汽车ABS整车台架检测方法与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了提高汽车主动安全性能,汽车上普遍安装防抱死制动系统(Anti-lock BrakingSystem, ABS),它能够通过控制和调整车轮制动压力,防止制动过程中因车轮抱死引起的制动跑偏、后轴侧滑以及失去转向能力等情况的出现,使车辆能够最大限度地利用地面制动力而减速停车,从而有效改善汽车的制动性能,提高汽车安全性。目前,对于汽车ABS整车工作状况的检测和评价,主要采用道路试验法。但是,道路试验场地占地面积大、造价高、试验准备和试验过程耗时长、危险性大、试验易受环境影响、重复性差。因此,道路试验适合于某种车型的ABS配型试验或部分汽车ABS的抽检,不适合大量汽车及在用汽车的定期检测。
     针对以上问题,本文提出了一种整车ABS室内试验台检测新方法,该方法通过在试验台上模拟道路试验中的汽车运动惯量及不同路面附着系数,实时采集制动时车轮及车身速度,并计算与ABS性能相关的技术参数,然后利用基于主成分分析及神经网络的判定算法对检测数据进行分析,最终实现整车ABS检测及检测结果的自动判定。该试验台检测方法与道路试验相比,具有占地面积小、成本低、检测速度快、安全性高、重复性好、检测过程不受环境影响等优点。
     论文主要在以下几个方面展开研究工作:
     (1)提出了一种汽车ABS室内试验台检测方法,该方法通过滚筒模拟连续移动的路面,并利用飞轮的转动惯量模拟车辆在道路上高速制动时的平动惯量,同时采用扭矩控制器在滚筒上加载与车辆“行驶”方向相反的力矩来模拟车辆行驶阻力,通过独立改变每个扭矩控制器加载扭矩的大小实现不同路面附着系数的模拟。论文在研究扭矩控制器的结构及工作原理的基础上,建立了基于扭矩控制器的多路面附着系数模拟的数学模型,并根据车辆在道路上及试验台上制动时的惯量关系,确定试验台上需要利用飞轮模拟的惯量。
     (2)进行了ABS试验台检测方法计算机仿真研究。首先根据ABS整车试验台检测理论,建立了试验台上制动时的整车及车轮模型、制动系统模型、滑移率—附着系数模型、试验台制动力模型等,然后由各子模型之间的关系建立试验台上制动时的单轮车辆动力学Matlab/Simulink仿真模型,最后进行各种路面工况下的仿真实验,验证了试验台检测理论的正确性和可行性。
     (3)提出了ABS试验台及测控系统的技术方案和整体结构。该试验台集轴重测量、常规制动性能检测、ABS性能检测、速度表校验于一体,其中ABS性能检测可前后轴同时测量,并且可根据车辆轴距信息自动调整前后台架滚筒组的中心距,同时为四个车轮提供不同的路面附着系数。提出了基于CAN总线的ABS试验台测控系统结构,并制定测控系统上位机与下位机智能模块的通信协议,同时按照ABS自动检测的要求,设计合理的检测流程,开发测控系统上位机应用软件,以完成整个系统的控制、提供简单清楚的人机交互界面。
     (4)进行了ABS台架检测与道路试验对比分析。用多个车型对本文提出的ABS试验台检测方法进行实车试验,主要包括单一高附着系数路面、单一低附着系数路面、对开路面以及对接路面试验。完成了同一制动条件下、相同车辆的ABS道路试验,并对台架试验与道路试验结果进行对比分析,结果表明,相同制动工况下的台架试验与道路试验结果符合性较好,说明本文提出的ABS试验台检测方法能够正确模拟道路试验工况,完成汽车ABS性能检测。
     (5)提出了基于主成分分析与BP神经网络的ABS检测结果自动判定方法。首先利用主成分分析对检测结果中的多个技术参数进行处理,去除数据之间的相关性及冗余信息,同时降低特征向量维数。然后建立了基于BP神经网络的分类器模型,确定了网络结构、输入层与输出层神经元个数、隐含层神经元个数等。最后设计了基于主成分分析与BP神经网络分类器的ABS检测结果判定算法,将经过主成分分析后的具有综合信息的少数主成分输入神经网络分类器完成检测结果判定。
     本文的研究属于汽车检测技术领域的前沿课题,该研究成果可以有效地解决我国现有的汽车检测试验台无法对整车ABS性能进行检测的问题,对于推动我国汽车检测技术及设备的发展具有重要意义。
In order to improve the active safety of automobile, Anti-lock Braking System (ABS) isgenerally installed. It can prevent the automobile from deviation brake, rear axle sideslip andsteering failure caused for wheels lock by controlling and adjusting the wheel brake pressure.And enable the automobile to make the best use of the ground braking force to slow down andstop, therefore, the braking performance and active safety of automobiles are effectivelyimproved. Currently, the main approach to detect the performance of auto ABS is the roadexperiment. However, the disadvantages of large area occupation, high construction cost of thetest site, long test time, dangerous, susceptible to environment influences and poorreproducibility make it difficult to implement. So, the road experiment is only suitable for ABStype-match experiment of special automobiles or ABS sampling inspection and not suitablefor the periodic testing of a large number of automobiles.
     To solve the problems above, a novel ABS indoor bench detection approach is proposedin this paper. Translational inertia of automobile and different adhesion coefficients aresimulated on the bench. The real-time speeds of the wheels and the automobile are collectedduring braking process, and technical parameters that can reflect the ABS performance arecalculated. Then, data analysis is performed based on Principal Component Analysis (PCA)and neural network, and ultimately the realization of entire automobile ABS detection andautomatic determination of the ABS detection results are achieved. Compared with the roadexperiment, the ABS bench detection approach has the advantages of small area occupation,low cost, high efficiency, high safety, good repeatability and insusceptible to environmentinfluences, etc.
     The main research contents are described as follows:
     (1) An indoor bench detection approach for auto ABS is proposed. The rolling drums areused to simulate the continuously moving road. Translational inertia of the automobilebraking on the road is simulated by the moment of inertia of flywheel on the bench. Differentadhesion coefficients of road surface are dynamically simulated through loading different torques to the drums by the torque controllers. The mathematical model of different adhesioncoefficient simulation is built based on study of the structure and working principles of thetorque controller. The value of flywheel moment of inertia needed on the test bench isdetermined according to the translational inertia of braking on the road.
     (2) Computer simulation for ABS bench detection approach is studied. According to theABS bench detection theory, the vehicle model, wheel model, brake system model, slip ratio-adhesion coefficient model, braking force model, ect. on the test bench are established. AndMatlab/Simulink simulation model of a quarter-vehicle braking on the test bench is builtaccording to the relationship of each sub-model. Simulations under a variety of simulatedroad conditions are conducted in order to verify the correctness and feasibility of the benchdetection theory.
     (3) The technical solutions and the overall structure of the ABS test bench andmeasurement&control system are studied. The test bench has the functions of axle loadmeasurement, normal brake performance test, ABS performance test and speedometer test.The front and rear axle of an automobile can be detected at the same time for the ABSperformance, and the drum center distance between the the front and the rear bench can beautomatically adjusted according to the automobile wheelbase information. The system canoffer different road adhesion coefficient for each wheel at the same time. The measurementand control system is proposed based on CAN bus structure, and the communication protocolamong host computer and the intelligent modules is designed and realized. Proper detectionprocess and application software are designed and realized according to the ABS auto-testrequirement.
     (4) Comparative analysis between ABS bench test and road experiment is performed.Experiments with several types of automobile are conducted on the ABS detection benchproposed in this paper, including the experiments on single high adhesion coefficient road,single low adhesion coefficient road, split-μ surface road and connection-μ surface road. ABSroad experiments with the same automobile under the same braking conditions are performed,and the results are compared and analyzed with those from bench test. The results show that the bench tests achieve good compliance with road experiments under the same brakingconditions. And the proposed ABS bench detection approach can correctly simulate the roadexperiment conditions and realize the entire automobile ABS performance detection.
     (5) A judgment method for ABS test results based on principal component analysis andBP neural network is proposed. Firstly, the principal component analysis is adopted to processthe technical parameters of the test results to remove the correlation and redundantinformation among them, and the dimension of feature vectors is reduced at the same time.Then a classifier model based on BP neural network is built and the structure of network,neuron number of the input layers, output layers and hidden layer are determined. At last,ABS test results judgment algorithm based on principal component analysis and BP neuralnetwork classifier is put forward, and a small number of principal components withcomprehensive information is input into neural network classifier to complete the test resultsjudgment.
     The research of this paper is a frontier research topic in automobile performance testfield. The research results can effectively solve the problem of testing the performance of autoABS by the existing automobile test platform and have a great significance for promoting thedevelopment of automobile detection technology and equipment of China.
引文
[1] http://auto.gasgoo.com/News/2012/03/13100244244656.shtml
    [2] http://auto.hexun.com/2008-09-01/108507892.html
    [3] Ramakrishnan N. On the effectiveness of anti-lock braking systems. The Triple Helix Fall,2010,pp.18-20
    [4]宋进源.汽车防抱制动系统建模与控制仿真研究[D].南宁:广西大学,2007
    [5] http://finance.591hx.com/article/2011-11-28/0000096993s.shtml
    [6] Ozdalyan B. Development of a Slip Control Anti-lock Braking System Model [J]. International Journalof Automotive Technology,2008, V9(1):71-80
    [7] Topalov A. V., Oniz Y., Kayacan E., et al. Neuro-fuzzy Control of Antilock Braking System UsingSliding Mode Incremental Learning Algorithm [J]. Neurocomputing,2011,74:1883-1893
    [8]潘开广,唐梦柔.汽车防抱死制动系统控制技术[J].汽车工程师,2009,5:43-46
    [9] Tang Y. G., Zhang X. Y., Zhang D. L., et al. Fractional Order Sliding Mode Controller Design forAntilock Braking Systems [J]. Neurocomputing,2013,111:122-130
    [10] Evans, Leonard, Gerrish, et al. Antilock brakes and risk of front and rear impact in two-vehicle crashes[J]. Accident Analysis and Prevention,1996,28:315-323
    [11] Farmer. New evidence concerning fatal crashes of passenger vehicles before and after adding antilockbraking systems [J]. Accident Analysis and Prevention,2001, pp.361-369
    [12] Ahn C., Kim B., Lee M. Modeling and Control of an Anti-lock Brake and Steering System forCooperative Control on Split-mu Surfaces [J]. International Journal of Automotive Technology,2012,V13(4):571-581
    [13]朱金光.汽车防抱死制动系统浅述[J].甘肃联合大学学报(自然科学版),2008,22:47-49
    [14]曹春海,郭长波.汽车防抱死制动系统的原理与应用[J].科技咨询,2007,30:22
    [15]金晓红.基于虚拟仪器的汽车ABS检测试验台测控系统研究[D].长春:吉林大学,2006
    [16]曹华.汽车ABS仿真检测平台的研究[D].广州:广东工业大学,2005
    [17]彭美春,朱占胜,林怡青等.不同路面下汽车ABS仿真检测研究[J].汽车工程,2008,30(2):160-163
    [18]曲宁玺.汽车ABS高性能化的分析与仿真[D].广州:华南理工大学,2010
    [19] Mirzaei M., Mirzaeinejad H. Optimal design of a non-linear controller for anti-lock braking system [J].Transportation Research Part C,2012, V24:19-35
    [20] Fu Q., Zhao L. J., Cai M. X. Simulation Research for Quarter Vehicle ABS on Complex SurfaceBased on PID Control [C]. International Conference on Consumer Electronics, Communications andNetworks (CECNet), Yichang,2012:2072-2075
    [21] Palladino A., Fiengo G., Lanzo D. A portable hardware-in-the-loop (HIL) device for automotivediagnostic control systems [J]. ISA Transactions,2012, V51:229-236
    [22] Gietelink O. J., Ploeg J., et al. Development of a driver information and warning system with vehiclehardware-in-the-loop simulations [J]. Mechatronics,2009, V19:1091-1104
    [23]郭孔辉,丁海涛,刘溧.汽车ABS混合仿真试验台的开发与研究[J].中国机械工程,2000,11(12):1417-1420
    [24]施云翔.液压ABS仿真试验台的开发[D].北京:清华大学,2004
    [25] Wu C., Duan J. M., Yu Y. C. A Hardware In Loop Test System for Pneumatic Anti-lock Brake System
    [C]. International Conference on Mesuring Technology and Mechatronics Automation (ICMTMA),Changsha,2010:105-108
    [26]刘佳琦.汽车液压ABS计算机模拟试验研究[D].长沙:长沙理工大学,2005
    [27]唐祯,王秀颖.汽车ABS混合仿真试验台研究[J].汽车技术,2011, no.10:38-41
    [28]侯光钰.车辆防抱死制动系统的控制技术研究[D].南京:东南大学,2005
    [29]黄有林.气压ABS硬件在环仿真试验台开发[D].长春:吉林大学,2007
    [30] Velardocchia M., Sorniotti A. Hardware-in-the-loop to Evaluate Active Braking Systems Performance.2005SAE World Congress, Detroit,2005
    [31] Lee K. C., Jeon J. W., Hwang D. H. et al. Performance Evaluation of Antilock Brake Controller forPneumatic Brake System [C]. Industry Applications Conference,2003:301-307
    [32] Cho J. M., Hwang D. h., Lee K. C. et al. Design and implementation of HILS system for ABS ECU ofcommercial vehicles [C]. IEEE International Symposium on Industrial Electronics, Pusan,2001:1272-1277
    [33] Park J., Wang B., Jeon J., et al. Hardware in-the-loop simulation for ABS using32-bit embeddedsystem [C]. International Conference on Control, Automation and Systems, Korea,2011:575-580
    [34] Witter H. J., Heiden M. Z. ABS-ESP ECU testing with sophisticated HIL simulation methods. SAEPaper No.2009-26-079
    [35]张新,王群峰,吴志强.新型液压ABS系统的道路试验研究[J].汽车工程,2004,26(3):306-311
    [36]杨建磊.整车装备ABS后的制动性能评价方法研究[D].长春:吉林大学,2008
    [37]杨运生.整车ABS性能检测台的模糊控制与仿真研究[D].长春:吉林大学,2004
    [38] Huang D. Z., Shen J. B. Study on mathematical model of test bench for vehicle anti-lock brakingsystem [C]. Proc. of the2th International Conf. on Intelligent Computation Technology andAutomation, Changsha, Hunan,2009, V2:268-270
    [39]赵祥模.汽车ABS防抱制动特性及其不解体检测技术研究[D].西安:长安大学,2006
    [40] Woo J. W., Lee S. B. Test-bed design for evaluation of intelligent transportation systems andintelligent vehicle systems [C]. Proc. of13th International Conf. on Advanced CommunicationTechnology (ICACT), Seoul,2011:1511-1514
    [41]陈友谊,苏建,康皓.汽车ABS台架检测方法研究[J].武汉科技大学学报(自然科学版),2007,30(3):270-273
    [42]黄磊. ABS动态模拟实验台基础研究及结构设计[D].哈尔滨:哈尔滨理工大学,2008
    [43]朱善同,周萍,孙跃东.采用计算机测控的新型ABS试验台的设计[J].现代制造工程,2011,no.10:37-41
    [44] Zhang L. B., Su J., Shan H. Y., et al. Research on automobile ABS detection based on alterableadhesion coefficient [C]. International Conference on Intelligent Computation Technology andAutomation (ICICTA), Changsha,2010:1098-1101
    [45]于万海,吉庆山,赵飞.基于行驶惯性的汽车ABS系统试验平台的研制[J].拖拉机与农用运输车,2008,35(6):86-87
    [46]常明顺.汽车ABS性能检测系统的研究[D].长春:吉林大学,2007
    [47]刘少林,许沧粟,黄德中.汽车ABS滚筒式惯性检测台架的设计[J].机电工程,2004,21(6):16-19
    [48]张帆.汽车防抱死制动试验系统动态检测的研究[D].北京:北京工商大学,2009
    [49] http://www.iyasaka.com.cn/default.asp
    [50]许猛.装有ABS汽车制动试验台的研究[D].上海:上海海事大学,2006
    [51]艾尼瓦尔.多功能汽车防抱制动系统检验台计算机测控系统研究[D].西安:长安大学,2002
    [52] Ben Abdallah M., Ayadi M., Rotella F., et al. Linear time-varying flatness-based control of anti-lockbrake system (ABS)[C]//SSD. International Multi-Conference on System, Signals and Devices.Chemnitz: SSD,2012:1-6.
    [53] Zheng Taixiong, Wang Ling, Ma Fulei. Research on road identification method in anti-lock brakingsystem [J]. Procedia Engineering,2011,15:194-198.
    [54] Amir P. Adaptive feedback linearization control of antilock braking systems using neural networks [J].Mechatronics,2009,19:767-773
    [55]杨坤,李静,李幼德等.基于汽车电子机械制动系统的EBD/ABS研究[J].系统仿真学报,2009,21(6):1785-1788.
    [56] Villagra J., B. d’Andrea-Novel, Fliess M., et al. A diagnosis-based approach for tire-road forces andmaximum friction estimation[J]. Control Engineering Practice,2011, V19(2):174-184
    [57] Lee D. J., Park Y. S. Sliding-mode-based parameter identification with application to tire pressure andtire-road friction[J]. International Journal of Automotive Technology,2011, V12(4):571-577
    [58] Corno M., Gerard M., et al. Hybrid ABS control using force measurement[J]. IEEE Transactions onControl Systems Technology,2012, V20(5):1223-1235
    [59] Harifi A., Aghagolzadeh A., Alizadeh G., et al. Designing a Sliding Mode Controller for Slip Controlof Antilock Brake Systems [J]. Transportation Research Part C,2008,16:731-741
    [60]周志立,徐立友.汽车ABS原理与结构[M].北京:机械工业出版社,2011
    [61] Bhandari R, Patil S, Singh R K. Surface prediction and control algorithms for anti-lock brake system[J]. Transportation Research Part C: Emerging Technologies,2012,21(1):181-195
    [62] Jeonghoon Song. Performance evaluation of a hybrid electric brake system with a sliding modecontroller [J]. Mechatronics,2005,15(3):339-358
    [63]周志立,徐斌,卫尧.汽车ABS原理与结构[M].北京:机械工业出版社,2005
    [64]林秀君.汽车ABS性能检测试验台机械系统的研究与开发[D].广东:广东工业大学,2006
    [65]刘建房,李以农,郭旭等.汽车ABS动态试验台的开发设计[J].重庆大学学报(自然科学版),2006,29(12):1-4
    [66]黄晓欣.汽车ABS动态试验台测量方法研究[D].长春:吉林大学,2009
    [67] Patra N., Datta K. Sliding mode controller for wheel-slip control of anti-lock braking system [J].2012IEEE International Conference on Advanced Communication Control and Computing Technologies(ICACCCT), Ramanathapuram,2012:385-391
    [68] Sharkawy A. B. Genetic fuzzy self-tuning PID controllers for antilock braking systems [J].Engineering Application of Artificial Intelligence,2010, V23:1041-1052
    [69] William P. L., Antonio L., Mathieu G. Design and experimental validation of a nonlinear wheel slipcontrol algorithm [J]. Automatica,2012, V48:1852-1859
    [70] Cho J. R., Choi J. H., Yoo W.S., et al. Estimation of dry road braking distance considering frictionalenergy of patterned tires [J]. Finite Elements in Analysis and Design,2006,42:1248-1257
    [71] Matusko J., Petrovic I., Peric N. Neural network based tire/road friction force estimation [J].Engineering Applications of Artifical Intelligence,2008,21:442-456
    [72]张立斌,苏建,单洪颖,等.基于惯性质量模拟的汽车ABS检测方法[J].吉林大学学报(工学版),2009,39:115-118
    [73]施毅,闵永军,路小波.基于计算机测控的汽车ABS台架试验系统的研制[J].公路交通科技,2006,23(12):145-148
    [74]张为,丁能根,余贵珍等.汽车ABS电子控制单元综合性能测试试验台[J].农业机械学报,2009,40(9):37-40
    [75]王旭东,张超,刘健. ABS动态模拟试验台的道路路面模拟[J].哈尔滨理工大学学报,2012,17(1):39-42
    [76] Zhang X. Q., Yang B., et al. Research on ABS of multi-axle truck based on ADAMS/Car andMatlab/Simulink[J]. Procedia Engineering,2012, V37:120-124
    [77]梅育庭,苏文慧,周雅夫等.车用ABS制动性能评价技术[J].微计算机信息,2005,21(12-2):124-126
    [78] Men Jinlai, Wu Bofu, Chen Jie. Comparisons of4WS and Brake-FAS based on IMC for vehiclestability control [J]. Journal of Mechanical Science and Technology,2011, V25(5):1265~1277
    [79] Anwar S., Stevenson R. C. Torque Characteristics analysis for optimal design of a copper-layerededdy current brake system [J]. International Journal of Automotive Technology,2011,V12(4):497502
    [80]李果.车辆防抱死制动控制理论与应用[M].北京:国防工业出版社,2009:11-42
    [81]刘国福.基于滑移率的车辆防抱死制动系统的研究[D].长沙:国防科学技术大学,2007
    [82]尹力,于江江.轮胎动力学特性仿真分析研究[J].汽车实用技术,2012, no.9:1-4
    [83]李松焱,闵永军,王良模等.轮胎动力学模型的建立与仿真分析[J].南京工程学院学报(自然科学版),2009,7(3):34-38
    [84]谷昭斌,陈丁跃,景琳浪.基于Simulink的汽车ABS仿真研究[J].汽车实用技术,2012,7(7):27-30
    [85]翟宏敏,程军.汽车动力学模拟中的轮胎模型述评[J].汽车技术,1996, no.7:1-8
    [86] Li K., Cao J., Yu F. Nonlinear tire-road friction control based on tire model parameter identification[J]. International Journal of Automotive Technology,2012, V13(7):10771088
    [87] Bera T K, Bhattacharya K, Samantaray A K. Evaluation of antilock braking system with an integratedmodel of full vehicle system dynamics [J]. Simulation Modelling Practice and Theory,2011,19(10):2131-2150
    [88]李艳彩.基于四轮模型的汽车ABS控制策略的研究[D].天津:河北工业大学,2007
    [89]吴昭润.汽车ABS仿真检测建模与模型中相关参数影响的研究[D].广州:广东工业大学,2005
    [90]石红雁,许纯新,付连宇.基于Simulink的液压系统动态仿真[J].农业机械学报,2000,31(5):94-96
    [91]安永东,杜嘉勇,罗萌.基于Simulink的汽车ABS建模与仿真[J].黑龙江工程学院学报(自然科学版),2008,22(2):40–43
    [92]荣兵. ABS控制下车辆制动稳定性仿真分析[D].成都:西华大学,2010
    [93] Branciforte M., Meli A., et al. ANN and non-integer order modeling of ABS solenoid valves [J]. IEEETransactions on Control Systems Technology,2011, V19(3):628-635
    [94] Cheli F, Concas A, Giangiulio E, et al. A simplified ABS numerical model: comparison with HIL andfull scale experimental tests [J]. Computers and Structures,2008, V86(13/14):1494-1502
    [95]吴昭润,彭美春,曹华等.计算机仿真汽车ABS性能评价方法[J].交通与计算机,2005,23(3):67-69
    [96] Zhou S. W., Zhang S. Q. Study on stability control during split-mu ABS braking [J]. Control andDecision Conference (CCDC), Mianyang,2011:1235-1239
    [97]陈在平.现场总线及工业控制网络技术[M].北京:电子工业出版社,2008.5pp.181-243
    [98]赵祥模,郭晓汾,徐志刚等.汽车检测控制系统网络通信技术[J].交通运输工程学报,2006,6(1):98-102
    [99]郑太雄,李炯球,黄智宇等. ABS轮速信号的采集方法研究[J].汽车技术,2010, no.10:53-56
    [100]徐颖,刘磊,赵旗等. ABS实时四轮轮速信号采集系统[J].吉林大学学报(理学版),2009,47(5):977980
    [101] Amir D., Alireza B. H.,et al. Accurate wheel speed measurement for sensorless ABS in electricvehicle [C]. IEEE Conference on Vehicular Electronics and Safety, Istanbul, Turkey,2012:37-42
    [102]李慧,朱德文.基于PWM控制的高速开关电磁阀在汽车防抱死制动系统中的应用[J].机械研究与应用,2007,20(3):83-84
    [103]蒋克荣,王治森,孙骏.汽车ABS轮速信号处理过程的神经网络模型[J].农业机械学报,2008,39(1):1-3
    [104] Amiri M., Moaveni B. Vehicle velocity estimation based on data fusion by Kalman filtering for ABS
    [C]. Iranian Conference on Electrical Engineering (ICEE), Tehran,2012:1495-1500
    [105]张小龙.车辆主动安全性能道路试验系统及评价方法研究[D].南京:东南大学,2006
    [106]黄勤,常伟,刘益良.基于PCA的BP神经网络分类器[J].重庆工学院学报(自然科学),2009,23(7):89-96
    [107] Malhi A., Gao R. PCA-Based Feature Selection Scheme for Machine Defect Classification [J]. IEEETransactions on Instrumentation and Measurement,2004,53:1517-1525
    [108]杨仁明,索有瑞,王洪伦.青海不同地区枸杞微量元素分析研究[J].光谱学与光谱分析,2012,32(2):525~528
    [109]胡芬,李小定,熊善柏等.5种淡水鱼肉的质构特性及与营养成分的相关性分析[J].食品科学,2011,32(11):69-73
    [110] Alok Sharma, Kuldip K. Paliwal, Seiya Imoto, et al., Principal component analysis using QRdecomposition, International Journal of Machine Learning and Cybernetics,2012.
    [111]张晓东,谢先华,李正耀等.抽油机井泵效影响因素之主成分分析法[J].西南石油大学学报:自然科学版,2011,33(5):176–180
    [112]陈铁明,马继霞, Huang S. H.等.一种新的快速特征选择和数据分类方法[J].计算机研究与发展,2012,49(4):735-745
    [113] Azadeh A., Saberi M., Gitiforouz A. An integrated fuzzy mathematical model and principalcomponent analysis algorithm for forecasting uncertain trends of electricity consumption, Quality&Quantity,2012.
    [114]李刚,赵静,李家星等.近红外反射光谱用于冠心病快速筛查[J].天津大学学报,2011,44(08):737-741
    [115] Fu T., Zhao J. B., Liu W. J. Multi-objective optimization of cutting parameters in high-speed millingbased on grey relational analysis coupled with principal component analysis[J]. Front. Mech. Eng,2012, V7(4):445-452
    [116] Halligan G. R., Jagannathan S. PCA-based fault isolation and prognosis with application to pump[J].Int J Adv Manuf Technol,2011, V55:699-707
    [117] Chen S. H., Perng D. B. Directional textures auto-inspection using principal component analysis[J].Int J Adv Manuf Technol,2011, V55:1099-1110
    [118] http://wenku.baidu.com/view/343c3bfafab069dc50220157.html
    [119]李英伟.基于增量改进BP神经网络微波深度干燥模型及应用研究[D].昆明:昆明理工大学,2011
    [120] Ding S. F., Su C. Y., Yu J. Z. An optimizing BP neural network algorithm based on genetic algorithm[J]. Artif Intell Rev,2011,36:153-162
    [121]钟珞,饶文碧,邹承明.人工神经网络及其融合应用技术[M].北京:科学出版社,2007:1~17
    [122] Chen B., Wang J. F., Chen S. B. Prediciton of pulsed GTAW penetration status based on BP neuralnetwork and D-S evidence theory information fusion [J]. Int J Adv Manuf Technol,2010,48:83-94
    [123] Lou Y., Wu W. H., Li L. X. Inverse Identification of the Dynamic Recrystallization Parameters forAZ31Magnesium Alloy Using BP Neural Network [J]. JMEPEG,2012,21:1133-1140
    [124]褚辉,赖惠成.一种改进的BP神经网络算法及其应用[J].计算机仿真,2007,24(04):75-77
    [125]葛哲学.神经网络理论与MATLAB R2007实现[M].北京:电子工业出版社,2007:135-139
    [126]沈花玉,王兆霞. BP神经网络隐含层单元数的确定[J].天津理工大学学报,2008,24(5):13-15
    [127]聂鹏,谌鑫.基于主元分析和BP神经网络对刀具VB值预测[J].北京航空航天大学学报,2011,37(03):364-373
    [128] Xu L. J., Yan Y., Cornwell S., et al. Online fuel tracking by combining principal component analysisand neural network techiniques [J]. IEEE Transactions on instrumentation and measurement,2005,V54(4):1640-1645
    [129]李洪东.基于BP神经网络的汽车ABS系统故障诊断[D].长春:吉林大学,2007
    [130] Zhao X M, Wang W X, Wang L P. Parameter optimal determination for Canny edge detection[J].Imaging Science Journal,2011, V59(6):332-341
    [131] Park E. J., Stoikov D., Luis Falcao da Luz, et al. A performance evaluation of an automotivemagnetorheological brake design with a sliding mode controller [J]. Mechatromics,2006,16:405-416
    [132]李蕾.基于整车的汽车ABS性能仿真检测研究[D].上海:上海师范大学,2010
    [133] Liu S. M., Xu D. Research of the bed-testing evaluation method of ABS performance [J]. SpecialPurpose Vehicle,2006, V8:43-46
    [134] Yun D. S., Kim H. S., Boo K. S. Brake performance evaluation of ABS with sliding mode controlleron a split road with driver model [J]. International Journal of Precision Engineering andManufacturing,2011, V12(1):31-38
    [135] Chia K. S., H. Abdul Rahim, R. Abdul Rahim. Neural network and principal component regression innon-destructive soluble solids content assessment: a comparison [J]. Journal of ZhejiangUniversity-SCIENCE B (Biomedicine&Biotechnology),2012,13(2):145-151

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700