filtration: a method for desalting and group separation. Nature, 1959, 183: 1657.
    [41] Unger KK, Schick-Kalb J and Krebs KF. Preparation of Porous Silica Spheres for Column Liquid Chromatography. J. Chromatogr. 1973, 83: 5-9.
    [42] Unger PD, Friedman MA. High-pressure liquid chromatography of caprolactam and its metabolites in urine and plasma. J Chromatogr. 1980, 187(2): 429-35.
    [43] Unger KK, Janzen R. Packings and stationary phases in preparative column liquid chromatography. J Chromatogr. 1986, 373(2): 227-64.
    [44] Chang SH, Gooding KM and Regnier FE. High-performance liquid chromatography of proteins. J. Chromatogr. 1976, 125:103.
    [45] Ohlson S, Hanson L, Larsson P-O, Mosbach K. High performance liquid affinity chromatography (HPLAC) and its application to the separation of enzymes and antigens. FEBS Lett. 1978, 93:5.
    [46] Afeyan NB, Gordon NF, Mazasaroff I, Varady L, Fulton S P, Yang Y B, Regnier F E. Flow through particles for the high-performance liquidchromatographic separation of biomolecules: perfusion chromatography. J. Chromatgr. A, 1990, 519:1-29.
    [47] Afeyan N B. Regnier F E, Dean R C. Perfusion Chromatography. 1991. U S: 5,019,270.
    [48] Hosoya K, Yoshizako K, Shirasu Y, Kimata K, Araki T, Tanaka N, Haginaka J. Molecularly imprinted uniform-size polymer-based stationary phase for HPLC. J. Chromatgr. A, 1996, 728: 139-147.
    [49] 崔正刚, 殷福珊. 微乳化技术及应用. 北京: 中国轻工业出版社, 1999.
    [50] 李癸英. 界面与胶体的物理化学. 哈尔滨: 哈尔滨工业大学出版社, 1998.
    [51] [瑞士]汉斯·莫利特, 阿诺德·顾本门 著, 杨光译. 乳液、悬浮液、固体配合技术与应用. 北京: 化学工业出版社, 2003.
    [52] Seifriz W. Studies in emulsions. J. Phys. Chem. 1925, 29: 738.
    [53] Sherman P. Emulsion Science. New York: Academic Press, 206, 1968.
    [54] Okochi H, Nakano M. Assay for antiviral activity of herbal extracts using their absorbed sera. Chem. Pharm. Bull. 1996, 44:180-182.
    [55] Omotosho JA, Florence AT, Whateley TL. Absorption and lymphatic uptake of 5-fluorouracil in the rat following oral administration of w/o/w. Int. J. Pharm. 1990, 61: 51.
    [56] Florence AT, Whitehill D. Stabilization of water/oil/water multiple emulsions by polymerization of the aqueous phases. J Pharm Pharmacol. 1982, 34(11): 687-91.
    [57] Ficheux MF, Bonakdar L, Leal-Calderon F. Some stability criteria for double emulsions. Langmuir, 1998, 14: 2702.
    [58] Garti N. Double emulsions-scope, limitations and new achievements. Colloids Surf. A : Physicochem Engng Aspects, 1997, 233:123-124.
    [59] Hou W, Papadopoulos KD. Stability of water-in-oil-in-water type globules. Chem. Eng. Sci. 1996, 51: 5043.
    [60] Florence AT, Whitehill D. Some features of breakdown in water-in-oil-in-water multiple emulsions. J. Colloid Interface Sci. 1981, 79: 243.
    [61] 顾健人,曹雪涛. 基因治疗. 北京: 科学出版社, 2001.
    [62] 马清钧. 生物技术药物. 北京: 化学工业出版社, 2002.
    [63] R.M.特怀曼(英) 陈淳, 徐沁等译. 高级分子生物学要义. 北京: 科学出版社, 2000.
    [64] Liu F, Huang L. Development of non-viral vectors for systemic gene delivery. J. Control. Release, 2002, 78: 259-266.
    [65] Zhao Xiaobin B. Lee Robert J. Tumor-selective targeted delivery of genes and antisense oligodeoxyribonucleotides via the folate receptor. Advanced Drug Delivery Reviews, 2004, 56:1193-1204.
    [66] 厉朝龙. 生物化学与分子生物学实验技术.杭州:浙江大学出版社,2000.
    [67] 俞俊棠, 唐孝宣. 生物工艺学.上海:华东化工学院出版社,1992.
    [68] O'Kennedy RD, Baldwin C, Keshavarz-Moore E. Effects of growth medium selection on plasmid DNA production and initial processing steps. J. Biotechol. 2000, 76:175.
    [69] Kay A, O'Kennedy RD, Wand J. Impact of plasmid size on cellular oxygen demand in Escherichia coli. Biotechnol. Appl Biochem. 2003, 38:1.
    [70] NBirnboim J HC Doly. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic acids research, 1979, 7:1513-1523.
    [71] Ciecolini L, Shamlou PA, Titchener-Hooker N. A mass balance study to assess the extent of contaminant removal archived in the operations for the primary recovery of plasmd DNA Eschericha coli cells. Biotechnol. Bioeng. 2002, 77:796.
    [72] Ciecolini L, Shamlou PA, Titchener-Hooker N. Time course of SDS-alkaline lysis of recombinant bacterial cells for plasmid release. Biotechnol. Bioeng. 1998, 60:768.
    [73] Levy M, Collins I, Yim S. Effect of shear on plasmid DNA in solution. Bioprocess Eng. 1999, 20:7.
    [74] Lander RJ, Winters MA, Meacle FJ. Fractional precipitation of plasmid DNA from lysate by CTAB. Biotechnol. Bioeng. 2002, 79:777.
    [75] Duate MF Prazeres, Guilherme NM Ferreira, Gabriel A Monteiro, Charles L Cooney and Joaquim MS Cabral. Large-scale production of pharmaceutical grade plasmid DNA for gene therapy: problems and bottlenecks. Tibtech. 1999, 17:169-174.
    [76] Christian GH. Micropellicular station phases for high-performance liquid chromatography of double-stranded DNA. J. Chromatogr. A, 1998, 806:3.
    [77] Guilhreme NM Ferreira, Joarquim MS Cabral and Duarte M F Prazeres. Studies on the batch adsorption of plasmid DNA onto anion exchange chromatographic supports. Biotechnol. Prog. 2000, 16: 416-424.
    [78] Alex E-D, Gemma B. Purification of pharmaceutical-grade plasmid DNA by anion exchange chromatography in an Rnase-free process. J. Chromatogr. B,2004, 804:327-335.
    [79] Aubry AF. Application of affinity chromatography to the study of drug-melanin binding interactions. J. Chromatogr. B, 2002, 768(1):67.
    [80] Ferreira GNM, Cabral JMS, Prazeres DMF. A comparison of gel filtration chromatographic supports for plasmid purification. Biotechnol. Technol. 1997, 11:417.
    [81] Vogt, Ruth Freitag & Sabine. Separation of plasmid DNA from protein and bacterial lipopolysaccharides using displacement chromatography. Cytotechnol. 1999(159-167).
    [82] Diogo MM, Queiroz JA, Monteiro GA, Prazeres DMF. Separation and Analysis of Plasmid Denatured Forms Using Hydrophobic Interaction Chromatography. Anal. Biochem. 1999, 275(1):122-124.
    [83] Gustavsson Per-Erik, Lemmensb Raf, Nyhammar Tomas. Purification of plasmid DNA with a new type of anion-exchange beads having a non-charged surface. J. Chromatgr. A, 2004, 1038(1):131?40.
    [84] Guilherme NM, Gabriel A Monteiro, Duarte MF Prazeres and Joaquim MS Cabral. Downstream processing of plasmid DNA for gene therapy and DNA vaccine applications. Tibtech. 2000, 18:380-388.
    [85] Joachim Stadle, Raf Lemmens and Tomas Nyhammar. Plasmid DNA purification. J. gene Med. 2004, 6:S54-S66.
    [86] Jochen Urthalera, Robert Schlegla, Ales Podgornikb,et al. Application of monoliths for plasmid DNA purification development and transfer to production. J. Chromatgr. A, 2005, 1065(1-2):93-106.
    [87] Raf Lemmens, Urban Olsson, Tomas Nyhammar, Joachim Stadler. Supercoiled plasmid DNA: selective purification by thiophilic/aromiatic adsorption. J. Chromatogr. B, 2003:291-300.
    [88] Lena M Sandberg, sa Bjurling, Philippe Busson, Jozsef Vasi, Raf Lemmens. Thiophilic interaction chromatography for suppercoiled plasmid DNA purification. J. Biotechnol. 2004:193-199.
    [89] Thomas LC & S Charles. Immobilization of oligonucleotides on a large pore support for plasmid purification by triplex affinity interaction. Bioseparation, 1999, 7:317-326.
    [90] Sindhu balan, Jason Murphy, Igor Galaev, Ashok Kumar, George E Fox, Bo Mattiasson & Richard C Willson. Metal chelate affinity precipitation of RNA and purification plasmid DNA. Biotechnol. Let. 2003, 25:1111-1116.
    [91] Diogo MM, Queiroz JA, Monteiro GA. Purification of a cystic fibrosisplasmid vector for gene therapy using hydrophibic interaction chromatography. Biotechnol. Bioeng. 2000, 68:576.
    [92] Diogo MM, Prazeres DMF, Pinto NG, Queiroz JA. Hydrophobic interaction chromatography of homo-oligonucleotides on derivatized Sepharose CL-6B: Using and relating two different models for describing the effect of salt and temperature on retention. J. Chromatogr. A, 2003, 1006(1-2):137-148.
    [93] Diogo MM, Queiroz JA, Prazeres DMF. Assessment of purity and quantification of plasmid DNA in process solutions using high-performance hydrophobic interaction chromatography. J. Chromatogr. A, 2003, 998(1-2):109-117.
    [94] Gustavsson Per-Erik, Lemmens Raf, Nyhammar Tomas, Busson Philippe, Larsson Per-Olof. Purification of plasmid DNA with a new type of anion-exchange beads having a non-charged surface. Journal of Chromatography A, 2004, 1038(1-2):131-140.
    [95] Van Kreveld ME, Van den Hoed N. Quantitative and qualitative analysis of the anticoagulant acenocoumarol in human plasma. J. Chromatogr. 1978, 149:71.
    [96] Afeyan NB, Gordon NF, Mazasaroff I, Varady L, Fulton SP, Yang YB, Regnier FE. Flow through particles for the high-performance liquid chromatographic separation of biomolecules: perfusion chromatography. J. Chromatgr. A, 1990, 519:1-29.
    [97] Afeyan NB, Fulton SP, Gordon NF. Continuous affinity-recycle extraction: a novel protein separation technique. Bio/technology, 1990, 8:203.
    [98] Gerstner JA, Morris J, Hount T. Rapid ion-exchange displacement chromatography of proteins on perfusive chromatographic supports. J. Chromatogr. A, 1995, 695:195.
    [99] Fulton S, Meys M. Preparative peptide purification by cation-exchange and reversed-phase perfusion chromatography. Bio/techniques, 1992, 12(5):742.
    [100]McCoy MA, Liapis AI. Evaluation of kinetic models for biospecific adsorption and its implications for finite bath. J. Chromatogr. 1991, 548(1-2):25?0.
    [101]Liapis AI, McCoy MA. Theory of perfusion chromatography. J. Chromatgr, 1992, 599:87-104.
    [102]Li W, Li Y, Sun Y. Packed microtubes model for flowthrough chromatography of protein. Chem. Eng. Sci. 2005, (in press).
    [103]Xu Y, Liapis AI. Modelling and analysis of the elution state of 損 erfusion chromatography? Effects of intraparticle convective velocity andmicrosphere size on system performance. J Chromatogr A, 1996, 724(1-2):13-25.
    [104]Zhang ML, Sun Y. Poly (glycidyl methacrylate- divinylbenzene- triallylisocyanurate ) continuous-bed protein chromatography. J. of Chromatogr. A, 2001, 912(1-2):31-38.
    [105]Zhang ML, Sun Y. Cooperation of Solid Granule and Solvent as Porogenic Agents Novel Porogenic Mode of Biporous Media for Protein Chromatography. J. Chromatogr. A, 2001, 22:77-86.
    [106]孙彦, 张敏莲, 白姝, 董晓燕. 固液联合致孔制备两类孔型 PGDT 分离介质的方法. 2001. cn: 1318588A.
    [107]Shi Y, Sun Y. Development of Rigid Biporous Polymeric Adsorbent for Protein Chromatography. Chromatographia, 2002, 55:405-410.
    [108]Shi Y, Sun Y. Fabrication and Characterization of a Novel Biporous Spherical Adsorbent for Protein Chromatography. Chromatographia, 2003, 57:29-35.
    [109]Wu L, Bai S, Sun Y. Development of Rigid Bidisperse Porous Microsperes for High-Speed Protein Chromatography. Biotechnol. Prog. 2003, 19: 1300-1306.
    [110]孙彦, 施扬, 董晓燕, 白姝. 两类孔型的微球 PGDT 分离介质的制备方法. 2001. cn: 1351896A.
    [111]Gustavsson Per-Erik, Larsson Per-Olof. Superporous agarose, a new material for chromatography. Journal of Chromatography A, 1996, 734(2): 231-240.
    [112]Gustavsson Per-Erik, Axelsson Anders, Larsson Per-Olof. Direct measurements of convective fluid velocities in superporous agarose beads. Journal of Chromatography A, 1998, 795(2): 199-210.
    [113]Gustavsson Per-Erik, Larsson Per-Olof. Continuous superporous agarose beds in radial flow columns. J. Chromatogr. A, 2001, 925(1-2): 69-78.
    [114]Gustavsson Per-Erik, Mosbach Klaus, Nilsson Kjell, Larsson Per-Olof. Superporous agarose as an affinity chromatography support. ournal of Chromatography A, 1997, 776: 197-203.
    [115]Gustavsson Per-Erik, Larsson Per-Olof. Continuous superporous agarose beds for chromatography and electrophoresis. J. of Chromatogr. A, 1999, 832: 29-39.
    [116]Gustavsson Per-Erik, Axelsson Anders, Larsson Per-Olof. Superporous agarose beads as a hydrophobic interaction chromatography support. J. ofChromatogr. A, 1999, 830(2): 275-284.
    [117]Larsson PO. Super porous polysaccharide gels. 1998. US: 5,723,601.
    [118]Heike Karbstein, Helmar Schubert. Developments in the continuous mechanical production of oil-in-water macro-emulsions. Chem. Eng. & Proce. 1995, 34:205-211.
    [119]程极济, 李善君 纪才圭 李橦. 高分子光化学原理及应用. 上海: 复旦大学出版社, 1998.
    [120]何柄林,黄文强. 离子交换与吸附树脂. 上海: 上海科技教育出版社,1995.
    [121]孙彦,孙国勇,史清洪,董晓燕,白姝. 双乳化法制备两类孔型高分子介质. 2004. cn: 1563122A.
    [122]姚允斌, 解涛, 高英敏. 物理化学手册. 上海: 上海科学技术出版社, 1985.
    [123]Sun Guo-Yong, Shi Qing-Hong, Sun Yan. Novel biporous polymeric stationary phase for high-speed protein chromatography. J. Chromatogr. A, 2004, 1061:159-165.
    [124]Yu YH, Sun Y. Macroporous Poly(Glycidyl Methacrylate-Triallyl Isocyanurate-Divinylbenzene) Matrix as an Anion-Exchange Resin for Protein Adsorption. J. Chromatrogr. A, 1999, 855:129-136.
    [125]陈键林. 双孔球形层析介质的研制、性能研究及对蛋白质的分离纯化[硕士学位论文].天津:天津大学,2003.
    [126]Mark McCoy, Krishna Kalghatgi, Fred E Regnier, Noubar Afeyan. Perfusion chromatography - characterization of column packings for chromatography of proteins. J. Chromatogr. A, 1996, 743:221-229.
    [127]Hans Mollet, Arnold Grubenmann. Formulation Technology: Emulsions, Suspensions, Solid Forms: Wiley-Vch Verlag GmbH, 2001.
    [128]孙彦,孙国勇,史清洪,董晓燕,白姝. 利用碳酸钙微粒悬浮液制备超大孔型刚性高分子介质的方法. 2005. cn200510013278.3
    [129]刑其毅 , 徐瑞秋 , 周政 . 基础有机化学 (上册 ).北京 :人民教育出版社,1980.
    [130]Lander ES. (Ineternal human genome Sequencing consortium) Initial sequencing and analysis of the human genome. Nature, 2001, 409:860-921.
    [131]Venter JC. The sequence of the human genome. Science, 2001, 291:1304-1351.
    [132]Dobson CM and Karplus. The fundamentals of protein folding: bring together theory and experiment. Curr. Opin. Stru. Biol. 1999, 9:92-101.
    [133]Laskcy RA, Honda BM, Mills AD. Nuclcosomes are assembled by an acidic protein which binds histones and transfers them to DNA. Nature, 1978, 275:416-421.
    [134]Ellis RJ, Hemmingsen S M. Molecular chaperones: proteins essential for the biogenesis of some macromolecular structures. Science, 1989, 14: 339-344.
    [135]李剑. 分子伴侣、蛋白质聚集和大分子拥挤环境对蛋白质折叠的影响[博士学位论文].北京:中国科学院生物物理研究所,2001.
    [136]张森. 金属硫蛋白、CroEL 及 DsbC 研究:1.金属硫蛋白通过锌离子的结合和释放调节氧化还苑从?2.一种非 ATP 酶依赖的 GroEL 的分子伴侣活力;3.大肠杆菌二硫键异构酶 DsbC 的折叠与去折叠[博士论文].北京:中国科学院生物物理研究所,2001.
    [137]Sigler PB, Xu Z, Rye HS, Burston SG, Fenton W A and Horwich AL. Structure and function in GroEL-mediated protein folding. Annu. Rev. Biochem. 1998, 67:581-608.
    [138]Braig K, Otwinowski Z, Hegde R, Boisvert DC, Joachimiak A, Horwich AL and Sigler PB. The crystal structure of the bacterial chaperonin GroEL at 2.8? Nature, 1994, 371:578-586.
    [139]Xu Z, Horwich A L and Sigler PB. The crystal structure of the asymmeitric GroEL-GroES-(ADP)7 chaperonin complex. Nature, 1997, 388:741-750.
    [140]Sakikawa C, Taguchi H, Makino Y and Yoshida M. On the maximum size of proteins to stay and fold in the cavity of GroEL underneath GroES. J. Biol. Chem. 1999, 274:21251-21256.
    [141]Dong XD, Yang H, Sun Y. Lysozyme reactivation using immobilized molecular chaperonin GroEL. Biotechnol. Tech. 1999, 13:637-641.
    [142]Dong XD, Wang Y B, Liu X G. Kinetic model of lysozyme renaturation with the molecular chaperone GroEL. Biotechnol. Lett. 2001, 23:1165-1169.
    [143]Tong XD, Yang Z, Dong XY, Sun Y. Single-step Purification of Molecular Chaperone GroEL by Expanded Bed Chromatography. Chinese J. Chem. Eng. 2003, 11(4):460-463.
    [144]Chen JL, Bai S, Sun Y. Rapid purification of molecular chaperonins by flowthrough chromatography with customized biporous anion-exchanger. Chromatographia, 2003, 58:1-6.
    [145]许峥,陈小明,郑卫东. 大肠杆菌分子伴侣 GroEL 和 GroES 蛋白的高效表达、纯化与鉴定. 南京大学学报, 1997, 33(1):67-75.
    [146]Lemos JAC, Buene RA, Castro AC. Molecular cloning, purification and immunological reponses of recombinants GroEL and DnaK fromStreptococcus pyogenes. FEMS Immunol. and Med. Microbiol. 2000, 28:121-128.
    [147]Blennow A, Surin BP, Ehring H. Isolation and biochemical characterization of highly purified Escherichia coli molecular chaperone Cpn60 (GroEL) by affinity chromatography and urea-induced monomerization. Biochimica et Biophysica Acta, 1995, 1252:69-78.
    [148]佟晓冬. 流化床吸附分离蛋白质的基础研究[博士学位论文]. 天津: 天津大学,2002.
    [149]Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye. Analy. Biochem. 1976, 72: 248-254.
    [150]汪家政, 范明. 蛋白质技术手册(第一版).北京:科学出版社,2001.
    [151]Laemmli UK. Cleavage of structure proteins during the assembly of the head of bacteriophage. Nature, 1970, 227: 22962-22968.
    [152]胡洪波. 扩张床吸附过程的研究-安通溶栓酶的分离和纯化[博士学位论文]. 杭州: 浙江大学, 1999.
    [153]Lissin NM, Venyaminov Yu & Girshovich S. (Mg-ATP)-dependent self-assembly of molecular chaperone GroEL. Nature, 1990, 348:3 39-342.
    [154]Joseph Sambrook, David W Russell. Molecular Cloning: A Laboratory Mannual, ed. ed, 3rd:Cold Spring Harbor Laboratory Press,2001.
    [155]Waring M. J. Complex formation between ethidium bromide and nucleic acids. J. Mol. Biol. 1965, 13:269-282.
    [156]Freifelder D. Electron mocroscpic study of the ethidium bromide-DNA complex. J. Mol. Biol. 1971, 60:401-403.
    [157]Waring MJ. Structure requirements for the binding of ethidium bromide to nucleic acids. Biochim. Biophys. Acta. 1966, 114:234-224.
    [158]LePecq JB, Paoletti CA fluorescent complex between ethidium bromide and nucleic acids. Physical-chemical characterization. J. Mol. Biol. 1967, 27:87-106.
    [159]Tuma RS, beaudet MP, Jin X, Jones LJ, Cheung CY, Yue S and Singer VL. Characterixtion of SYBR Gold nucleic acid gel stain: A dye optimized for use with 300nm ultraviolet transilluminators. Anal. Biochem. 1999, 268: 278-288.
    [160]Norton IT, Goodall DM, Anstren KRJ, Morris ER and Rees DA. Dynamics of molecular organization in agarose sulfate. Biopolymers, 1986, 25: 1009-1030.
    [161]Kirkpatrick FH. Overview of agarose gel properties. Curr. Commun. Cell Mol. Biol. 1990, 1: 9-22.
    [162]Diogo MM, Ribeiro Sofia C, Queiroz Joao A, Monteiro Gabriel A, Tordo Noel, Perrin Pierre, Prazeres Duarte MF. Production, purification and analysis of an experimental DNA vaccine against rabies. J. Gene Med. 2001, 3: 577-584.
    [163]Branovic Karmen, Forcic Dubravko, Ivancic Jelena, Strancar Ales, et. al. Application of short monolithic columns for fast purification of plasmid DNA. J. Chromatogr. B, Analytical Technologies in the Biomedical and Life Sciences, 2004, 801(2): 331-337.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700