磁流变液ABS制动器结构研究与性能仿真
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁流变液可在磁场作用下发生瞬间、连续、可逆的流变效应,这种特性使磁流变液适合用于汽车制动器,通过合理的结构设计、磁路电流控制,能够实现磁流变液粘度的快速、连续、无级的变化,从而达到按照实际需要控制制动力矩的目的。当辅助以车轮滚动、滑动状态检测,还可以响应路面附着系数的变化实时调节制动力矩,达到较传统ABS更精确的防抱死效果,同时能实现制动过程中的全部电控,符合未来智能汽车的发展方向。
     论文从微观和宏观两方面阐述了磁流变体这种流变效应产生的机理,介绍了磁流变液的组成和制备方法;探讨了发展磁流变制动器的实际需求和可行性;在分析磁流变液器件的工作原理和车辆制动理论的基础上,设计了一种工作在剪切与流动复合模式下的叶轮式磁流变液制动器,以及相应的电磁控制装置,使制动器在控制电流为3A时输出的制动力矩能够达到1656N·m,从而在有限的轮内空间满足中小型车辆制动力矩的需求;采用电磁离合器与磁流变制动器工作相结合的方案设计,在驱动轮和非驱动轮上合理布置,有效地避免了随动损失。
     运用MATLAB/Simulink,建立相应的仿真模型,分别从制动器结构参数对制动力矩的影响、模拟ABS制动过程和若干工况下的制动器的散热三个方面进行了仿真。结果表明,制动器制动力矩与磁感应强度呈现对数变化规律,与工作间隙呈现负指数变化规律;叶片的径向尺寸、叶片数量和叶片厚度对制动力矩都有较大影响;控制电流与制动力矩的响应是一种非线性且迅速饱和的关系,通过矫正电路的校正可以使其具有适合操作习惯的线性关系;磁流变制动器在ABS制动过程中也能发挥良好的制动效能;制动器在不同工况下制动时的温升在保持在允许的范围内。
Magnetorheological fluid can produce a successive, reversible and instantaneous rheological effect in the magnetic field. This kind of rheological characteristic makes MRF suitable for automobile brake, and it can realize a fast and continuous and stepless viscosity of MRF through a rational design of structure and current controls in magnetic circuits, so as to achieve the purpose of controlling braking torque according to actual needs. When aided by wheel rolling and sliding state detection, it can regulate the braking torque timely according to the variation of tire-road friction coefficient to achieve a more accurate antilock brake effect than traditional ABS, and the system can realize a electronically controlled braking process completely, and so it can meet the futural development direction of intelligent vehicle.
     The paper expounds the mechanism of the rheological effect from macro and micro two-aspects, and introduces the component and preparation methods of MRF; In addition, it discusses the actual needs and feasibility of developing MRF brake; Based on the analysis of working principle of MRF devices and the theory of vehicle braking, The article designs a kind of impeller-type MRF brake working on the mode mixed shear and flow mode and the corresponding electromagnetic control device to make the brake produce a output of 1656N·m brake torque while the current is 3A as the input, so as to satisfy braking torque requirements of small and medium-sized vehicles in the limited wheel-inner-space; Adopting a design work of integrating the electromagnetic clutch with brake through decorating reasonably on the driving and driven wheels that can effectively avoid following loss.
     The corresponding simulation model established on three aspects which range from the influence of brake structural parameters on the braking torque and the simulation braking process of ABS to the simulation of brake cooling under several working conditions are simulated through MATLAB/Simulink software. The results show that the relationship between its braking torque and magnetic induction presents a logarithmic change rule, while the corresponding relation with the working gap presents a negative exponential law; The radial dimensions, number and thickness of blades have considerable influence on braking torque respectively; As the response between the current and braking torque displays a nonlinear and rapidly saturate relationship, The redress through correctional circuit can make it present a linear relationship which is suitable for operation habit; Magnetorheological brake can also play a good braking performance in the ABS braking process; The braking temperature of brake is kept in allowing range.
引文
[1]王思卓,安禹宁.磁流变技术在汽车制动中的应用[J].黑龙江科技信息,2009(35):15.
    [2]Rabinow. The magnetic fluid clutch[J]. AIEE Transactions,1948,67:1308~1315.
    [3]左军,罗晓玉,曹树平.磁流变流体-新型智能流体材料[J].机床与液压,2000(1):30~3.1.
    [4]杨仕清,王豪才,张万里,龚捷.磁流变液智能材料、特性及器件研究[J].大自然探索,1998,17(3):39~41.
    [5]张红辉.磁偏置内旁通式磁流变阻尼器研究[D].重庆:重庆大学,2006.
    [6]蒋建东.磁流变传动技术及器件的研究[D].重庆:重庆大学,2004.
    [7]B. F. Spencer, T. Soong. New Applications and Development of Active, Semi-active and Hybrid Control Techniques for Seismic and Non-seismic Vibration in the USA[J]. International Post-SMIRT Conferences Seismic Isolation, Passive Energy Dissipation and Active Control of Vibration of Structure,1999,8:23~25.
    [8]姚金光,晏华.高性能磁流变液研究的进展[J].材料开发与应用,2009,24(2):62~66.
    [9]Ni Y Q, Duan Y F, KO JM. Cable vibration control using magnetorheological (MR) dampers[C]. Proc. of the Ninth International Conference. Electrorheo-logical Fluids and Magnetorheological Suspensions. Singapore:World Scientific Publication,2005:829~835.
    [10]欧进萍.结构振动控制-主动、半主动和智能控制[M].北京:科学出版社,2003.
    [11]李红云,柳学全,滕荣厚,霍静,贾成厂.磁流变液减振器[J].金属功能材料,2005,12(2):38-41.
    [12]郑军.磁流变传动理论与试验研究[D].重庆:重庆大学,2008.
    [13]熊超,吕建刚,张进秋,唐伟.磁流变智能材料的特性、机理及其应用研究[A].复合材料:生命、环境与高技术-第十二届全国复合材料学术会议论文集[C].2002.
    [14]华文林.磁流变液制动器的设计与研究[D].武汉:武汉理工大学.2002.
    [15]熊光洁,张元培,都俊超.基于MATLAB的磁流变液制动器的模糊控制建模研究[J].起重运输机械,2008(4):49~52.
    [16]张立军,余卓平,靳晓雄.汽车工业用磁流变液器件应用前景分析[J].汽车技术,2002(5):32~35.
    [17]赵雯,张秋禹,王结良,张军平.磁流变液及其应用[J].材料导报,2004,18(5):68~71.
    [18]董波红,杨晓鸿.二轴汽车制动性能的研究[J].轻型汽车技术,2007(1):14~18.
    [19]王望予,张建文.汽车设计[M].北京:机械工业出版社,2004.
    [20]迟瑞娟,李世雄.汽车电子技术[M].北京:国防工业出版社,2008.
    [21]胡学英,王国业,邓英英.EBD四轮车辆的ADAMS建模与仿真[J].农机化研究.2006.12:92~94.
    [22]胡学英.基于ABS的EBD控制技术的仿真研究[D].北京:中国农业大学,2006.
    [23]张进秋,张建,孔亚男,高永强,贾进峰,王洪涛.磁流变液及其应用研究综述[J].装甲兵工程学院学报,2010,24(2):1-6.
    [24]W. I. Kordonsky, S. A. Demchuk, Proc of the 5th Int. Conf on ERF Suspensions and Associated Technology, W.A. Bullough edit, World Scientific,1994,613~619.
    [25]浦鸿汀,蒋峰景.磁流变液材料的研究进展和应用前景[J].化工进展,2005,24(2):132~136.
    [26]姚黎明,王竹轩,顾玲,肖燕.磁流变液及其工程应用[J].液压与气动,2009(7):64~66.
    [27]司鹄,彭向和.磁流变流体的磁流变效应[J].重庆大学学报,2003,26(5):72~75.
    [28]王立忠,李云瑞,王峰.磁流变体研究状况及进展[J].航空制造工程,1997(7):9-11.
    [29]周云,谭平.磁流变阻尼控制理论与控制[M].北京:科学出版社,2007.
    [30]Carlson J D, Catanzarete D M, St Calir K A. Commercial magneto-rheological fluid devices[A]. Proceedings 5th Int. Conf. on ER fluids,MR Suspensions and Associated Technology[C], Bullough W ed., World Scientific, Singapore,1996.
    [31]Shames I H, Cozzarelli F A. Elastic and inelastic stress analysis[M]. New Jersey, Englewood Cliffs:Prentice Hall,1992.
    [32]Herschel W H, Bulkley R. Model for time dependent behavior of fluids[J]. Proc. American Society of Testing Materials,1926(26):621.
    [33]Lee D Y, Wereley N M. Analysis of electro-and magneto-rheological flow mode dampers using herschel-bulkley mode[J]. Proceedings of SPIE Smart Structure and Materials Conference, Newport Beach, California,2000,3389:244~252.
    [34]Wang X, Gordaninejad F. Study of field-controllable, electro-and magneto-rheological fluid damper in flow mode using herschel-bulkley theory[A]. Proceedings of SPIE Smart Structure and Materials Conference[C],2000,3389:233~243.
    [35]Weiss K D, Dclos T G. Proc. Of the 4th Int. Conf. on ER Fluids[C]. Tao R, Roy G D eds. Singapore:World Scientific,1994.
    [36]熊超,申小海等.磁流变器件设计中的关键技术[J].磁性材料及器件,2008,39(4):37~39.
    [37]Jolly M R, Bender J W, Carlson J D. Properties and applications of commercial magneto-rheological fluids[J]. Journal of Intelligent Material Systems and Structures,1999,10(1): 5-13.
    [38]王鸿云,郑惠强,李泳鲜.磁流变液的研究与应用[J].机械设计,2008,25(5):1-4.
    [39]陈新.摆动气缸磁流变制动技术研究[D].南京:南京理工大学,2009.
    [40]李志华,林阳.圆筒式磁流变制动器结构与磁路耦合的优化设计[J].工程设计学报,2009,16(4):261~265.
    [41]Edward J.Park, Dilian Stoikov, Luis Falcao da Luz, Afzal Suleman. A performance evaluation of an automotive magnetorheological brake design with a sliding mode controller[J]. Mechatronics,2006,16(7):405~416.
    [42]蒋科军,刘成晔.车用磁流变液制动器制动效果分析与研究[J].拖拉机与农用运输车,2009,36(06):25~27.
    [43]GB7258-2004.机动车运行安全技术条件[S].
    [44]蒋科军,刘成晔.基于simulink磁流变液制动器性能仿真与分析[J].起重运输机械,2009,(04):82~86.
    [45]朱龙根主编.简明机械零件设计手册[M].北京:机械工业出版社,1997.
    [46]蔡南武主编.机械设计基础[M].武汉:华中科技大学,2005.
    [47]杨岩.磁流变液离合器的设计与试验分析[D].重庆:重庆大学,2005.
    [48]方荣庆,胡超群.导磁铸钢QG-DJ1的研制与应用[J].铸造技术,1998(4):23~26.
    [49]陈新.摆动气缸磁流变制动技术研究[D].南京:南京理工大学,2009.
    [50]单慧勇,王太勇,杨延荣.圆筒式磁流变制动器的设计[J].功能部件,2006(4):92~94.
    [51]林其壬,赵佑民.磁路设计原理[M].北京:机械工业出版社,1987.
    [52]熊光洁,张元培,李宁.磁流变制动器电磁装置的理论分析与计算[J].微计算机信息,2008,24(9):294~296.
    [53]倪光正主编.工程电磁场原理[M].北京:高等教育出版社,2002.
    [54]Karakoc Kerem, Edward J.Park, Suleman Afzal. Design considerations for an automotive magnetorheological brake[J]. Mechatronics,2008,18(8):434~447.
    [55]周明衡主编.离合器、制动器选用手册[M].北京:化学工业出版社,2003.
    [56]安永东,杜嘉勇,罗萌.基于Simulink的汽车ABS建模与仿真[J].黑龙江工程学院学报,2008,22(2):40~43.
    [57]樊继东.基于MATLAB的ABS控制仿真研究[J].汽车科技,2010(3):67~70.
    [58]DUGOFF H, FANCHER C, SEGEL L. An analysis of tire traction properties and their influence on vehicle dynamics performance[C]. Society of Automotive Engineers. Proceedings of FISITA International Automobile Safety Conference, May 1970, Detroit, Michigan. USA:SAE,1970, Paper No.700377:1219~1243.
    [59]余志生.汽车理论(第3版)[M].北京:机械工业出版社,2003.
    [60]JABS株式会社.汽车制动防抱装置(ABS)构造与原理[M].北京:机械工业出版社,1995.
    [61]关新春,郭鹏飞,欧进萍.磁流变液阻尼器响应时间的试验研究及其动态磁场有限元分析[J].振动与冲击,2009,28(6):1-5.
    [62]冷雪,李文娟,王旭东,高小丽.汽车防抱死制动系统三种控制算法制动性能比较[J].自动化技术与应用,2009,28(2):74~77.
    [63]杨世铭,陶文拴编著.传热学(第三版)[M].北京:高等教育出版社,1998.
    [64]L.鲁道夫.汽车制动系统的分析与设计[M].北京:机械工业出版社,1985.
    [65]R. Limpert, Cooling Analysis of Disc Brake Rotors, SAE Paper No.751014, Truck Meeting, Philadelphia, November 1975.
    [66]R. Murphy, et al., Bus, Truck, Tractor-Trailer Braking System Performance, Final Report, Contract FH-11-7290, U. S. Department of Transportation, March 1971.
    [67]陈兴旺.鼓式制动器制动温度场的研究[D].西安:长安大学,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700