大扭矩封闭试验系统加载器研制及其均载特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着船舶工业的快速发展,我国的船舶工业也进入了新的发展阶段,已经具备了散货船、油船、集装箱船三大主流船型的自主研发能力,在此背景下,对船用高速、重载减速器传动技术的研究也越来越深入,新型船用大功率减速器应运而生,为解决新型大功率减速器的试验问题,一般均要研制配套的封闭试验系统,来模拟减速器的高速、重载的运行条件,以评定减速器的工作性能,而大扭矩加载器是封闭试验系统中最重要的组成部件,对大扭矩加载器的研究开发就显得尤为重要。本文是以中国船舶重工集团公司某所科研项目为依托,对大扭矩加载器进行了应用研究,研制一种新型的串入式大扭矩加载器,为搭建大型船用减速器封闭试验系统提供技术保证。
     论文综述了加载器技术国内外发展概况,重点分析了机械式封闭实验用大扭矩加载器技术的研究和发展现状,在对比分析各种技术的优缺点基础上,研制了一种新型串入式大扭矩加载器。
     在深入分析封闭试验台载荷特性的基础上,结合研究项目的技术指标,提出了加载器传动系统的设计方案,并构建了加载器传动系统的三维模型,阐述了加载器的工作过程,并对加载器关键部件进行了有限元分析,研究了加载器动力参数、反程自锁性以及能耗等问题,通过稳定性实验提高了加载器转子的稳定精度等级,验证了方案的可行性。通过对加载器模态分析,确定了其前6阶固有频率及振型,为分析加载器的振动特性提供了理论基础。
     对加载器行星传动的内部激励进行了分析,研究了系统内部啮合刚度的时变性,推导了时变啮合刚度的计算公式。分析研究了系统的安装误差和制造误差产生的误差激励,确定了啮合副之间的误差激励函数,给出了误差激励的级数表达式,为确定动力学模型的内部激励奠定了基础。
     在分析加载器行星传动系统啮合副弹性变形的基础上,推导了各啮合副在啮合线上的相对位移,使用动态子结构建模方法,建立了太阳轮、行星轮、行星架和齿圈的子结构动力学模型,利用相对位移条件联立,综合考虑了时变啮合综合刚度、轮齿啮合综合误差、轴承支承刚度等因素影响,建立了系统的平移—扭转耦合动力学模型,并给出了向量的表达式,在系统的运动微分方程基础上推导出了无阻尼自由振动运动微分方程,为分析系统的动态均载特性奠定了基础。
     对加载器行星传动系统的运动微分方程采用Fourier级数求解方法,对加载器静态和动态均载特性进行了分析研究,推导了系统的静态和动态均载系数计算公式,分析了传动系统中齿轮的安装误差和制造误差对静态和动态均载特性的影响趋势。研究了啮合刚度、支承刚度对传动系统的静态和动态均载特性的影响。确定了影响传动系统静态和动态均载特性的主要因素,通过试验验证了均载特性理论分析的准确性,为提高加载器行星传动均载特性提供了理论基础。
     设计了基于“环形天线”无线通信方式的加载器控制系统,采用分级控制思想,将控制系统设计成封装在转动轴内部的实时检测及加载和外部的控制台两个子系统,子系统中又划分了相应的功能模块,实现对加载器的控制和运行状况信息的检测和显示。
     进行了加载器传动系统的稳定性实验,采用双面平衡法提高了加载器平衡品质等级,确定了理想加载区域。完成了加载器静态施载角检测实验,验证了加载器能实现任意施载角的变化。在加载器实验台上,进行了加载器的静态加载实验,验证了施载力矩的准确性。通过动态加载器实验,验证了加载器在不同转速下施载的准确性。
In recent years, with the rapid development of the shipbuilding industry, China's shipbuildingindustry has entered a rapid development stage, it has had the capabilities of the design on thebulk carriers,oil tankers, container ships ship's,in this context,the new high power marinereducer may be developed, with in-depth study on the marine reducer transmission technology.Adapted closed-test system usually is designed in order to assess the performance of the newhigh power marine reducer, it can simulate the conditions of the high-speed and heavyload.The research of the high-torque loading device is particularly important because it is themost important components of the closed-test system. The dissertation is the project of theChina Shipbuilding Industry Corporation,carry out applied research the high-torque loadingdevice, and develop a new series-in high-torque loading device, to provide technicalassurance of building the marine reducer closed-test system.
     Paper reviews the development of domestic and international profile loading devicetechnology. On this paper, the focus of the experimental mechanical torque loading devicetechnology research and development status were analyzed.A new loading device technologywas proposed, based on the comparative analysis of the advantages and disadvantages.
     With the in-depth analysis of the load characteristics of the closed-test system, andaccording to the technical specifications of the project, proposed the design of the loadingdevice drive transmission technology, build a three-dimensional model of transmission.Describes the loading process, and makes the finite element analysis of the key components,and the dynamic parameters, and anti-process self-locking, and energy consumption werestudied. Verify the design feasibility by the stability test.
     According to the analysis of the planetary gear transmission internal excitation, study theinternal time-varying mesh stiffness, and derive the time-varying mesh stiffness formula.Analyze the incentives of the system incentives installation error and manufacturing error, anddetermine error excitation function of the gear mesh, and give the error excitation formula,and lay the foundation for determine the internal excitation forces.
     Paper derive the meshing pair relative displacement in the meshing line based on theanalysis of planetary gear transmission elastic deformation, and establish the sun gear, planetary gear, planet carrier and ring gear sub-structural dynamics model by the dynamicsub-structural modeling method. Establish the translational-twist coupling dynamics model byusing of the relative displacement conditions, with considering the time-varying meshstiffness, integrated error of gear tooth contact, the bearing support stiffness and the otherfactors, and give the vector expressions. Derive the equations of the free vibration motion onthe basis of differential equations of motion, make the foundation for the analysis of thedynamic loading characteristics.
     Calculate the system's static and dynamic loading coefficient by using Fourier solutionmethod, and analyze the influence trend of the gear manufacturing error and installation errorand the meshing stiffness and support stiffness on the static and dynamic loading coefficient.Determine the main characteristics, and provide the theoretical basis for improving uniformloading characteristics.
     Design loading device control system based on the wireless communications by usingthe hierarchical control,and designe two subsystems of the real-time detection loading andexternal control panel. Each subsystem is divided into the corresponding function modules, tocontrol the loading device, detect and display the operational information.
     Using two-sided balance method to improve the balance quality level loading device bythe experiment, and determine the ideal loading area. Verify the performance of the loadingdevice making any loading angle by the angle detection experiments.Verify the accuracy ofthe loading torque by static loading testing, and verify the accuracy of the loading torque onthe conditions of different speeds by dynamic loading testing.
引文
[1] WANG Li-quan,AN Yong-dong,SUN Rong hua. Research on Loading Method ofHigh-Speed Closed Power Flow Test System.Key Engineering Materials,2010.419-420:129-132.
    [2]孙荣华,张立勋.封闭功率流传动新型加载方法研究.中国船舶科技报告,1997:10-18.
    [3] Jian Lin,Parker R G..Analytical characterization of the unique properties of planetarygear free vibration. Journal of Vibration and Acoustics Transaction of the ASME,1999.116:316-322.
    [4] Kahraman A.Natural modes of planetary gear trains.Journal of Sound and Vibration,1994.173(1):125-130.
    [5]张小青,王细洋.电能回送式齿轮故障诊断试验台设计.机电工程技术.2010.39(6):52-54.
    [6]阎清东,项昌乐,冯永存.功率封闭机械式变速器齿轮寿命试验台.北京理工大学学报,1998.18(3):302-306.
    [7]沈国良.液压封闭式齿轮疲劳试验台的液压系统设计.液压与气动,2009.4:42-44.
    [8]王祖麟,张振利.电加载变速箱试验台的设计.拖拉机与农用运输车,2004.10(5):39-41.
    [9]陆波.基于热弹耦合大功率船用齿轮箱动态特性研究.重庆大学博士学位论文.2009:1-3.
    [10]郑良辉.船用齿轮箱测试试验台加载器优化设计.武汉理工大学硕士学位论文.2003:1-3.
    [11]张梅芳.关于减速箱机械封闭试验系统的探讨.机械工程与自动化.2010.6:207-208.
    [12]王雪瑶,赵韩,黄康,陈奇.新型封闭功率流齿轮试验台的结构设计及其效率的计算.机械与电子.2010.12:10-12.
    [13]张峥明.液压功率封闭系统设计及加载特性研究.中南大学硕士学位论文.2010.3:8-12.
    [14]陈守强.齿轮封闭试验台的机电封闭加载方法的探讨.四川工业学院学报.1987.2:65-67.
    [15]陆贵友,张慧娟,丁博.电加载机械传动实验台的设计.吉林工业大学自然科学学报.1999.3:100-102.
    [16] Jan Helsen,Frederik Vanhollebeke,Filip De Coninck, Dirk Vandepitte,WimDesmet.Insights in wind turbine drive train dynamics gathered by validating advancedmodels on a newly developed13.2MW dynamically controlled test-rig.Mechatronics.2010.12:1-16.
    [17]白文普,景常海.动态扭矩加载器的研制.实验技术与管理.2006.23(10):50-52.
    [18]张军,李为.机械传动性能测试实验台.实验室研究与探索.2004.23(3):39-41.
    [19]兰嘉铭,王连明.一种新型节能试验台—交流电封闭功率流蜗杆传动试验台.节能技术.1991.3:20-22.
    [20]王祖麟,张振利.电封闭式变速器加载试验台的设计研究.工程机械.2005.2:24-26.
    [21]梁礼明,张振利,王祖麟.一种新型变速箱电加载试验台动力学分析.2005.26(3).26-30.
    [22] C.J.Stander,P.S.Heyns Transmission path phase compensation for gear monitoringunder fluctuating load conditions.Mechanical Systems and Signal Processing.2006.20:1511-1522.
    [23] C.J.Stander,P.S.Heyns,W.Schoombie,Using vibration monitoring for local faultdetection on gears operating under fluctuating load conditions.Mechanical Systems andSignal Processing.2002.16(6):1005-1024.
    [24] Giacomo Mantriota.Performances of a series infinitely variable transmission with type Ipower flow.Mechanism and Machine Theory.2002.37:579-597.
    [25] Giacomo Mantriota.Performances of a parallel infinitely variable transmissions with atype II power flow. Mechanism and Machine Theory.2002.37:555-578.
    [26]张小青,王细洋.电能回送式齿轮故障诊断试验台设计.机电工程技术.2010.39(6):52-54.
    [27]陈兆煊.大扭矩液力加载器的设计与试验.舰船科学技术.1984.1:39-45.
    [28]李新华,高崇金,皮云云.齿轮减速器封闭式试验台加载系统.起重运输机械.2009.5:48-50.
    [29]沈国泉.液压封闭式齿轮疲劳试验台的液压系统设计.液压与气动.2009.4:42-44.
    [30]张颂.液压加载封闭试验装置.组合机床与自动化加工技术.1997.7:28-31.
    [31]陆萍,任殿军.一种新型高速动态液压加载装置.山东工业大学学报.1998.28(3):269-271.
    [32] Shang Yaoxing,Jiao Zongxia,Wang Xiaodong,Zhao Sijun.Study on Friction TorqueLoading with an Electro-hydraulic Load Simulator.Chinese Journal ofAeronautics.2009.22:691-699.
    [33] Ma J S,Li S Y,Kai J,et al.Research on low-speedfrictional property of continuousrotary electo-hydraulic servo motor applied to simulator.Acta Aeronautica etAstronautica Sinica.2000.21(4):361-363.
    [34]侯祖伟,刘晓山.一种新颖的动态加载机构.液压与气动.2003.11:40-41.
    [35]江征风,廖庆,吴波.汽车变速总成疲劳寿命试验装置液压加载器设计.机床与液压.2006.3:145-146.
    [36]马秦贞,吴娟.减速器加载试验台的研制.矿山机械.2005.33(5):88-89.
    [37]李新平,马法杰,刘晓倩,尹顺义.减速器液粘加载试验台的研制.煤矿机电.2009.6:32-34.
    [38]高崇金,皮云云,李新华.齿轮减速器封闭式试验台液压加载器模态分析.装配制造.2009.6:190-191.
    [39]张家川,唐浦华,汪万清.液压加载系统动态性能研究.四川工业学院学报.1999:18(3):16-19.
    [40] G.Carbone,L.Mangialardi,B.Bonsen,C.Tursi,P.A.Veenhuizen.CVT dynamics:Theoryand experiments.Mechanism and Machine Theory.2007.42:409-428.
    [41] G.Carbone,L.Mangialardi,G..Mantriota.The influence of pulley deformations on theshifting mechanisms of MVB-CVT.ASME J.Mech.Des.2005.(127):103-113.
    [42] G.Carbone,L.Mangialardi,G..Mantriota.Fuel consumption of a mid class vehicle w ithinfinitely variable transmission.SAE J.Engines.2002.110(3):2474-2483.
    [43] G.Carbone,L.Mangialardi,G..Mantriota,L.Soria.Performance of a city bus equippedwith a toroidal traction drive.IASME Trans.2004.1(1):16-23.
    [44] K.Dasgupta, J.Watton, S.Pan.Open-loop dynamic performance of a servo-valvecontrolled motor transmission system with pump loading using steady-statecharacteristics.Mechanism and Machine Theory.2006.41:262-282.
    [45] N.Sawalh,R.B.Randall1.Simulating gear and bearing interactions in the presence offaults: Part I. The combined gear bearing dynamic model and the simulation of localisedbearing faults. Mechanical Systems and Signal Processing.2008.22(8):1924-1951.
    [46]孟玲茹,张磊.机械封闭功率流齿轮试验台测试齿轮传动效率的方法.机械传动.1997.21(3):32-34.
    [47] D.J.Hargreaves,Anton Planitz.Assessing the energy efficiency of gear oils via the FZGtest machine. Tribology International.2009.42:918–925.
    [48] Shuting Li.Experimental investigation and FEM analysis of resonance frequencybehavior of three-dimensional thin-walled spur gears with a power-circulating test rig.Mechanism and Machine Theory.2008.43:934-963.
    [49]阎清东,项昌乐,冯永存.功率封闭机械式变速器齿轮寿命试验台.北京理工大学学报.1998.13(3):302-306.
    [50]李智刚,程旭彦.机械封闭系统的研究.哈尔滨轴承.2007.28(4):57-58.
    [51]韩丽丽,刘振宇,孙宝元.新型纯扭矩加载器的设计及结构优化.中国机械工程.2008.19(20):2400-2403.
    [52]张宏梅,储伟俊,叶树勋,黄康.一种新型加载装置.起重运输机械.2003.8:47.
    [53]侯春阳.着陆梯与加载器相关技术的研究.哈尔滨工业大学硕士学位论文.2007:41-43.
    [54]刘白,汪大鹏.齿轮传动效率的试验研究.机械工程学报.2001.37(1):109-112.
    [55]程建辉,葛培琪,刘鸣.低速大传动比齿轮减速箱的传动效率测试.山东机械.2001.2:18-19.
    [56]莫彦承,钮海彦,黄智勇,邱剑平.联轴器试验台摆动模拟装置的设计.机车车辆工艺.2004.2:22-25.
    [57]汪伟.变速箱齿轮传动试验台的设计与仿真研究.公路与汽运.2005.6:10-12.
    [58]张有禄.变速箱疲劳寿命试验台的结构特点及选用.机械管理开发.2008.23(5).103-104.
    [59]马伟,邓效忠,曹雪梅,张华.高齿弧齿锥齿轮的承载啮合仿真和动态性能试验.中国机械工程.2004.15(11):951-954.
    [60]吕少力.缓冲器支柱加载试验台液压系统的改进.液压与气动.2010.5:84-86.
    [61]曹志中,毛杰,李予寅,程建民,金伟.机械传动性能综合试验台应用研究.中国科技信息.2010.10:125-126.
    [62]刘舸,苏代忠,彭文捷.渐开线圆柱蜗杆斜齿轮传动试验分析.重庆工学院学报.2008.20(8):34-37.
    [63]李忠刚,姚文席.微机控制的机械传动试验台研究及数据处理.机电工程.2005.(22).l:5-8.
    [64] Eric Letzelter,Michèle Guingand,Jean-Pierre de Vaujany,Pauline Schlosser.A newexperimental approach for measuring thermal behaviour in the case of nylon6/6cylindrical gears.Polymer Testing.2010.29:1041-1051.
    [65] R.Martinsa,J.Seabrab,A.Britoc,Ch.Seyfertd,R.Lutherd,A.Igartua.Friction coefficientin FZG gears lubricated with industrial gear oils:Biodegradable ester vs. mineraloil.Tribology International.2006.39:512-521.
    [66] C.K.Sung,H.M.Tai,C.W.Chen.Locating defects of a gear system by the technique ofwavelet transform.Mechanism and Machine Theory.2000.35(8):1169-1182.
    [67] K.Mao,W.Li b,C.J.Hooke,D.Walton.Polymer gear surface thermal wear and itsperformance prediction.TribologyInternational.2010.43:433-439.
    [68]朱命怡,杨丽云,娄云,刘庆庭.载重汽车主传动齿轮设计计算方法的研究.农业装备与车辆工程.2008.11:39-41.
    [69] Falah B,Go sselin C,CloutierL.Experimental and numerical investigation of themeshing cycle ratio in spiral bevel gears.Mesh Mach Theory,1998,33(12):21-37.
    [70] Ahmed M.M. El-Bahloul.Surface capacity of gears of circular-arc tooth-profile. Wear1996.193:146-154.
    [71]朱孝录,易秉钺,廉以智.齿轮的试验技术与设备.北京:机械工业出版社,1988.
    [72]范垂本.齿轮的强度和试验.北京:机械工业出版社,1979.
    [73]易立成.机械传动封闭试验台.成都.四川省机械工程学会传动专业委员会.1983:42-58.
    [74]孔江生,吴炳胜,王建民.行星传动封闭功率流分析法.农业机械学报.2005.36(6):92-93.
    [75]赵永强,李瑰贤等.船用大功率两级人字齿行星传动系统的振动特性研究.船舶力学.2009.13(4):621-627.
    [76]张东生,陈纯.对行星传动减速器封闭功率的研究.陕西理工大学学报.2005.21(3):39-41.
    [77]苗志全,吴春磊,王续明.用封闭功率流对齿轮传动效率的研究.煤矿机械.2008.29(8):48-49.
    [78]巫世晶,任辉,朱恩涌,王兴,徐启发,潜波.行星齿轮传动系统动力学研究进展.武汉大学学报(工学版).2010.43(3)::398-403.
    [79] Teruali Hidaka,Yoshio Terauchi,Makoto Fujii.Analysis of dynamic tooth load onplanetary gear.Bull.JSME,1980.23(176):315-323.
    [80]孙智民,季林红,沈允文.2K-H行星齿轮传动非线性动力学.清华大学学报(自然科学版).2003.43(5):636-639.
    [81] Al-shyyab A, Kahraman A.A non-linear dynamic model for planetary gearsets.Proceedings of the Institution of Mechanical Engineers,Part K: Journal ofMulti-body Dynamics,2007.221:567-576.
    [82]宋轶民,许伟东.2K-H行星传动的修正扭转模型建立与固有特性分析.机械工程学报.2006.42(5):16-21.
    [83] Tao Sun, HaiYan Hu.Nonlinear dynamics of a planetary gear system with multipleclearances.Mechanism and Machine Theory,2003,38:1371-1390.
    [84] Kahraman A.Load sharing characteristics of planetary transmissions.Mechanism andMachine,Theory,1994.29(8):1151-1165.
    [85] Lin J,Parker R G.Analytical characterization of the unique properties of planetary gearfree vibration.Journal of Vibration and Acoustics.Transactions of the ASME,1999.16:316-322.
    [86]鲍和云.两级星型齿轮传动系统分流特性及动力学研究.南京航空航天大学博士学位论文.2006:7-9.
    [87]李润方,王建军.齿轮系统动力学.北京:科学出版社,1997.
    [88]刘国华,李亮玉,赵继学.考虑反向齿面啮合力的齿轮系统时变啮合刚度的研究.天津工业大学学报.2006.25(6):54-57.
    [89]王三民,沈允文,董海军.含间隙和时变啮合刚度的弧齿锥齿轮传动系统非线性振动特性研究.机械工程学报.2003.3(2):28-32.
    [90]陈启松,张展,江耕华,胡来瑢.行星齿轮传动手册.冶金工业出版社,1985.
    [91]陆俊华,朱如鹏,靳广虎.行星传动动态均载特性分析.机械工程学报.2009.45(5):85-90.
    [92]王成,方宗德,贾海涛.人字齿轮均载特性的理论分析与试验研究.兵工学报.2011.32(1):74-77.
    [93]鲍和云,朱如鹏.两级星型齿轮传动动态均载特性分析.航空动力学报.2005.20(6):937-943.
    [94]蔡黎明.滑动轴承支撑的行星齿轮传动系统均载特性分析研究.南京航空航天大学硕士学位论文.2011:1-5.
    [95]成大先.机械设计手册(第3卷).化学工业出版社.2005
    [96]方宗德,沈允文,黄镇东.三路功率分流恒星式减速器的动态特性.航空学报.1990,11(7):A341-A350.
    [97]崔玉超.近距离无线测试系统天线性能研究.中北大学硕士学位论文.2008:59-70.
    [98]陈曦.高速加载器旋转无线通信及加载控制系统研究.哈尔滨工程大学硕士学位论文.2009:42-55.
    [99]郭梯云.移动信道中多径衰落对数字传输的影响及分集技术的应用.通信学报.1991:(12):34-42.
    [100] Nikolay KOSTOV,Mobile Radio Channels Modeling in MATLAB.RADIOENGINEERING,2003,12(4):35-48.
    [101] S.A.Schelkunoff,H.T.Friis.ANTENNAS:Theory and Practice.Wiley,New York,1952.
    [102]马潮.AVR单片机嵌入式系统原理与应用实践.北京:北京航空航天大学出版社.2007.
    [103]邓专,李伟,王春麟.射频收发芯片CC1100的原理及其应用.机械工程自动化.2007,12(6):168-172.
    [104]孙维明,石江宏,陈岳林.可编程RF收发器CC1100的原理及开发.国外电子元器件.2007,9:40-42.
    [105]金钟夫,杜刚,王群等.ATmega128单片机C程序设计与实践.北京:北京航空航天大学出版社.2008.
    [106]陈冬云,杜敬仓,任柯燕.ATmega128单片机原理与开发指导.北京:机械工业出版社.2006.
    [107]王华,王立权,韩金华.电机专用运动控制器LM629的应用研究.电子器件.2005.28(2):370-373.
    [108]王华,孟庆鑫,王立权,谭颖.基于LM629的位置伺服控制模块的设计与研究.控制与检测.2005(2):83-84.
    [109]高满如.功率场效应管的驱动.电力电子技术.1994(2):51-54.
    [110]刘星平.功率场效应管驱动电路的研究.电器开关.2002(2):1-2,25.
    [111]王建新,任勇峰,焦新泉.仪表放大器AD623在数采系统中的应用.传感器与仪器仪表.2007(7):169-170,180.
    [112]潘辉,贾世祥.基于S3C2410和嵌入式Linux的D/A转换的实现.微计算机信息.2007,23(7-2):128—129,132.2
    [113]于鸣,杨跃龙,刘航等.400MW燃气轮发电机转子动平衡试验研究.东方电机.2006(2):36-40.
    [114]马凤霞.动平衡机实验装置的改造与力学分析.2003.22(2):73-75,84.
    [115]郑华山,滕向阳,贾志新,郭旭初.立式旋转电火花线切割机床的振动分析与动平衡试验研究.电加工与模具.2009.1:26-28,59.
    [116]张炳华.影响转子动平衡质量的因素及解决方法.防爆电机.2009.44(5):46-48.
    [117]牟建军.中小型立式水轮发电机转子动平衡分析.设备管理与维修.2007.8:18-19.
    [118] Zhou S.Modeling,Estimation,and Active Balancing of Speed Varying Rotor System.University of Michigan,Ph.D.dissertation,USA,2001.
    [119]陶利民.转子高精度动平衡测试与自动平衡技术研究.国防科学技术大学博士学位论文.2006.7-11.
    [120]张志新,金志江,贺世正.同轴式微速差双转子系统整机动平衡方法研究.机械工程学报.2004.40(8):40-44.
    [121]鲁统利,刘贵森.大型回转件动平衡测试系统研究.汽车工艺与材料.2000.(7):25-28.
    [122] Sinha J K,Lees A W,Friswell M I.Estimating Unbalance and Misalignment of aFlexible Rotating Machine from a Single Run-Down.Journal of Sound and Vibration,2004.272(3-5):967-989.
    [123]段红.基于虚拟仪器的动平衡仪设计与测试方法研究.传感技术学报.2005.18(1):82-85.
    [124]王基.某型船用传动齿轮箱振动模态的实验与分析.海军工程大学学报.2007.19(2):55-59.
    [125]潘健,习俊通.基于有限元的三轴测试转台静动态特性研究.机械设计与制造.2009.(9):4-6.
    [126] Kim J-S,Lee S-H.The Stability of Active Balancing Control Using InfluenceCoefficients for a Variable Rotor System. International Journal of AdvancedManufacturing Technology.2003.22(7-8):562-567.
    [127]杨建刚,谢东建,等.基于多传感器数据融合的动平衡方法研究.动力工程.2003.23(2):2275-2278.
    [128]张剀,赵雷,等.新一代智能动平衡仪软件平台的方案选择.振动.测试与诊断.2003,23(1):54-57.
    [129]杨光,程胜文.高速转子的动力学研究.武汉理工大学学报.信息与管理工程版.2002.24(2):119-121

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700