类水滑石化合物的制备、性能及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水滑石是一种具有层状结构的天然矿物,其理想结构式为Mg_6Al_2(OH)_(16)CO_3·4H_2O(Hydrotalcite简称HT),板层上Mg(OH)_6八面体通过共用棱边形成土板层结构,其中的Mg~(2+)在一定程度上被Al~(3+)同晶取代而导致层上带有正电荷,CO_3~(2-)处于层间作为平衡离子,使整个结构呈电中性。一定条件下,水滑石结构中的Mg~(2+)、Al~(3+)可被其它电荷相同、半径相近的二价或三价金属离子同晶取代,层间阴离子CO_3~(2-)可被NO_3~-、Ac~-、Cl~-、SO_4~(2-)等无机阴离子取代,从而形成结构相同、组成各异的类水滑石化合物(Hydrotalcite-Like Compounds简称HTLcs),其结构通式为:[M_(1-x)~(2+) M_x~(3+)(OH)_2]~(x+)(A_(x/n)~(n-))·mH_2O,其中M~(2+)、M~(3+)分别代表+2、+3价金属阳离子,A代表阴离子,n代表阴离子的价数,m代表结晶水的数目,x为+3价阳离子在阳离子总数中所占的分数。由于该物质的结构特点,使其具有层间阴离子的可交换性、板层元素组成多变性和孔径可调变性。依据类水滑石中M~(2+)和M~(3+)的种类及比例不同,HTLcs具有不同的酸碱性和氧化还原性,它们在加氢、裂解、催化氢化、酯化、费—托合成等反应中表现出高的催化活性。另外,类水滑石化合物作为新型功能材料和催化剂载体的应用也有着广泛的前景。
     类水滑石应用于催化领域,其一是直接作为催化剂,应用于一些较低温度的碱催化反应;其二是以类水滑石为前驱体经焙烧制备的复合金属氧化物,具有晶粒小、比表面积大、孔容和表面性质可控的特性,应用于氧化还原反应具有很好的反应活性和选择性;其三是以类水滑石为催化剂载体,使其担载的催化材料具有更高的催化活性和选择性;其四是以HTLcs为前驱体,将同多或杂多阴离子嵌入到其层间,可望获得大层间距的多功能柱撑催化材料。但是,由于天然类水滑石品种少、结晶度低,杂质含量高,组成不稳定等缺陷,其广泛应用就受到一定的限制。所以,利用不同方法人工控制合成板层组成元素不同、M~(3+)对M~(2+)同晶取代程度不同即板层电荷密度不同、粒径大小不同的一系列精细结构差异的类水滑石就很有必要。
     本论文研究中,采用共沉淀法,从测定不同比例的混和盐溶液的NaOH滴定曲线着手,详细而深入地探讨了合成体系中pH值、反应原料配比、合成方式、晶化处理温度和时间对合成过程的影响,利用XRD对合成过程中不同pH值阶段合成物物相进行鉴定,借助现代分析仪器手段FT-IR、ICP、BET、TG—DTA表征合成物的物化性能,筛选出合成HTLcs的适宜条件,推断合成机理,总结合成类水滑石的一般规律,为该领域的进一步研究提供理论基础。实验结果表明:合成过程中采用新煮沸过的蒸馏水配制溶液制备ZnAl-HTLcs、MgAl-HT、NiAl-HTLcs,无需N_2保护,产物中检验不出CO_3~(2-)的存在,层间离子为单一的NO_3~-离子;首次提出短时间水热处理,完全可以代替传统的回流处理,使HTLcs合成过程操作简化,合成时间大大缩短;pH值是共沉淀法合成类水滑石的关键因素,合成二元类水滑石的适宜pH值介于Al(OH)_3和M(OH)_2形成时的pH值之间;共沉淀合成类水滑石的机理是,随着NaOH碱液加入二价和三价金属离子混合盐溶液中,体系的pH值不断提高,首先生成Al(OH)_3,随后M~(2+)部分取代Al~(3+),形成具有层状结构的类水滑石。
     以类水滑石为前驱体经焙烧制备的复合金属氧化物具有比表面积大、活性元素分布均匀、金属离子还原条件温和的优点,可应用于许多酸碱催化和氧化还原催化过程。研究HTLcs的热解过程、揭示热分解机理、关联热解产物性能与前驱体的联系是获取性能优异的复合金属氧化物的重要保证。研究中利用TG-DTA技术考察了NiAl、ZnAl、MgAl类水滑石的热分解行为,通过Ozawa法和Kissinger法计算热分解动力学参数。实验结果表明:MgAl-HT、NiAl-HTLcs、ZnAl-HTLcs三种二元类水滑石由于构成元素不同,热稳定性不同,稳定性由高到低顺序为:MgAl-HT>NiAl-HTLcs>ZnAl-HTLcs,热稳定性分别达400℃、300℃、200℃。MgAl-HT在热解过程中,当Mg/Al=1-2时,热解过程分三个阶段完成,即脱吸附水和层间结晶水、脱铝羟基、脱镁羟基和层间硝酸根离子;当Mg/Al=3-6时,热解过程分两个阶段完成,即脱吸附水和层间结晶水、脱结构羟基及层间硝酸根离子。不论Ni/Al比如何,NiAl-HTLcs的热解过程均分两个阶段完成,即脱吸附水和层间结晶水、脱结构羟基及层间硝酸根离子。不论Zn/Al比例如何,ZnAl-HTLcs的热解过程一步完成,即吸附水和层间结晶水、结构羟基及层间硝酸根离子一步脱去。利用Ozawa法和Kissinger法计算HTLcs的表观活化能,相应值存在E_(Ozawa)>E_(Kissinger)规律;相同热解过程,存在E_(MgAl-HT)>E_(NiAl-HTLcs)>E_(ZnAl-HTLcs)规律;此外,Ozawa法计算结果表明,在二元类水滑石热解过程中,表观活化能是动态变化的。
     类水滑石的组成、结构、粒度大小等性质很大程度上决定其应用领域。特别是在许多应用中,要求类水滑石化合物具有规定的粒径尺寸,以便最大限度地发挥其功能性。本论文采用平衡晶化法、改变过饱和度法和超声波晶化三种方法进行NiAl类水滑石粒径控制的研究,详细考察了各种因素对合成类水滑石粒径的影响。研究结果表明:平衡晶化法中随水热处理温度的提高和水热处理时间的延长,合成物粒径逐渐增大,是制备大粒径类水滑石的有效办法,在其他条件相同时,通过水热处理可使合成物中值粒径由1.01μm增加到4.39μm;采用超声晶化法是合成粒径尺寸较小,粒径分布范围窄的超细类水滑石化合物的有效办法,一定条件下,合成物中值粒径为0.38μm,而(0.26-0.51)μm之间的粒子占到总数的83.04%。
     在质子型溶剂乙酸存在下,应用NiAl-HTLcs作催化剂,完成液相空气氧化苯甲醛至苯甲酸。考察反应影响因素,确定反应机理,并对反应动力学参数进行计算。研究结果表明:NiAl-HTLcs催化剂能有效地活化分子氧,质子型溶剂乙酸可以借助氢键与氧气缔合,有利于氧气在反应液中溶解与扩散,在最佳反应条件下,苯甲醛的转化率达100%,苯甲酸的选择性近100%。此反应属扩散控制反应,为动力学上零级反应,反应活化能为15.277kJ/mol,按自由基历程进行。研究结果开创了有质子型溶剂存在下,液相空气氧化苯甲醛制苯甲酸的新途径。
     论文中用NiAl-HTLcs作催化剂,催化苯甲醛与乙醇反应生成安息香乙醚。在最佳实验条件下,苯甲醛转化率为54.83%,安息香乙醚的选择性近100%。此反应属一级反应,反应活化能为42.189kJ/mol。以类水滑石为催化剂一步合成安息香乙醚的方法大大改进了传统的以苯甲醛为原料,经过缩合和醚化两步完成,并在第一步中使用氰盐作催化剂的安息香乙醚生产工艺,具有很大的创新性。
     Cu~(2+)在羟基配位的八面体结构中姜—太勒效应严重,单独Cu~(2+)与三价金属离子进行共沉淀时,优先生成变形八面体复合盐而不能形成层状结构的HTLcs,即使能形成,合成条件也较苛刻,且稳定性也较差。但负载型铜系催化剂在一些碱催化、氧化还原催化方面应用广泛。而以含铜类水滑石为前驱体经焙烧所得氧化物具有比表面大、铜分散度高、颗粒大小均匀的特点,在催化应用上有很大潜力。本研究以共沉淀法制备了铜锌铝、铜镁铝类水滑石,对其主要影响因素进行详细考察,筛选出合成该化合物的适宜条件,利用苯酚羟化作为探针反应对CuZnAl-HTLcs的催化性能进行评价。研究结果表明:合成CuMAl-HTLcs(M为Ni~(2+)或Zn~(2+))适宜的pH范围介于Al(OH)_3、M(OH)_2和Cu(OH)_2形成的pH值之间,且适宜pH范围较合成相应二元类水滑石的pH范围窄。随着CuZnAl-HTLcs中Cu含量的增加,催化剂对苯酚羟化反应的催化活性逐渐增大,苯酚最高转化率可达56.1%。
     稀土金属结构特殊,在许多反应中催化效果较好,控制条件,将离子半径较大的稀土离子引入类水滑石结构中,制备含稀土金属类水滑石化合物,以它为前驱体,经焙烧后可望得到具有比表面积大、稀土元素分布均匀、各种金属离子之间协同良好的复合金属氧化物催化剂,应用于环境友好催化领域,具有一定的经济效益和社会效益。本研究从Ce~(3+)、Al~(3+)、Zn~(2+)、Ni~(2+)几种金属离子混合盐溶液的氢氧化钠滴定曲线入手,深入研究将离子半径较大的稀土离子Ce~(3+)引入类水滑石结构中的方法和制备NiAlCe-HTLc和ZnAlCe-HTLcs的适宜条件,初步探索含稀土类水滑石衍生复合氧化物在催化消除NO反应中的应用。研究结果表明:合成MAlCe-HTLcs(M为Ni~(2+)或Zn~(2+))适宜的pH值介于Al(OH)_3、M(OH)_2、Ce(OH)_3形成时相应的pH值之间。以ZnAlCe-HTLcs为前驱体经过750℃焙烧后所得复合氧化物应用于催化消除NO,680℃进行反应,可使NO转化率近100%。NiAlCe-HTLcs在催化消除NO反应中表现出高的低温活性,400℃进行反应,NO转化率达95%。
Hydrotalcite, a kind of natural mineral, has an ideal formula Mg_6Al_2(OH)_(16)CO_3·4H_2O with a sheet structure, in which Mg~(2+) ions are arranged in sheets and each of them is octahedrally surrounded by six hydroxide groups while each hydroxide spans three magnesium ions. The sheet structure shows a positive charge of the layer when the divalent cations(Mg~(2+) ) are partially substituted with some comparable size trivalent ones such as Al~(3+), balanced by the anions CO_3~(2-) between the hydroxylated layers. Under certain condition, Mg~(2+) and Al~(3+) can be substituted by other divalent and trivalent cations with similar radius, respectively; and CO_3~(2-) can also be replaced with NO_3~-, Ac~-, SO_4~(2-) and etc.. Thus a large number of hydrotalcite-like compounds (HTLcs) can be synthesized in the same structure but with different compositions, whose general formula can be therefore shown like [M (II)_(1-x)M (III)_x (OH)_2]~(x+)(A~(n-))_(x/2)·mH_2O, where M (II) and M (III) represent the divalent and trivalent cations, respectively; A~(n-) represents anions in the octahedral positions; 'm' is the number of the water molecules and 'x' is the ratio of trivalent to all the cations.
     With the characteristics of exchangeable anions in the interlayer, adjustable cations on the sheets and variable pore sizes, HTLcs have different acidic-basic capacity and oxidation-reduction property if given different cation species and ratio of n(M~(2+)) to n(M~(3+)) and thereout have been widely used to catalyze the reactions of hydrogenation , degradation , catalytic hydrogenation , esterification and Fischer-Tropsch low-carbon alcohol. Moreover, HTLcs have also potential to be utilized as new type materials and carriers of catalysts.
     However, the application of the natural HTLcs have been limited because of fewer species, lower crystallization, higher impurity, and unstable constituent. Therefore, it is urgent to build a system of producing a series of structurally refined HTLcs with different compositions on the sheets, different isomorphous replacement degree or different charge density on the plates and different particle sizes under certain conditions.
     In this current project, we started with measuring the NaOH titration curves of nitrate salt by co-precipitation method to study the effect of pH, raw material, procedure, temperature and time of crystallization on the synthesis of HTLcs; then identifying the phases of complex with different pH values by XRD; eventually selecting an optimal condition of preparing HTLcs through characterization of physicochemical performances of the complex by using the modern instrumentals of FT-IR, ICP, BET and TG-DTA. More importantly, we proposed a reasonable mechanism and a general principle of synthesizing HTLcs that will provide a theoretical basis for further study in this field.The result showed that 1) through the optimal procedure, CO_3~2 was not detectable in the product and NO_3~- was the unique ion in the interlayer of complex when MgAl-HT, NiAl-HTLc and ZnAl-HTLc solution were prepared by the freshly boiled distilled water without protection of N_2. 2) We found that the hydrothermal treatment with shorter time could replace the conventional reflux of over 20h at 80℃completely , and such procedure would simplify the synthesis process and shorten the preparation time significantly. 3 ) The pH value is a crucial factor in the preparation of HTLcs. The pH value in the synthesis of bi-HTLcs should be higher than in the preparation pH of Al(OH)_3 and lower than in that of M(OH)_2. 4) The preparation mechanism of HTLcs by co-precipitation was describe as: by adding NaOH aqueous into the mixed salt solutions, the pH value in the system increased generally, Al(OH)_3 was got and then subsequently, with the M replacing Al~(3+) partially, HTLcs with layered structure formed.
     HTLcs are facile to be decomposed when heated and the obtained complex oxides will have fine application prospects in some acid-base catalysis or redox catalysis reactions. Because of their typical characteristics such as big specific surface area, even distribution of catalytic active sites and mild reduction condition of metallic cations. However, the thermal decomposition procedure is complicated and the properties of complex oxides are mainly determined by the composition of the precursor and calcination temperatures of thermal decomposition process. In this paper, the thermal decomposition process of HTLcs was investigated and the decomposition mechanism was also proposed in order to obtain such complex oxides possessing perfect performances. TG-DTA technology was adopted to study the thermal decomposition processes of MgAl-HT, NiAl-HTLcs and ZnAl-HTLcs. Kinetic parameters of the process were calculated and analyzed by Ozawa method and Kissinger method, and then the reaction mechanism was deduced afterwards. The results showed that the thermal stability of the three kinds of HTLcs was different and the stability order was: MgAl-HT>NiAl-HTLcs>ZnAl-HTLcs. The temperatures of stability were 400℃, 300℃and 200℃, respectively. In the thermal decomposition process of MgAl-HT, when Mg/Al=1~2, the TG curves showed three mass loss stages: the weight loss of the deformation of the interlayer water molecules under the first stage, the removal of the Al-OH on the sheets of the second and the loss of Mg-OH on the sheets and nitrate ions of the third; while when the Mg/Al=3~6, the curves showed two stages: the loss of interlayer water molecules and dehydroxylation of the sheets as well as the loss of nitrate ions. For the thermal behavior of NiAl-HTLcs, all the samples showed two weight loss stages: one stage to the loss of interlayer water molecules and the other to dehydroxylation of the sheets as well as the loss of nitrate ions in the interlayer. As to the ZnAl-HTLcs, the thermal decomposition was completed under one stage; i.e. the loss of interlayer water molecules and dehydroxylation of the sheets as well as the loss of nitrate ions in the interlayer. The active energy values calculated by Ozawa method were higher than that by Kissinger method under the same decomposition stage of the same samples. Active energy values of the corresponded stages presented the order of E_(MgAl-HT)> E _(NiAl-HTLcs) >E_(ZnAl-HTLcs). The calculated results by Ozawa method showed that the active energy values of thermal decompositions kept changing dynamically.
     HTLcs are new type functional materials and their application fields are mainly dependent on their compositions, structures and particle sizes. Particularly in many applications, the particle sizes were specified to make full use of their advantages. In this paper, NiAl-HTLcs with different particle size distribution were prepared by methods of equilibrium crystallization, variation of the degree of super-saturation and ultrosonic crystallization. And also the effect of many factors on particle size was systematically studied. The results showed that the big particle sizes of HTLcs could be obtained when increasing temperature and extending time of the hydrothermal treatment during equilibrium crystallization, in which the average particle size of samples would increase from 1.01μm to 4.39μm. However, an effective means to acquire HTLcs with small particle sizes and narrow particle sizes distribution was by the method of ultrosonic crystallization, from which the average particle size of samples was 0.38μm and took 83.04% of (0.26-0.51)μm.
     In order to study the catalytic activity of HTLcs, NiAl-HTLcs was introduced to the oxidation reaction of phenyl aldehyde into benzoic acid where acetic acid was solvent and oxygen in the air as the oxidant. Effects of different factors on the reaction were investigated in detail, and then the reaction mechanism was deduced by the calculation of kinetics parameters including the reaction activity energy and reaction grades. The result showed that the NiAl-HTLcs could be used as an excellent catalyst in the synthesis of benzoic acid with acetic acid and phenyl aldehyde. In this reaction, oxygen could be dissolved and diffused much more easily because NiAl-HTLcs activated the oxygen molecules in the air and at the same time acetic acid as solvent was associated with oxygen in the presence of hydrogen bond. Under optimal condition, both the conversional rate of phenyl aldehyde and the selectivity of benzoic acid were up to 100%. The kinetic study showed this reaction was a typical controlled diffuse reaction or could be also called zero progression reaction, in which the active energy was got to be 15.277kJ·mol~(-1) following the free radical reaction. This experiment pioneered a completely new path of reaction where phenyl aldehyde was oxidized into benzoic acid using protonic solvent as medium .
     NiAl-HTLcs was also introduced into another synthetic reaction of benzoin ethyl ether with ethanol and phenyl aldehyde, in which the conversion of phenyl aldehyde was up to 54.86% and the selectivity of benzoin ethyl ether was nearly 100% at the optimal condition. This reaction was kind of one progression reaction and the reaction activity energy was 42.189kJ·mol~(-1) where NiAl-HTLcs and ethanol were as the catalyst and the solvent, respectively. This technology completely innovated the traditional design of the synthesis of benzoin ethyl ether, i.e. NiAl-HTLcs replaced cyanide as the catalyst in the reaction. By this new method, not only the cyanide poisoning was avoided but also the synthesis of benzoin ethyl ether could be completed in one step instead of the traditional two steps with both condensation and etherification.
     As the John-Tellor effect of Cu~(2+), when Cu~(2+) was used to prepare HTLcs with trivalent cations by coprecipitation method, Cu would form deforming octahedral complex rather than HTLcs. Even if it could be introduced into the preparation of HTLcs, the preparation conditions would be harsh and the stability of the resultant would be poor. However, catalysts loading copper have wide applications in alkali and redox catalysis. Moreover, the complex oxides of HTLcs with copper as the precursor possess potential application capacity because of whose typical characteristics such as big specific surface area, high dispersion degree of Cu and even particle sizes. Here, CuMAl-HTLcs (M=Mg~(2+) or Zn~(2+)) were prepared by coprecipitation method. Effects of different factors on the preparation were studied elaborately. Based on the above research, the most optimal preparation conditions were acquired and the obtained HTLcs was also used in the reaction of phenol hydroxylation to study its catalytic performances. The results showed that the feasible pH value range for preparation of CuMAl-HTLcs (M=Mg~(2+) or Zn~(2+)) fell in the range of that of Al(OH)_3, M(OH)_2 and Zn(OH)_2. By increasing Cu content in CuZnAl-HTLcs, it catalytic activity in the reaction of phenol hydroxylation would be elevated gradually and the highest conversion of phenol could reach to 56.1%.
     Rare metals with special structures have shown champion effectiveness in many reactions. Here, by introducing rare metals with larger ionic radius into the structure of HTLcs by controlling the synthesis factors. The complex oxides obtained from calcinating the above HTLcs were expected to have advantages to be an environment benign catalyst such as big specific surface area, even distribution of rare metal elements and fine coordinating action among the metal cations. Starting by the titration curve of mixed salt solution of several metal ions (Ce~(3+), Al~(3+), Zn~(2+) and Ni~(2+)) with NaOH solution as the precipitator, a feasible way was modified to introduce Ce~(3+) with larger ionic radius into the structure of HTLcs and the optimal conditions were nvestigated elaborately for preparing NiAlCe-HTLcs and ZnAlCe-HTLcs. Subsequently, the posibility of the complex oxides with HTLcs containing rare metal as the precursor in elimination reaction of NO was preliminarily researched. The experiments results showed that the feasible pH value range for preparation of MAlCe-HTLcs (M=Ni~(2+) or Zn~(2+)) was among the ranges of that of Al(OH)_3, Zn(OH)_2 and Ce(OH)_3. The complex oxides obtained from calcination of ZnAlCe-HTLcs at 750℃was used in catalytic reduction reaction of NO; when the reaction temperature was 680℃, the conversion of NO was up to 100%. NiAlCe-HTLcs showed high activity at lower temperatures in the catalytic reduction reaction of NO; when the reaction temperature was 400℃, the conversion of NO could reach 95%.
引文
[1] Cavani F, Trifiro F, Vaccari A. Hydrotalcite-tipe anionic clay: preparation, properties and application. Catal.Today, 1991, 11:173-301
    [2] Malinowski S, Szczepanska S, Sloczynski J. Magnesium oxide as a catalyst Ⅱ acid-base properties of the magnesium oxide surface. J. Catal., 1967, 7:67-70
    [3] Sato T, Wakabayashi T, Shimada M. Comparison of adsorption separation processes in the liquid and vapor phase application to the xylene isomer mixture. Ind. Eng. Chem., Prod. Res. Dev, 1986, 25: 89-93
    [4] Miyata S. Construction of a micro calorimeter and measurement of heats of solution of stretched glassy polystyrene. Clays and Clay Minerals, 1975, 23: 369-371
    [5] Toshiyuki Hibin, Absumu Tsunashima. Characterization of repeatedly reconstructed Mg-Al hydrotalcite-like compounds: gradual segregation of aluminum from the structure. Chem. Mater., 1998, 10:4055-4061
    [6] Bish D L, Livingstone A. Effect of biliary excretion on ketamine anesthesia in the rat. Miner. Mag., 1981, 44: 339-344
    [7] Kooli E, Depege C. Rehydration of Zn-Al layered double hydroxides Clay and Clay Minerals. 1997, 45(11): 92-101
    [8] Lazaridis N K. Sorption removal of anions and cations in single batch systems by uncalcined and calcined Mg-Al-CO_3 hydroyalcite. Water Air and Soil Pollution. 2003, 146: 127-132
    [9] Nakatsuka T, Kawasaki H, Yamashita S. Extremely low-noise mesfets fabricated by metal-organic chemical vaper deposition. Bull.Chem.Soc.Japan., 1979, 52: 2449-2455
    [10] Reichle T, Pulse W. Microreactor examination of the vapor-phase aldol condensation of acetone. J.Catal., 1980, 63:295-298
    [11] Yong dan li, Jiu ling chen, Liu chang. Catalytic growth of carbon fibers from methane on a nickel-alumuna conposite catalyst prepared from Feitknecht compound. precursor. Appl.Catal.A., 1997, 163:45-57
    [12] 杨锡尧,伍韶玲,何晖,王大庆.新型催化剂载体材料-镁铝复合氧化物的制备及其物理化学性质.分子催化,1996,10(2):88-94
    [13] Booehm H P, Steinlem J, Viewger C. [Zn_2Cr(OH)_6X_2H_2O], New layer compounds capable of anion exchange. Angew.Chem.Int.Ed.Engl., 19.77, 16: 265-268
    [14] Suzuki E, Ono Y. Enhanced antibody production at slowed growth rates: experimental demonsration and a simple steutures model。Bull.Chem.Soc.Japan, 1988, 61: 1008-1011
    [15] Lansink Rotgerink H G J, Van Ommen J G, Ross. R. H. Preparation and characterization of sequentially prepitated and coprecipitated nickel-atnmina catalysts and a comparison of their properties .in B. Delmon, P. Grange and P. A. Jacbs(Editors), Preparation of Catalysts Ⅳ, Elsevier, Amseterdam, 1987, 795
    [16] Monzon A, Romeo E, et al. Use of hydrotalcites as catalytic precursors of multimetallic mixed oxides Application in the hydrogenation of acetylene. Appl.Catal., A: General., 1999, 185: 53-63
    [17] Toshiyuki Hibin, Absumu Tsunashima. Characterization of repeatedly reconstructed Mg-Al hydrotalcite-like compounds: gradual segregation of aluminum from the structure. Chem. Mater., 1998, 10:4055-4061
    [18] Jae—Min Oh, Sung—Ho Hwang, Jin—Ho Choy. The effect of synthetic conditions on tailoring the size ofhydrotalcite particles. Solid State Ionics, 2002, 151: 285-291
    [19] Dimotakis E D, Pinnavaia. T J. New route to layered double hydroxides intercalated by organic anions: precursors to polyometalate-pillarer derivatives. InorgChem, 1990, 29(13): 2393-2410.
    [20] Lal M, Howea T. High proton conductivity in pressed pellets of zinc-chromium hydroxide. J.Chem Soc Chem Commun, 1980, 737-738.
    [21] Ikeda T, et al. Stereoselective exchange kinetics of L-and D-histidines for Cl-in the interlayer of a hydotalcite-like compound by the chemical relaxation method. J.Am Chem Soc, 1984, 106(20): 5772-5775.
    [22] Mario L.Occelli, Harry Robson. Expanded clays and other micropopous solids Volume Ⅱ, Van Nostrand Reinhold, 1992, 107-162
    [23] 杨飘萍,吴通好。水滑石的结构性质、合成及催化应用.石化技术与应用,2005,23 (1):61-66
    [24] Iyata S. Anion-exchange properties of hydrotalcite-like compounds. Clays Clay Miner, 1983, 31; 305-311
    [25] Gastuche M C, Brown G, Mortland M. Mixed magnesium-aluminium hydroxides I.Preparation and Characterization of compounds formed in dialysed systems. Clay Minerals, 1967, 7:177-180
    [26] Mascolo G, Marino O. A new synthesis and characterization of magnesium-aluminum hydroxides. Miner. Mag., 1980, 43:619-622
    [27] .Bish D.L, Brindley G.W. A reinvestigation of takovite, a nickel aluminum hydroxyl-carbonate of the pyroaurite group. Amer. Min., 1977, 62:458-460
    [28] 赵芸,梁吉,李峰,段雪.层状双金属氢氧化物的热分解及动力学研究.清华大学学报(自然科学版),2004,44(2):149-152
    [29] 温斌,何鸣元,宋家庆,宗保宁,路勇.含铜类水滑石催化材料热分解过程的研究.无机化学学报,2000,16(1):58-62
    [30] Stanimirova T S., Vergilov I, Kirov. G. Thermal decomposition products of hydrotalcite-like compounds: Low-Temperature Metaphases. Journal of Materials Science, 1999, 34: 4153-4161
    [31] 李蕾,张春英,矫庆泽,段雪.Mg-Al-CO_3与Zn-Al-CO_3水滑石热稳定性差异的研究.无机化学学报,2001,17(1):113-117
    [32] Reichle W.T., Catalytic reactions by thermally activated synthetic, anionic clay mineral. J. Catal, 1985, 94: 547-550
    [33] Piotr Ku, Ttrowski, Kicjan Chmielarz. Acidity and basicity of hydrotalcite derived mixed Mg-Al oxides studies by test reaction of MBOH conversion and temperature programmed desorption of NH_3 and CO_2. Materials Research Bulletin, 2004, 39: 263-266
    [34] Takehira K., Shiahido T., Wang P. Autothermal reforming of CH4 over supported Ni catalysts prepared from Mg-Al hydrotalcite-like anionic clay. J. Catal, 2004, 221: 43-47
    [35] Booehm H P , Steinlem J, Viewger C. [Zn_2Cr(OH)_6X_2H_2O], New layer compounds capable of anion exchange. Angew.Chem.Int.Ed.Engl, 1977, 16: 265-268
    [36] Lal M, Howe A.T. Studies of zinc-chromium hydroxy salts.Composite anion conductors of presse disks of[Zn_2Cr(OH)_6]X_nH_2O, where X-=F~-, Cl~-, Br~-, I~-, NO~(3-) and 1/2CO_3~(2-). J.Solid State Chem, 1981b, 39: 377-381.
    [37] De Roy A, Besse J.P, Bondot.P. Structrual approach and conductivity of lamellar hydroxides Zn_2Cr(OH)_6X_nH_2O(X=anion) by XANES, EXAFS, Xraydiffraction. Mat.Res.Bull., 1985, 20: 1091-1098
    [38] De Roy A, Vernay A M, Besse J P. Hydrotalcite au spinelle.Etude de la trasformation par diffraction desrayons X et analyse thermogravivimetrique. Analusis , 1988, 16(7): 409-413.
    [39] De Roy A, Besse J P. Conductivite ionique de comproses de type hydrotalcite. Solid State Ionics, 1989, 35: 35-43.
    [40] 张杰,李殿卿,任玲玲,EVANS D.G,段雪.新原料路线共沉淀法组装超分子结构柠檬酸根插层水滑石.无机化学学报,2004,20(10):1208-1212
    [41] Feiknecht, W, Gerber M. Double hydroxides and basical double salts.Ⅱ Mixed precipitates from calcium-aluminiun salts solutions.Ⅲ Magnesium- aluminiun double hydroxides. Helv.Chim.Acta, 1942, 25: 106-137
    [42] Gastuche M C, Brown G. Mixed Mg-Al hydroxides Prep.and characterization of compounds. Clay Miner., 1967, 7:177-92
    [43] Miyata, S. The Syntheses of hydrotalcite-like compounds and their structrue and physico-chemical properties-Ⅰ:the systems Mg~(2+)-Al~(3+)-NO_3~- Mg~(2+)-Al~(3+)-Cl~-, Mg~(2+)-Al~(3+)-ClO_4~-、Ni~(2+)-Al~(3+)-Cl~- and Zn~(2+)-Al~(3+)-Cl~-. Clays and Clay Minterals, 1975, 23(5): 369-75
    [44] Miyata S, Okada A. Synthesis of hydrotalcite-like compounds and their physico-chemical propertiesthe system: Mg~(2+)-Al~(3+)-SO_4~(2-) and Mg~(2+)-Al~(3+)-CrO_4~(2-). Clays and Clay Minterals, 1977, 25: 14-18
    [45] De Roy A, Besse J P, Bondot P. Structural approach and conductivity of lamellar hydroxides Zn_2Cr(OH)_6X_nH-2O(X=anion) by XANES, EXAFS and X-ray diffraction. Mat.Res.Bull., 1985, 20: 1091-1098
    [46] El Malki K, De: Roy A, Besse J P. New CuCr layered double hydroxide compound:discussion of pillaring with intercalated tetrahedral anions. Eur J. Solid State Inorg.Chem., 1989, 26: 339-351
    [47] Yamaoka T, Abe M, Tsuji M. Synthesis of Cu-Al hydrotalcite like compound and its ion exchange property. Mat, Res, Bull, 1989, 24: 1183-1199
    [48] Serna C J, Rendon J L, Iglesias J E. Crystal-chemical study of layeres [Al_2Li(OH)_6]+X~-. Clays and Clay Minerals, 1982, 10(3): 180-84.
    [49] Itaya k. Anion-exchanged hydrotalcite-like-clay modified electrodes. Inorg Chem, 1987, 26:624-626
    [50] Zhao H, Vance G E. Selectivity and molecular sieving effects of organic compounds by a β-cyclodextrin-pillared layered double hydroxide. Clays Clay Miner, 1998, 46(6): 712-718.
    [51] Mohd Zobir bin Hussein, Zulkarnain Zainal. Microwave-Assisted Ahing of Organic-Inorganic Hybrid Nanocomposite of α-Naphthaleneacetate in the Lamella of Zn-Al-Layered Double Hydroxide. Journal of Materals Synthesis and Processing, 2002, 10(2): 90-95
    [52] 刘伟,周美玲,王金淑,陈以欣,郑大威.溶胶.凝胶法制备La,Y-Mo超微粉末.稀有金属材料与工程,2005,34(2):292-295
    [53] Toshiyuki Hibino, Atsumu Tsunashima. Characterizatiom of Repeatedly Reconstructed Mg-Al Hydrotalcite-like Compounds;Gradual Segregation of Aluminum from the Structure. Japan.Chem Mater, 1998, 10:4055-4061
    [54] Hibino T, Tsunashima A. Calcination and rehydration behavior of Mg-Al-CO3 hydrotalcite-like compounds. Journal of Materials Science Letters, 2000, 19: 1403-1405
    [55] Prinetto F, Ghiotti G, Graffin P. Synthesis and characterization of sol-gel Mg/Al and Ni/Al layered double hydroxides and comparison whith co-precipitated sample. Micro.Meso.Mater, 2000, 39: 299-304
    [56] Mihaela Jitianu, Marina Balasoiu, Maria Zaharescu. Comparative Study of Sol-Gel and Coprecipitated Ni-Al Hydrotalcites. Journal of Sol-Gel Science and technology, 2000, 19: 453-457
    [57] Mihaela Jitianu, Maria Zaharescu. The Sol-Gel Route in Synthesis of Cr(Ⅲ)-Containing Clays.Conparison Between Mg-Cr and Ni-Cr anionic Clays. Jouenal of Sol-Gel Science and technology, 2003, 26: 217-221
    [58] 姜鹏,候万国,韩书华.Zn-Mg-Al型类水滑石纳米颗粒制备及晶体结构.高等学校化学学报,2002,23(1):78-82
    [59] 候万国.氢氧化铝镁正电溶胶制备及性能研究.高等学校化学学报,1995,16(8):1292~1294
    [60] Junko Oi, Akira Obuchi, Atsushi Ogata. Zn, Al, Rh—mixed oxides derived from hydrotalcite-like compound and their catalytic properties for N_2O decomposition. Applied Catalysis B, 1997, 13: 197-203
    [61] Pramod S Kumbhar, Jaime Sanchez Valente. Reduction of Aromatic Nitro Compounds with Hydrazine Hydrate in the Presence of the Iorn(Ⅲ) Oxide-MgO catalyst Orepared frome a Mg-Fe Hydrotalcite Precursor. Tetrahedron Letters, 1988, 39: 2573-2574
    [62] Vivek J Bulbule, Vishnu H Deshpande, Subramani Velu. Heterogeneous Henry Reaction of Aldehydes: Diastere0selective Synthesis of Nitroalcohol Derivations over Mg-Al Hydrotalcite. Tetrahedron, 1999, 55: 9325-9332
    [63] Rafeh Bechara, Alain D Huysser, Michel Fournier, Laura Forni. Synthesis and characterization of boron hydrotalcite-like compounds as catalyst for gas-phase transposition of cyclohexanone-oxime. Catalysis Letter, 2002, 82(1-2): 59-67
    [64] Choudhary V R, Dumbre D K, Narkhede V S. Solvent-free selective oxidation of benzyl alcohol and benzadehyde by tert-butyl hydroperoxide using MnO_4~- exchanged Mg-Al-hydrotalcite catalysts. Catalysis Letters, 2003, 86(4): 229-233
    [65] Bolognini M, Cavani F, Scagliarini D. Heterogeneous basic catalysts as alternatives to homogeneous catalysya: reactivity of Mg/Al mixed oxides in the alkylation of m-cresol with methanol. Catalysis Today, 2002, 75: 103-111
    [66] Bhattacharyya A, Chang W D, Method for preparing and using nickOel catalysts. P US 5 939 353 A, 1999
    [67] Katsuomi Takehira, Tetsuya Shishido, Peng Wang, Tokuhisa Kosaka, Ken Takaki. Autothermal reforming of CH_4 over supported Ni catalysts prepared from Mg-Al hydrotalcite-like anionic clay. Journal of Catalysis, 2004, 221: 43-54
    [68] Katsutoshi Nagaoka, Andreas Jentys. Methane autothermal reforming with and without ethane over mono- and bimetal catalysts prepared from hydrotalcite precursors. Journal of Catalysis, 2005, 229: 185-196
    [69] Schulze K, Makowski W. Nickel doped hydrotalcites as catalyst precursors for the partial oxidation of light paraffins. Appl Clay Sci , 2001, 18: 59-69
    [70] Velu S, Shah N, Jyothi T M , Sivasanker S. Effect of manganese substitution on the physicochemical properties and catalytic toluene oxidation activities of Mg-Al layered double hydroxides. Microporous Mesoporous Mater , 1999, 33: 61-75.
    [71] Choudary B M, Bhuma V, Narender N. Hydrotalcite-like compounds for liquid-phase oxidation of benzylic hydrocarbons. Indian J Chem , Sect B: OrgChem Incl Med Chem., 1997, 36B: 278-280
    [72] Guo J, Jiao Q Z. Catalytic oxidation of cyclo-hexene with molecular oxygen by polyoxometalate—in-tercalated hydrotalcites. Catal Lett , 1996, 40: 43-45
    [73] Kaneda K, Ueno S, Ebitani K. Catalysis of layered hydrotalcites in heterogeneous hydrocarbon oxidations. Curr Top Catal., 1997, 1: 91-105
    [74] Murcia Mascaros S, Navarro R M. Oxidative Methanol reforming reactions on Cu_2Zn_2Al catalysts derived from hydrotalcite—like precursors. J Catal., 2001, 198: 338-347
    [75] KanedaK, YamashitaT. Heterogeneous oxidation of allylic and benzylic alcohols catalyzed by Ru-Al-Mg hydrotalcites in the presence of molecular oxygen. J Org Chem., 1998, 63: 1750-1751.
    [76] Matsushita T, Ebitani K, Kaneda K. Highly efficient oxidation of alcohols and aromatic compoundscatalysed by the Ru-Co-Al hydrotalcite in the presence of molecular oxygen. Chem Commun., 1999, 265-266
    [77] Choudary B M, Kantam M L, Rahman A. The first example of activation of molecular oxygen by nickel in Ni-Al hydrotalcite: A novel protocol for the selective oxidation of alcohols. Angew Chem. Int. Ed., 2001, 40(4): 763-766
    [78] Liu Yumin, Liu Shetian, Zhu Kaizheng, Ye Xingkai, Wu Yue. Catalysis of hydrotalcite-like compounds in liquid phase oxidation:(Ⅱ) Oxidation of p-cresol to p-hydroxybenzaldehyde. Appl. Catal. A, 1998, 169:127-135
    [79] 谢鲜梅,刘洁翔,宋健玲.含铜三元类水滑石化合物的合成及其性质.催化学报,2003,24(8):569-573
    [80] 贺庆林,胡长文,张云峰,王恩波.Studies on the oxidative activity and themal stability of a new type pillared layered catalyst Zn_2Al—XW11 Z.催化学报, 1996, 17: 559-562
    [81] Choudhary V R, Dumbre D K, Narkhede V S. Solvent-free selective oxidation of benzyl alcohol and benzaldehyde by tert-butyl hydroperoxide using MnO_4~--exchanged Mg-Al-hydrotalcite catalysts. Catal. Lett., 2003, 86 (4): 229-233
    [82] 谢鲜梅,杜琰,任秀荣.MgCoAl类水滑石对苯甲醛氧化的催化活性研究.煤炭转化,2005,28(sup):92-94
    [83] Kaneda K, Ueno S, Imanaka T. Catalysis of transition metal-functionalized hydrotalcites for the Baeyer-Villiger oxidation of ketones in the presence of molecular oxygen andbenzaldehyde. J. Mol. Catal. A: Chem., 1995, 102:135-138
    [84] Pillai U R, Sahle Demessie E. Sn-exchanged hydrotalcites as catalysts for clean and selective Baeyer-Villiger oxidation of ketones using hydrogen peroxide. J. Mol. Catal. A: Chem., 2003, 191:93-100
    [85] Lucjan Chmielarz, Piotr Kustrowski. Catalytic activity of Co-Mg-Al, Cu-Mg-Al and Cu-Co-Mg-Al mixed oxides derived from hydrotalcites in SCR of NO with ammonia. Applied CatalysisB: Environmental, 2002, 35(2): 195-210
    [86] Wang Xuezhong, Liu Yumin, Wu Yue. Catalytic behavior of hydrotalcite-like compound in nitrogen monoxide reduction by CO.催化学报, 1997, 18(6):443-444.
    [87] 陈英红,薛锦珍,侯瑞玲.水滑石复合氧化物在CO+NO反应中的应用.分子催化,2000,14(4):270-274
    [88] 温斌,何鸣元,宋家庆.铈镁铝混合氧化物催化剂的土脱NO_x性能.催化学报,2000,21(1):31-34
    [89] 谢鲜梅,安霞,李晋平.Zn-Al-Ce三元类水滑石的制备及性质研究.分子催化,2004,18(1):36-40
    [90] Swulukutla R, Detellier C. Use of a calcined Ni, Al layered double hydroxide for the reduction of nitric oxide in the presence of methane and oxygen. J.Mater.Sci.Let., 1997, 16:52-754
    [91] Honma T, Nakajo M, Kaneda K. Highly efficient epoxidation of α, β-unsaturated ketones by hydrogen peroxide with a base hydrotalcite catalyst prepared from metal oxides. TetrahedronLett., 2002, 43(35): 6229-6232
    [92] Kumbhar Pramod S, Sanchez-Valente J. Mg-Fe Hydrotalcite as a Catalyst for the Reduction of Aromatic Nitro Compounds with Hydrazine Hydrate. .J. Catal., 2000, 191:467-473
    [93] Choudary B M, Bhuma V, Narender N. Catalytic oxidation of alkyl-and benzylpyridines using calcined ZnCrCO_3-HTLc. Indian J Chem Sect B: Org Chem Incl Med Chem, 1996, 35B: 281-282
    [94] Kaneda K, Yamaguchi K. Catalyst design of hydrotalcite compounds for efficient oxidations. Catal Surv Jpn, 2000, 4: 31-38
    [95] 黄金明,王庶,白荣献,李光兴.有机阴离子柱撑水滑石催化酯交换合成碳酸二苯酯.催化学报,2006,27(2):103-105
    [96] 李殿卿,冯桃,EVANS D G,段雪.有机阴离子柱撑水滑石的插层组装及超分子结构.过程工程学报,2002,2(4):355-360
    [97] 苟国敬,马培华,褚敏雄。氯离子柱撑复合氢氧化物纳米微晶的制备及属性.化学学报,2004,62(21):2150-2160
    [98] 黄金明,王庶,白荣献,李光兴.有机阴离子柱撑水滑石催化酯交换合成碳酸二苯酯.催化学报,2006,27(2):103-105
    [99] 彭霞辉,黄可龙,焦飞鹏,赵学辉,于金刚.手性阴离子柱撑水滑石的制备和表征.功能材料,2005,36(12):1947-1950
    [100] 彭霞辉,刘静宇,L-酒石酸柱撑水滑石的插层组装及超分子结构.长沙大学学报,19(5):36-39
    [101] Reichle Walter T. Catalysts foraldol condensations P.U.S., 498146, 1984
    [102] EmilDum itriu, Vasile Hulea, Carmen Chelaru. Influence of the acid-base properties of solid catalysts derived from hydrotal-cite-like compounds on the condensation of formaldehyde and acetaldehyde. Applied Catalysis A: General, 1999, 178: 145-157
    [103] Chen Y Z, Hwang C M, Liaw C W. One-step synthesis of methyl isobutyl ketone from acetone with calcined Mg/Al hydrotalcite-supported palladium or nickel catalysts. Appl Catal A: General, 1998, 169(2): 207-214
    [104] Winter Ferry, Jos van Dillen A, De Jong, Krijn P. Single-stage liquid-phase synthesis of methyl isobutyl ketone under mild conditions. Journal of Molecular Catalysis A: Chemical, 2004, 219(2): 273-281
    [105] 申延明,张惠,吴静,刘东斌,张振祥.采用HTLcs前驱体制备的丙酮一步法制MIBK催化剂.化工科技,2004,12(5):24-27
    [106] Umberto Costantino, Massimo Curini, Francesca Montanari, Morena Nocchetti, Ornelio Rosati. Hydrotalcite-like compounds as catalysts in liquid phase organic synthesis I. Knoevenagel condensation promoted by [Ni_(0.73)Al_(0.27)(OH)_2](CO_3)_(0.135). Journal of Molecular Catalysis A: Chemical, 2003, 195:245-252
    [107] Faiz Ahmed Khan, Jyotirmayee Dash, Rashmirekha Satapathy. Upadhyay.Hydrotalcite catalysis in ionic liquid medium: a recyclable reaction system for heterogeneous Knoevenagel and nitroaldol condensation. Tetrahedron Letters, 2004, 45: 3055-3058
    [108] 张海永,景晓燕,张密林.磁性镁铝水滑石固体碱催化苯甲醛与丙二酸二乙酯 的反应.应用科技,2002,29(2):50-52
    [109] Climent M J, Corma A, Guil-Lopez R. Solid catalysts for the production of fine, chemicals:the use of alpon and hydrotalicite base catalysts for the synthesis of arylsulfones. Catal Lett., 1999, 59(1): 33-38
    [110] Boyapati Manoranjan Choudary, Mannepalli Lakshmi Kantam, Chinta Reddy Venkat Reddy. The first example of Michael addition catalysed by modified Mg-Al hydrotalcite. Journal of Molecular Catalysis A: Chemical, 1999, 46: 279-284
    [111] 李连生,马淑杰,惠建斌等.稀土水滑石催化合成邻苯二甲酸二戊酯的研究.高等学校化学学报,1995,16(8):1164-1167
    [112] 吕亮,吾国强,段雪等.水滑石的制备、表征及其在酯交换中的应用.精细石油化工,2001,(1):9-12
    [113] 刘金龙,王永杰,廖世键.水滑石选择性催化合成三乙二醇单丁醚.催化学报,2000,21(3):283-285
    [114] Wang yongjie. Selective Ethoxylation of Alchols to Triethylene Glycol Monoethyl Etherover Calcined Hydrotalcite Catalyst. Chinese Journal of Catalysis, 2004, 25(4): 259-260.
    [115] 周燕婷,李峰,杜以波.镁铝复合金属氧化物结构,催化性能及其在一步法制备醇醚醋酸酯中的应用.北京化工大学学报,2000,27(1):70-73
    [116] Ken Motokura, Tomoo Mizugaki, Kohki Ebitani. Multifunctional catalysis of a ruthenium-grafted hydrotalcite:one-pot synthesis of quinolines from 2-aminobenzylalcohol and various carbonyl compounds via aerobicoxidation and aldol reaction. Tetrahedron Letters, 2004, 45:6029-6032
    [117] Rivetti F. The role of dimethylcarbonate in the replacement of hazardous chemicals. Sci Paris, Serie Ⅱc, Chimie/Chemistry, 2000, 3:497-503
    [118] 梅付名,裴志,李光兴.Mg/Al水滑石催化碳酸二甲酯与苯酚酯交换应用.应用化学,2004,21(7):702—707
    [119] Jyothi T M, Raja T, Talawar M B. Selective O-methylation of catechol using. dimethyl carbonate over calcined Mg-Al hydrotalcites. Applied Catalysis A: General, 2001, 211(1): 41-46
    [120] 刘海超,冉国朋,闵恩泽.水滑石焙烧产物负载磺化酞菁钴双功能硫醇氧化催化剂的研究.分子催化,1998,12(3):221-225.
    [121] Chen Y Z, Liaw C W, .Lee L .I. Selective hydrogenation of phenol to cyclohexanone over palladium supported on calcined Mg/Al hydrotalcite. Applied Catalysis, A: 1999, 177: 1-8
    [122] 杨锡尧,袁京.水滑石焙烧产物Mg(Al)O为载体的Pt催化剂的正己烷临氢反应性能.燃料化学学报,1998,26(1):61-64
    [123] 刘海超,杨锡尧,冉国朋.固体碱负载酞菁钴硫醇氧化催化剂的研究.石油化工,2000,29(10):742-745
    [124] 刘海超,杨锡尧,冉国朋.负载离子对型酞菁钴双功能硫醇氧化催化剂.物理化学学报,1999,15(10):918-924
    [125] Iyata S. Anion-exchange properties of hydrotalcite-like compounds. Clays Clay Miner, 1983, 31: 305~311
    [126] Drezdzon M A. Synthesis of isopolymetalate-pillared hydrotalcite via organic-anion-pillaredprecursor. Inorg Chem, 1988, 27: 4628-4631
    [127] Ikeda T, Amoh H, Yasunaga T. Stereose|ective exchange kinetics of 1-and d-histldines for cl~- minus in the interplayer of a hydrotalcite-like compound by the chemical relaxation method. Journal of the American Chemical Society, 1984, 106 (20): 5772-5776
    [128] 陈银飞,吕德伟.MgAlFe复合氧化物吸附SO_2的性质.环境科学学报,2001,21(3):307-311
    [129] 浙江大学,基于水滑石的血液净化吸附剂.科技丌发动态,2004(8):59-60
    [130] Mascolo G, Marino O. Crystallization fifld in the MgO-Al_2O_3-H_2O system below 200℃. Transactions and J. of the British Ceramic Society, 1980, 79 (1): 6-10
    [131] Easley Michael A, Horn William E. Carbon dixide adsorption of synthetic meixnerite. US Patent 5, 882, 622: 1999
    [132] 陈银飞,葛忠华,吕德伟.MgAlFe复合氧化物氧化吸附SO_2的性质.环境科学学报,2001,21(3):307-311
    [133] Yoshimi Seida, Yoshio Nakano. Removal ofhumic substances by layered double hydroxide containing iron. Wat. Res, 2000, 34(5): 1487-1494
    [134] Amin, S., Jayson G. .Humic substance uptake by hydrotalcites and PILCs Source: Water Research, 1996, 30 (2): 299-306
    [135] Orthman H, Zhu Y, Lu G Q. Use of anion clay hydrotalcite to remove coloured organics from aqueous solutions. Separation and Purification Technology, 2003, 31: 53-59
    [136] Lazaridis K, Karapantsios T D, Georgantas D. Kinetic analysis for removal of a reactive dye from aqueous solution onto hydrotalcite by adsorption. Water Research, 2003, 37:3023-3033
    [137] 赵芸,李峰,Evans D G.纳米LDH对环氧树脂燃烧的抑烟作用.应用化学,2002,19(10):954~957.
    [138] 张强,吕杰彬.水滑石填充聚氯乙烯材料研究进展.现代化工,2001,21(1):18-20.
    [139] 张治华.改进PVC电缆料耐热透明及绝缘性能的配方.聚氯乙烯,1994,3:27-31.
    [140] 许国志,郭灿雄,段雪.PE膜中层状双羟基复合氧化物的红外吸收性能.应用化学,1999,16(3):45-48.
    [141] 杨波,王国清.抗酸药研究进展.沈阳药科大学学报,2001,18(2):148-151
    [142] Parekh Jawahar Chunilal. Antiperspirant compositions for aerosol formulations US Pantent 6, 024, 945:2000
    [143] Climent M J, Corma A, Iborra S. Activated hydrotalcites as catalysts for the synthesis of chalcones of pharmaceutical interest. Journal of Catalysis, 2004, 221: 474-482
    [144] 王波,王天才,梁扩寰.铝碳酸镁对反流性食管炎道粘膜保护机制的实验研究.肠胃病学和肝病学杂志,2001,10(4):313-314
    [145] 田中加奈;冈田彰.水性油墨用染料,喷墨记录媒体和多孔质水滑石化合物,中国CN 0028022879:2001
    [146] S Miyata. Filiform corrosion-resistant primer coating composition and method for preventing filiform corrosion US patent 1988, 4, 761, 188
    [147] Adam Unus S, Brown Graham T, Lyle Ian G. Oral compositions US Patent 4, 970, 064: 1990
    [148] Vivek J Bulbule, Vishnu H. Deshpande. Heterogeneouse henry reaction of aldehydes: diastereoselective synthesis of nitroalcohol derivatives over Mg-Al hydrotalcites tetrahedron, 1999, 55: 9325-9332
    [149] Bolognini M, Cavani F, Scagliarini D. Heterogeneouse basic catalysis as alternatives to homogeneous catalysts: reactivity of Mg/Al mixed oxides in the alkylation of m-cresol with methanol. Catalysis Today, 2002, 75: 103-111
    [150] Mulukutla R S, Detellier C. Use of calcined Ni(Ⅲ), Al(Ⅱ) layer double hydroxide for the reduction of nitric oxide in the presence of methane and oxygen. Journal of Materials Science Letters,, 1997, 16: 752-754
    [151] Rafeh Bechara, Alain D Huysser. Synthesis and characterization of boron hyfrotalcite-like compounds as catalyst for gas-transposition of cycobexanone-oxime Catalysis Letters, 2002, 82(1-2): 59-67
    [152] 郑建华,刘鹏,庞海霞.类水滑石在有机液相氧化中的催化应用.化工进展,2003,22(8):823-827
    [153] 吴旭,谢鲜梅,杜亚丽,王志忠.水滑石类材料碱性催化性能的应用研究[J].应用化工,2005,34(8):469-472
    [154] 杨良准,曹娟,倪华英,张庆元.同多阴离子柱撑水滑石催化合成乳酸正丁酯.中南民族学院学报(自然科学版),1999,18(2):68-71
    [155] 郭车,孙铁,沈剑平,刘继广,蒋大振.杂多阴离子柱撑水滑石类层材料的合成及其催化性能的研究.石油化工,1995,24(12):861-864
    [156] 刘炳华,朱海燕,张惠良,沈俭一.以水滑石及类水滑石为前体制备的Ni,Mg,Al混合氧化物的合成和表征.无机化学学报,2005,21(6):852-858
    [157] 屠迈.镍铁水滑石及其衍生混合氧化物的制备和表证.无机化学学报,1997,13(2):159-163
    [158] 詹正坤,胡芳.ZnAl水滑石的合成及其衍生复合氧化物催化活性研究.华中师范大学学报(自然科学版),2000,34(2):193-195
    [159] Choudhary, Vasant R. Jha, Rani Choudhari, Pankaj A. Highly active and reusable catalyst from Fe-Mg-hydrotalcite anionic clay for Friedel-Crafts type benzylation reactions. Journal of Chemical Sciences, 2005, 117 (6): 635-639
    [160] Kawabata Tomonori, Fujisaki Naoko. Improved Fe-Mg-Al hydrotalcite catalyst for Baeyer-Villiger oxidation of ketones with molecular oxygen and benzaldehyde. Journal of Molecular Catalysis A: Chemical, 2006, 253 (1-2): 279-289
    [161] 华幼卿,秦倩,段雪.新型聚氯乙稀热稳定剂—水滑石的研究.聚氯乙稀,2001,6:42-45
    [162] 邢颖,李殿卿,郭灿雄.Zn-Al-CO_3水滑石晶粒尺寸与光屏蔽作用研究.精细化工,2003,20(1):1-7
    [163] 赵芸,矫庆泽,D.G.Evans.介孔镁铝复合氧化物的成孔机理及其结构特征.中国科学B,2002,32(1):67-73
    [1] 刘金龙,王永杰,廖世健等.水滑石选择性催化合成三乙二醇单丁醚.催化学报,2000,21(3):283-285
    [2] Bolognini M, Cavina F, Scagliarini D, Heterogeneous basic catalysts as alternatives to homogeneous catalysts: reactivity of Mg/Al mixed oxides in the alkylation of m-cresol with methanol. Catalysis Today, 2002, 75: 103-111
    [3] 杨锡尧,伍韶玲,何晖等.新型催化剂载体材料-镁铝复合氧化物的制备及其物理化学性质.分子催化,1996,10(2):88-94
    [4] Vivek J Bulbule, Vishnu H Deshpande. Heterogeneouse henry reaction of aldehydes: diastereoselective synthesis of nitroalcohol derivatives over Mg-Al hydrotalcites. Tetrahedron, 1999, 55:9325-9332
    [5] 马亚鲁.化学共沉淀制备镁铝尖晶石粉末的研究.无机盐工业,1998,30(1):3-4
    [6] 任庆利,张赞锋,罗强.纳米晶镁铝水滑石的制备及其热分解机理.物理化学学报,2004,20(3):318-322
    [7] 付步芳.新型阻燃剂发展概况.广西化工,1999,28(3):29-32
    [8] Chanakya M, Plum B. Synthetic Hydrotalcite. U.S. Patent 1990,4904457
    [9] Gastuche M C, Brown G. Mixed Mg-A1 hydroxides prep. and characterization of compounds. Clay Miner., 1967, 7: 177-92
    [10] Miyata S, Okada A. Synthesis of hydrotalcite-like compounds and their physico-chemical properties the system: Mg2+-Al3+-SO42- and Mg2+-Al3+-CrO42-. Clays and Clay Minterals, 1977, 25: 14-18
    [11] Cavani F, Vaccari A. Hydrotalcite-type anionic clay: preparation, properties and application. CatalToday, 1991, 11: 17~301
    [12] 刘钰,杨向光,王学中.以水滑石为前体的Co-Al-M(M=过渡金属)复合氧化物对催化消除NOx的活性的研究.化学学报,1999,57:782~789
    [13] Dandl H, Emig G. Mechanistic approach for the kinetics of the decomposition of nitrous oxide over calcined hydrotalcites. Applied Catalysis A, General, 1998, 168 (2): 261—268
    [14] Dubey A, Kannan S, Velu S, Suzuki K. Catalytic hydroxylation of phenol over Cu M(Ⅱ)M(Ⅲ) ternary hydrotalcites,where M(Ⅱ)=Ni or Co and M(Ⅲ)=Al, Cr or Fe. Applied Catalysis A, General, 2003, 238(2): 319-326
    [15] Armor J N, Braymer T.A, Farris T.S. Calcined hydrotalcites for the catalytic decomposition of N2O in simulated process streams. Applied Catalysis B: Environmental, 1996, 7: 397-406
    [16] Umberto Costantino, Massimo Curini, Francesca Montanari, Morena Nocchetti, Ornelio Rosati. Hydrotalcite-like compounds as catalysts in liquid phase organic synthesis I. Knoevenagel condensation promoted by[Ni0.73 Al0.27(OH)2](CO3)0.135. Journal of Molecular Catalysis A: Chemical, 2003, 195: 245-252
    [17] Rafeh Bechara, Alain D Huysser. Synthesis and characterization of boron hydrotalcite-like compounds as catalyst for gas-transposition of cycohexanone-oxime Catalysis Letters, 2002, 82(1-2): 59-67
    [18] 清山哲郎著 金属氧化物及其催化作用 黄敏明译 合肥 中国科学 技术大学出版社 1991
    [19] 詹正坤,胡芳 Zn—Al水滑石的合成及其复合氧化物催化活性研究 华中帅范大学学报(自然科学版)2000,34(2):193-195
    [20] 邢颖 李殿卿 Zn-Al-CO3水滑石晶粒尺寸控制与光屏蔽作用研究 精细化工2003,20(1):1-7
    [21] Mario L.Occelli,Harry Robson, Expanded Clays and Other Micropopous Solids Volume Ⅱ, Van Nostrand Reinhold New York 1992, 107-162
    [1] Toshiyuki Hibino, Yasumasa Y. Decarbonation behavior of Mg-Al-CO_3 hydrotalcite-like compounds during heat treatment. Clays and Clay Minerals, 1995, 43(4): 427~432
    [2] Kannan S, Swamy C S. Catalytic decomposition of nitrous oxide on "in situ" generated thermally calcined hydrotalcites. Applied Catalysis, B: Environmental, 1994, 3 (2): 109—116
    [3] Armor J N, Braymer T A, Farris T S. Calcined hydrotalcites for the catalytic decomposition of N2O in simulated process streams. Applied Catalysis, B: Environmental, 1996, 7 (4): 397—406.
    [4] 陈镜泓,李传儒.热分析及其应用,北京 科学出版社 1985
    [5] .Frost R.L, Erickson K L. Thermal decomposition of synthetic Hydrotalcites Reevesite and Pyroaurite. Journal of Thermal Analysis and Calorimetry, 2004, 76: 217-225
    [6] 尹浩,陈树琳.镍铁水滑石热分解过程的动力学研究.贵州工业大学学报,1999,28(3):1~5
    [7] 赵芸,梁吉,李峰,段雪.层状双金属氢氧化物的热分解及动力学研究.清华大学学报(自然科学版),2004,44(2):149~152
    [8] 王岚,陈慧琴,陈欣妍,詹正坤.镍铁和镁铁水滑石的合成及热稳定性研究.合成化学,2003,11(6):524~526.
    [9] 何宏舟,骆仲泱,岑可法.不同热分析方法求解无烟煤燃烧反应动力学参数的研究.动力工程,2005,25(4):493-499
    [10] 蔡正千.热分析,北京,高等教育出版社,1993:113-116
    [11] Abello S, Medina F. Study of alkaline-doping agents on the performance of reconstructed Mg-Al hydrotalcites in aldol condensations. Applied Catalysis, A: General, 2005, 281: 191-198
    [12] Piotr Kustrowski, Dominila Sulkowska. Effect of rehydration conditions on the catalytic activity of hydrotalcite-derived Mg-Al oxides in aldolization of acetone. React Kinet.Catal.Lett., 2005, 85(2): 383-390
    [13] 李蕾,张春英,矫庆泽.Mg-Al-CO3与Zn-Al-CO3水滑石热稳定性差异的研究.无机化学学报,2001,17(1):113-118
    [1] 华幼卿,秦倩,段雪.新型聚氯乙稀热稳定剂—水滑石的研究.聚氯乙稀,2001,6:42~45
    [2] 邢颖,李殿卿,郭灿雄等.Zn-Al-CO3水滑石晶粒尺寸与光屏蔽作用研究.精细化工,2003,20(1):1-7
    [3] 赵芸,矫庆泽,李峰.非平衡晶化控制水滑石晶粒尺寸.应用化学,2001,17(6):830-834.
    [4] 赵芸,矫庆泽,D.G.Evans.介孔镁铝复合氧化物的成孔机理及其结构特征.中国科学B,2002,32(1):67~73
    [5] 姜鹏,侯万国,韩书华,胡季帆,李冬青.Zn-Mg-Al型类水滑石纳米颗粒制备及晶体结构.高等学校化学学报,2002,23(1):78-82
    [6] 张密林,王成房,段雪,张海永,景晓燕.磁性纳米镁铝水滑石的合成研究.化学工程师,2002,92(5):10-11
    [7] 冯桃,李殿卿,Evans.D.G.,等.水滑石晶体长厚比及晶粒尺寸控制方法研究[J].无机化学学报,2002,18(11):1156~1160
    [8] Jae Min Oh, Sung Ho Hwang, Jin Ho Choy. The effect of synthetic conditions on tailoring the size of hydrotalcite particles. Solid State Ionics, 2002, 151: 285-291
    [9] 闫明涛,吴刚.超声波合成介孔分子筛.无机化学学报,2004,20(2):219-224
    [10] 刘学芬,张乐,石亚华..超声波-微波法制备NiW/Al2O3加氢脱硫催化剂.催化学报,2004,25(9):748-752
    [11] Lindley J, Lorimer J.P, Maan R, Robet C W. Effects of Ultrasound on the synthesis of ZeoliteNaA. Ultrasonics International, 1989, Jul 3-7: 1264-1269
    [12] Suslick K S, Hyeon T, Fang M. Nanostructured Materials Generated by High-Lntensity Ultrasound: Sonochemical Synthesis and Catalytic studies. Chemistry of Material, 1996, 8(8): 2172-2177
    [13] 赵忠兴.超声波对合金结晶过程的均匀化作用.热加工工艺,1999,(5):10-11
    [14] 易求实,王德慧.过饱和度对纳米材料粒度的影响.培训与研究—湖北教育学院学报,2001,18(5):26-28
    [15] Fetter G, Andez F Hem, Maubert A M, Lara V H, Bosch P. Microwave Irradiation Effect on Hydrotalcite Synthesis. Journal of Porous Materials, 1997, 4: 27-30
    [16] 郭志超,李鸿,王静康.超声波对结晶过程的作用和机理.天津化工,2003,17(3):1~3
    [1] Umderto Costantino, Massimo Curini, Francesca Montanari. Hydrotalcite-like compounds as catalysts in liquid phase organic synthesis. Journal of Molecular Catalysis, A: Chemical, 2003, 195:245-252
    [2] Mulukutla R S, detellier C. Use of a calcined Ni(Ⅱ),Al(Ⅲ) layered double hydroxide for the reduction of nitric oxide in the presence of methane and oxygen. Journal of materials science letters, 1997, 16: 752-754
    [3] 贺庆林,胡长文,张云峰,王恩波.Studies on the oxidative activity and thermal stability of a new type pillared layered catalyst Zn2Al—XW11 Z. 催化学报,1996,17:559-562
    [4] Choudhary V R, Dumbre D K, Narkhede V S. Solvent-free selective oxidation of benzyl alcohol and benzaldehyde by tert-butyl hydroperoxide using MnO4—exchanged Mg-Al-hydrotalcite catalysts. Catal. Lett., 2003, 86(4): 229~233
    [5] 谢鲜梅,杜琰,任秀荣.MgCoAl类水滑石对苯甲醛氧化的催化活性研究.煤炭转化,2005,28(sup):92~94
    [6] 李勋.新型紫外光敏剂安息香双甲醚.精细与专用化学品,2001,(6):21-21
    [7] Fabian Kai, Enke Steffen, Tilly Herbert. Process for preparing a trifluroethoxy-substituted benzoic acid. Merck Patent GmbH. US Patent 6,849,762 2005
    [1] Cavani F, Trifiro F, Vaccari A. Hydrotalcite-tipe anionic clay: preparation, properties and application. Catal.Today, 1991, 11:173-301
    [2] Hernandez J M, Ulibarri A M. Termoch Acta. 1984, 81: 311
    [3] Cavani F, Trifiro F, Vaccari A. Hydrotalcite-type anionic clays.Preparation, properties and applications. Catalysis Today, 1991, 11(2): 173-301
    [4] R. Dziembaj, W.Makowski, L.Chmielarz. Synergistic effectsin the transition metal catalysed hydrogenation of commercial graphites promoted by Ca(NO3)2 and pretreated with O2 or CO2. Elsevier Science Ltd(Carbon), 1996, 34(7): 913-916
    [5] 刘崇微,紫成文,潘卫,朱起明.合成甲醇铜系催化剂前体物相的研究.天然气化工,1997,22(2):5-9
    [6] Chmielarz Lucjan, Kustrowski Piotr, Alicja Rafalska-Lasocha, Dorota Majda, Roman Dziembaj. Cataytic activity of Co-Mg-Al, Cu-Mg-Al and Cu-Co-Mg-Al mixed oxides derived from hydrotalcites in SCR of NO with ammonia. Applied Catalysis B:Environmental, 2002, 35:195-210
    [7] 刘钰,杨向光,张忠良,吴越.以水滑石为前体的Mg—Al—M复合氧化物对催化消除NOx的活性.催化学报,1999,20(4):450-454
    [8] 谢鲜梅.锌铝层状复合氢氧化物的合成研究.无机材料学报,1999,14(2):245-250
    [9] 朱凯征,刘持标,叶兴凯,吴越.铜铝水滑石类化合物催化苯酚羟化反应的研究.化学学报,1998,56(1):32-36
    [1] Dandl H, Emig G. Mechanistic approach for the kinetics of the decomposition of nitrous oxide over calcined hydrotalcites. Applied Catalysis A: General, 1998, 168 (2): 261—268
    [2] 尉继英,马军,朱月香.SnO2-Al2O3复合氧化物催化剂的一氧化氮选择催化还原性能.分子催化,2001,15(1):1—5
    [3] 徐秀峰.还原消除NOx的几类催化剂.山东化工,2001,30(5):25—27
    [4] .Javier Perez-Ramirez, Joost Overeijinder, Freek Kapteijn. Structural promotion and stabilizing effect of Mg in the catalytic decomposition of nitrous oxide over calcined hydrotalcite_like compounds. Applied Catalysis B: Environmental, 1999, 23 (1): 59—72
    [5] Trombetta M, Ramis G. Ammoma adsorption and oxidation on Cu/Mg/Al mixed oxide catalysts prepared via hydrotalcite-type precursors. 1997, 13:4628-4637
    [6] 陈英红,薛锦珍.水滑石类复合氧化物在CO+NO反应中的应用.分子催化,2000,14(4):271-274
    [7] Junko Akira Obuchi, Atsushi Ogata. Zn,Al,Rb-mixed oxides derived from hydrotalcite-like compound and their catalytic properties for N2O decomposition. Applied Catalysis, B: Enviromental, 1997, 13:197~203
    [8] Kaneda. Ruthenium-aluminum-magnesium synthetic hydrotalcites oxidation catalysys and manufacturing methods for carbonyl compounds therewith [P] JP: 2000, 00-070 723, A2,

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700