基于能量法的路面附着系数识别方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着汽车工业的迅速发展,由汽车运输所造成的交通事故也随之增加。为了降低事故的发生,汽车主动安全控制技术近年来迅速发展,并逐渐在实车上得以应用。汽车主动安全控制系统作用效果的发挥很大程度取决于轮胎附着信息的获取,路面附着系数不仅影响汽车的加速性能、制动性能,而且影响汽车的操纵稳定性。汽车高速行驶需要良好的道路附着来保证,由于天气等原因导致道路附着情况恶化,驾驶员往往因为不能及时反应而使汽车失控。因此在车辆的运行过程中,如何精确获取汽车状态信息,特别是路面附着信息已成为汽车主动安全控制系统发展首要解决的问题。
     附着系数主要决定于道路的材料、路况与轮胎的结构及胎压、车轮径向载荷、车辆速度、环境温度等因素。在行驶过程中,车辆自身参数如质量、转动惯量、胎压等在一般情况下具有时不变性,因此导致附着系数改变的主要因素还是路况的变化,如路面的种类、粗糙程度、潮湿泥泞情况等。国外的研究学者通过传感技术、模型参数估算及各种数据分析手段在路面状况识别方面取得了大量的成果。本文的研究宗旨在于利用汽车制动过程中能量传递及能量消耗理论,依据功率方程,初步探索利用传感器获取车辆运行信息,实时估算路面的附着系数,为车辆的主动控制提供理论与技术支持。
     汽车的制动性能是影响汽车行驶安全的重要因素。本文依据汽车制动过程的物理实质,提出一种基于能量法的附着系数识别方法。解决目前需要建立精确的轮胎模型和车辆动力学模型来估计路面附着系数的问题。通过分析四种不同的制动方式,选定只有摩擦制动器起作用的制动过程,即驾驶员踩下离合器踏板和制动器踏板,四个车轮同时产生制动力矩的制动方式。依据功率方程,推导出路面附着系数求解模型。为验证估算的有效性,本文在MATLAB/SIMULINK平台上建立仿真模型,通过ABS作用使附着系数稳定在峰值附着系数附近,则充分说明了所建立的附着系数模型的正确性。
     根据路面附着系数求解模型,本文对路面附着系数实时测试系统进行了初步研究。开发了外接式轮速独立测试系统和汽车车轮垂向载荷实时测试系统,在此基础上,结合V-BOXⅡ测试系统,开发了路面附着系数识别试验系统。并利用该系统对本文所建立的路面附着系数求解模型进行了实车试验,并采用matlab软件对试验数据进行了处理分析。试验结果表明本文所开发的路面附着系数识别试验系统能够实时检测汽车制动工况下的路面峰值附着系数,论文所建立的路面附着系数求解模型正确,可用于车辆运行状态下路面附着系数的实时测试,为实现汽车主动安全控制提供了一种可行性途径。
With the rapid development of the automotive industry, traffic accidents also haveincreased by motor vehicles. to reduce accidents, the vehicle active safety controltechnology has rapidly developedt in recent years and gradually be applied in the vehicles.To a large extent, the vehicle active safety control systems depend on the tire adhesion,however, road adhesion coefficient not only affects the vehicle's acceleration performance,braking performance, but also affects the vehicle's handling and stability performance. Thecar needs a good road adhesion to achieve high speed. Therefore, the car is always out ofcontrol due to the deterioration of the road adhesion because of weather and other factors.Indriving state, how to accurately get the vehicle status information especially the roadadhesion has become the primary solution to promote the vehicle safety control systems.
     The road adhesion coefficient mainly depends on road materials, road surfaceconditions, parameters of the tire structure and tire pressure, wheel radial load, vehiclespeed, working temperature and other factors. In most cases vehicle parameters such asquality, rotational inertia and tire pressure change with time. Therefore, the main factorsleading to changes of road adhesion coefficient is road conditions, rough, wet and muddy.
     Foreign scholars have conducted research in the field of road adhesion coefficientidentification for many years. They also have made substantial achievements by sensingtechnology, the model parameter estimation and a variety of data analysis methods toidentify the road conditions. This study aims on the energy transfer and consumption theoryto identify the road adhesion coefficient with vehicle status sensors duringbraking.According to the power equation, the study can achieve the purpose of real-timeestimation of road adhesion coefficient, which provides theoretical and technical support forthe active control of the vehicle.
     The braking performance is an important factor affecting the safety of the car driving.This article proposed a method to identify adhesion coefficient based on the energy theory,to solve the problems the precise model of the tire and vehicle dynamics modelbeingestablished to estimate the road adhesion coefficient. By analysing four differentbraking modes, the article only selected the friction brake working method, which is thedriver depresses the clutch pedal and brake pedal, thus four wheels come into braking torques. According to the power equation theory, the article deduced the calculation modelof road adhesion coefficient, which applied to the friction brake only. To verify the validityof estimation in braking condition, simulation model was created by MATLAB/SIMULINK.Through the ABS effect, the adhesion coefficient stabilized at the peak, which fullyillustrated that the adhesion coefficient model is correct.
     Based on the model, the article has carried on the preliminary study of the roadadhesion coefficient identification system. This article developed an external independentwheel speed system and a real-time test system for vertical load testing. On thesefoundations, combined with the V-BOX II system, the road adhesion coefficientidentification test system was developed. In the standard road, the road adhesion coefficientidentification system was tested. The results showed that: The system can real-time detectthe peak of road adhesion coefficient in braking, thus the model of road adhesion coefficientis correct and can be used for real-time test of the road adhesion coefficient in vehiclerunning, providing a feasible approach for active safety control.
引文
[1] Yung-Hsuang Judy Hsu,Shad Laws.A METHOD TO ESTIMATE THE FRICTION COEFFICIENTAND TIRE SLIP ANGLE USING STEERING TORQUE[J].IMECE2006-15402.
    [2]董勇刚.滚滚车轮:载不动许多愁[2011-12-8].http://auto.gasgoo.com/News/2011/12/08093402342175.shtml
    [3]2011年全国交通事故造成62387人死亡.http://news.qq.com/a/20120209/001261.htm
    [4]张永波,陆化普,刘强.我国道路交通安全形势与对策[J].长沙交通学院学报,2006,22(3):58-62.
    [5]章锡俏,李松龄,杨龙海.寒冷地区设超高公路圆曲线半径设计仿真研究[J].武汉理工大学学报,2011,33(6):64-67.
    [6]李修松.基于EMD算法的路面附着系数估算方法研究[D].长春:吉林大学交通学院,2008.
    [7]余卓平,左建令,张立军.路面附着系数估算技术发展现状综述[J].汽车工程,2006,28(6):546-549.
    [8] Yukihisa Sasada. Development of the road surface condition sensing system [C]. Tokyo:International Conference on Intelligent Transportation Systems,1999.
    [9]杨福广,李贻斌,阮久宏,荣学文,宋锐.基于扩张状态观测器的路面附着系数实时估计[J].农业机械学报,2010,41(8):6-15
    [10]武钟财.基于扩展卡尔曼滤波的路面附着系数估计算法研究[D].长春:吉林大学汽车工程学院,2008.
    [11]江文锋.行驶过程中轮胎与路面间附着性能的评价[D].西安:长安大学汽车学院,2008.
    [12]李明利.商用车制动防抱死系统的路面识别算法研究[D].长春:吉林大学汽车工程学院,2008.
    [13]韩建保,张鲁滨等.轮胎路面附着系数实时感应识别系统[J].车辆与动力技术,2005(2):62-64.
    [14]赵林辉.车辆状态和路面附着系数的非线性估计方法研究[D].黑龙江:哈尔滨工业大学,2009.
    [15]赵林辉,刘志远,陈虹.车速和路面附着系数的滚动时域估计[J].汽车工程,2009,31(6):520-525.
    [16] Imsland L, Johansen T A, Fossen T I,Vehicle Velocity Estimation Using NonlinearObservers[J].Automatica,2006,42(12):2091-2103.
    [17] ARabhi N KM,SirdiA Elhajjaji. Estimation of contact forces and tire road friction [C]. AthensGreece:2007Mediterranean Conference on Control and Automation,2007.
    [18] Carbs Canudas-de-Wit,Tsiotras P,Velenis E,et al. Dynamic friction models for road/tire longitudinalinteraction[J].Vehicle System Dynamics,2003,39(3):189~226.
    [19]杨财,李亮,宋健,李红志.基于轮胎力观测器的路面附着系数识别算法[J].中国机械工程,2009,20(7):872-876.
    [20]刘力,罗禹功,李克强.基于归一化轮胎模型的路面附着系数观测[J].清华大学学报(自然科学版),2009,49(5):116-120.
    [21]吴利军,王建跃,李克强.面向汽车纵向安全辅助系统的路面附着系数估计方法[J].汽车工程2009,31(3):239-243.
    [22]宋健,杨财,李红志,李亮. AYC系统基于多传感器数据融合的路面附着系数估计[J].清华大学学报(自然科学版),2009,49(05):101-104.
    [23]胡丹.基于双扩展卡尔曼滤波的汽车状态与路面附着系数估计算法研究[D].长春:吉林大学汽车工程学院,2009.
    [24]赵又群,林棻.基于虚拟试验的路面附着系数估计[J].吉林大学学报,2011,41(3):309-315.
    [25]陈无畏,刘翔宇,黄鹤,杨军.车辆转向工况下的路面附着系数估计算法[J].汽车工程2011,33(6):521-526.
    [26]余卓平,左令建,陈惠.基于四轮轮边驱动电动车的路面附着系数估算方法[J].汽车工程,2007,29(2):141-145.
    [27]李明.线空汽车轮胎侧偏角和路面附着系数估算算法研究[D].长春:吉林大学汽车工程学院,2011.
    [28]白英,李瑞英.理论力学[M].北京:中国农业大学出版社,2004.
    [29]董金松,许洪国,任有,张红卫,张荣辉.基于道路试验的汽车滚动阻力和空气阻力系数计算方法研究[J].交通信息与安全,2009,27(1):75-78.
    [30]周锋,钟声龙,姚锡凡,黄榕清,钟日锋.功率平衡法测试汽车的空气阻力系数[J].华南理工大学学报(自然科学版),1997,25(9):80-83.
    [31]周锋,尹权,许爱民,姚凡,周小舒.功率平衡法测试汽车的滚动阻力系数[J].华南理工大学学报(自然科学版),1999,27(7):73-76.
    [32]王熙.基于传动系统效率的汽车燃油经济性研究[D].重庆:重庆大学机械工程学院,2010.
    [33]程波.气缸功率平衡试验在现代汽车发动机诊断中的运用[J].四川工业学报,2002:59-60.
    [34]余志生.汽车理论[M].北京:机械工业出版社,2006.
    [35]何峰,杨宁.汽车动力学[M].贵阳:贵州科技出版社,2003.
    [36]陈家瑞.汽车构造(下)[M].北京:机械工业出版社,2005.
    [37]2009-2013年中国汽车鼓式制动器总成行业研究报告,http://www.kvov.com/5173/bjxjys/f6139a7310.html
    [38]孟召辉.汽车鼓式制动器热性能有限元分析[D].长春:吉林大学交通学院,2007.
    [39]顾永田.车辆长大下坡持续制动制动鼓温升试验研究[D].西安:长安大学汽车学院,2008.
    [40]叶进雄,龚科家,危银涛.全钢载重子午线轮胎滚动阻力分析与试验[J].橡胶工业,2008,55(4):245-250.
    [41]危银涛,刘宇艳,杜星文,吴宝国.子午线轮胎滚动阻力与温度场非线性有限元分析[J].橡胶工业,1998,18(6):330-335.
    [42]尹梦晨,谷正气,容江磊.基于CFD分析的汽车空气动力学制动研究[J].合肥工业大学学报(自然科学版),2011,34(3):326-330.
    [43](德)M.米奇克著,陈荫三译.汽车动力学A卷(第2版).北京:人民交通出版社,1992.
    [44]唐椒凡.汽车运动的功能关系及牵引力问题[J]娄底师专学报(自然科学版).1988(2):44-48.
    [45]王宪彬,赵华,施树明.汽车驱动桥系统模型的能量验证方法.中国科技论文在线,1999,http://www.paper.edu.cn
    [46]刘辉.车辆防抱制动系统仿真与试验研究[D].合肥:合肥工业大学机械与汽车工程学院,2006.
    [47]宋进源.汽车防抱制动系统建模与控制仿真研究[D].广西:广西大学,2007.
    [48]田立国.汽车防抱制动的控制仿真研究[D].沈阳:沈阳理工大学,2011.
    [49]安永东,杜嘉勇,罗萌.基于Simulink的汽车ABS建模与仿真[J].黑龙江工程学院学报(自然科学版),2008,22(2):40-43.
    [50]罗文水.基于ADAMS的某跑车操纵稳定性和制动性仿真分析及优化[D].长沙:湖南大学机械与汽车工程学院,2007.
    [51]李松焱,闵永军,王良模,安丽华.轮胎动力学模型的建立与仿真分析[J].南京工程学院学报(自然科学版),2009,7(3):34-38.
    [52]安丽华.汽车电子稳定性程序_ESP_控制方法及联合仿真研究[D].南京:南京理工大学,2009.
    [53]张向文,王飞跃.汽车ABS自适应模糊滑模控制算法研究[J].设计计算研究,2009(10):25-30.
    [54]宋进源,何小阳.汽车防抱制动系统控制方法的仿真分析[J].系统仿真技术及其应用,2007,9:522-525.
    [55]吴金宏,张连中.光电开关及其应用[J].国外电子元器件,2001(5):14-18
    [56]邓重一.光电开关的原理及应[J].传感器世界,2003,9(12):19-22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700