重载锻造操作机夹持系统并联驱动动力学建模与均载控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重载锻造操作机是一种与自由锻压机联合实现锻件锻造的大型生产设备。重载锻造操作机在夹持重达上百吨,直径有4m锻件的情况下,所需的驱动力矩也达到上百吨米,单个驱动系统很难达到快速启停定位的要求,所以必须采用并联驱动方式才能解决。然而,并联驱动系统动态特性的差异、间隙和摩擦等因素引起驱动作用力的不均衡,造成驱动机构偏载、力流畸变等不确定力学行为,降低了驱动机构的使用寿命甚至功能失效。因此,必须对锻造操作机夹持系统并联驱动均载性进行研究。
     由于锻造操作机是与自由锻压机配合实现自动锻造操作,锻造操作机夹持系统必须进行频繁快速启停的非连续旋转运动,此时驱动机构中的齿轮传动是在一种矩形类脉冲间歇驱动方式下进行,而齿轮间隙会引起齿轮传动的冲击现象更加明显,并且系统中间环节的变化比如齿轮传动的作用力变化是无法直接测量得到,所以需要一种有效求解齿轮接触/冲击动力学方程的计算方法对齿轮传动在间歇冲击驱动下的动力学行为进行研究。另外,重载锻造操作机夹持系统转动惯量大、液压系统元件的强非线性、齿轮的间隙和摩擦等非线性和不确定性,对锻造操作机夹持系统并联驱动在时变重载工况下的均载性和快速启停定位造成不同程度的影响,所以必须对锻造操作机夹持系统并联驱动进行均载分析与均载控制研究。
     本文针对上述问题进行了以下主要研究工作:
     针对锻造操作机在频繁启停、间歇驱动下非连续运动的齿轮接触/冲击问题,提出了基于Newmark积分的动量迭代运算方法。该方法将力的二阶运动方程变为动量的一阶运动方程,便于求解计算,同时消除了系统频繁启停造成的非连续运动影响。通过与齿轮非连续运动的三维有限元动力学仿真和实验结果比较,验证了该方法的合理性且保证了计算精度和效率。
     为了研究重载锻造操作机夹持系统并联驱动中齿轮传动的作用力,建立了一种包含转动惯量、间隙和重合度的齿轮传动接触/冲击作用力模型。然后,利用阀值函数将其化简为可参数估计的模型结构,采用最小二乘迭代估计法对模型参数进行估计,并通过齿轮传动实验验证了模型的合理性。
     针对锻造操作机夹持系统并联驱动的一些非线性因素,建立了夹持系统并联驱动的全局动力学模型,并通过实验验证了模型的合理性。针对系统动态特性差异的主要因素,如油压差异、阀芯行程差异、马达排量差异以及齿轮的刚度系数和间隙的差异等进行了均载分析研究,分析结果显示系统的动态特性差异对并联驱动均载性造成不同程度的影响。
     根据建立的夹持系统并联驱动模型,构建基于系统模型的近似内模控制器和扭矩误差补偿反馈控制方法进行并联驱动的均载控制研究,并针对系统动态特性差异主要因素的影响进行均载控制仿真分析和实验研究,实验结果表明该控制方法满足夹持系统并联驱动的均载控制要求。
     实际中并联驱动系统的复杂性和一些不确定非线性因素会造成系统建模误差,所以采用神经网络模型对系统模型进行补偿,并通过实验修正神经网络近似模型,建立了由神经网络近似内模控制器和扭矩误差补偿反馈的均载控制策略,控制仿真结果表明该控制策略有效保证了均载和快速启停定位的控制要求。
Heavy duty forging manipulator is a large production equipment with the free forging press to forge the forging pieces. Under gripping the hundreds of tons of forging piece with four meters diameters, the heavy duty forging manipulator's single tongs rotation systems can't drive the large forging pieces, so it needs using the parallel driving systems to realize the rotation of forging piece. However, the kinetic difference of driving parts, backlash and friction between parts for the parallel driving systems of forging manipulator causes the unbalance loading, force distortion and other undetermined behaviour of force, reducing the working life of the parallel driving systems, and causing the driving disabler. So it needs further studying the load balance of the parallel driving systems.
     Because forging manipulator assistants with free forging press to realize coordinating motion, the parallel driving systems need discontinuous rotary motion under the start-stop frequently and quickly. The gear transmission is in the intermittent driving with rectangular impulse under the gear impacting states, which is more serious because of gear backlash. Moreover, the dynamical variation of the parallel driving systems such as interaction force of gear transmission is difficulty to be measured directly from the experiment. So it needs an effective calculation method to solve the gear contact/impact dynamics equation to analyze the gear impact dynamics behaviour under the intermittent driving. In addition, because there are large inertia and variation of load, strong nonlinear charactreristics of hydraulic systems, dead zone of the control valves, gear backlash, friction nonlinear in the parallel driving systems of forging manipulator, influncing directly the position and load balance of the parallel driving systems of forging manipulator under the time variation heavy conditions, so it needs load balance analysis and load balance control for the parallel driving systems of forging manipulator.
     Therefore, the studies on the parallel driving systems of forging manipulator are conducted in the present paper as follows:
     A momentum iterative solution approach based on Newmark direct integration method is proposed for the gear contact/impact problem under the intermittent rotation. This solution method can convert the conventional second-order equation of motion in force equilibrium into another first-order momentum equation and further smooth out the rapid changes of discontinuous rotation produced by start-stop frequently. The validation of accuracy and convergence using momentum analytical approach based on Newmark direct integration method is demonstrated by simulating the contact/impact of intermittent gear transmission using3D finite element dynamical software and experiments.
     A gear transmission interaction force model is proposed to analyze the heavy duty and intennittent gear transmission interaction force characteristics of forging manipulator based on the contact model of robotic system. The inertia, gear backlash and contactratio are introduced into the proposed model, which is simplified to the identification model using an appropriate switching function. Furthermore, a developed least square based iterative parameter estimation method is introduced to estimate some parameters of the interaction force model. The relevant experiment is implemented to validate the simulation results of the proposed model.
     For many complexity and nonlinearity factors of the actual tongs parallel rotation systems of forging manipulator, the parallel driving dynamics model of the forging manipulator is made based on the single rotary driving system. The load balance and position of forging manipulator is simulated and analyzed for the dynamical difference factors of forging manipulator such as oil pressure, valve friction and motor displacement of hydraulic systems, stiffness coeffiencient and backlash of gear transmission. The simulation results indicat that these factors cause different influence significantly for the load balance or position of the parallel driving systems of forging manipulators.
     The internal model control and the torque error compensation feedback control are employed for the load balance control of forging manipulators The dynamical difference factors of forging manipulator are analyzed by the simulation and experiment of load balance control, it indicates that the load balance control strategy meet basicly the load balance control requirement that it realize load balance and start-stop quickly simultaneously for the parallel driving of forging manipulator gripping systems.
     In fact, many complexity and nonlinearity factors of the actual tongs parallel rotation systems of forging manipulator can produce error of system model. In oder to further improve the load balance control performance with start-stop quickly, the approximate internal model based neural network is updated by the experiments. Then the approximate internal model-based neural control (AIMNC) and the torque error compensation feedback control are employed for the load balance control experiment of forging manipulators. Through the simulation analysis, the control stratagem is validation for the load balance control.
引文
[1]王凤喜.锻造操作机技术近期的发展[J].重型机械,1994(006):12-17.
    [2]王凤喜.锻造液压机与操作机的发展[J].锻压机械,1998,33(006):3-5.
    [3]余发国,高峰,郭为忠,等.锻造操作机的回顾与展望[C]:中国机构与机器科学应用国际会议论文集,上海,2007.
    [4]李佶.锻造操作机的发展近况[J].锻造装备与制造技术,1978,3:17-22.
    [5]万胜狄,王运赣,沈元彬,等.锻造机械化与自动化[M].北京:机械工业出版社,1983.
    [6]陈锦江,刘坤涛.一种锻造操作机的钳头夹紧旋转机构[J].机械工程师,1997(005):20.
    [7]赵绪平,王驰,卢崇劭,等.基于DCG200锻造操作机的研制[J].科技成果纵横,2010(001):57-59.
    [8]Krantz T L. A Method to Analyze and Optimize the Load Sharing of Split Path Transmissions. [RJ.DTIC Document,1996.
    [9]Kahraman A. Load sharing characteristics of planetary transmissions [J]. Mechanism and Machine Theory,1994,29(8):1151-1165.
    [10]Kahraman A. Static load sharing characteristics of transmission planetary gear sets:Model and experiment[J].1999.
    [11]Singh A. Application of a system level model to study the planetary load sharing behavior[J]. Journal of Mechanical Design,2005,127:469.
    [12]Singh A, Kahraman A, Ligata H. Internal gear strains and load sharing in planetary transmissions:model and experiments[J]. Journal of Mechanical Design,2008,130:72602.
    [13]Ligata H, Kahraman A, Singh A. An experimental study of the influence of manufacturing errors on the planetary gear stresses and planet load sharing[J]. Journal of Mechanical Design,2008,130:41701.
    [14]李杰,王乐勤.国内基于功率分支技术齿轮箱的发展现状[J].机械传动,2008,31(4):106-110.
    [15]肖铁英,陆卫杰.行星齿轮机构均载系数的计算方法[J].东北重型机械学院学报,1992,16(004):290-295.
    [16]邵晓荣.齿轮制造及安装误差对行星齿轮均载系数的影响[J].东北重型机械学院学报,1994,4.
    [17]陆俊华,李斌,朱如鹏.行星齿轮传动静力学均载分析[J].机械科学与技术, 2005,24(6):702-704.
    [18]陆俊华,朱如鹏,靳广虎.行星传动动态均载特性分析[J].机械工程学报,2009,45(005):85-90.
    [19]陆俊华,朱如鹏,靳广虎.基于分流均衡要求的行星传动基本构件浮动量分析[J].中南大学学报:自然科学版,2008,39(1):143-148.
    [20]袁茹,王三民.行星齿轮传动的功率分流动态均衡优化设计[J].航空动力学报,2000,15(004):410-412.
    [21]袁擎宇.星型齿轮传动系统均载分析方法的研究[]D].南京:南京航空航天大学机电学院,2004.
    [22]鲍和云,朱如鹏.基于均载要求的星型齿轮传动系统误差的静力学设计研究[C]:中国航空学会第十二届机械动力传输学术研讨会,2005.
    [23]孙红.两级星型斜齿轮传动系统均载特性研究[D].大连理工大学,2010.
    [24]鲍和云.两级星型齿轮传动系统分流特性及动力学研究[D].南京航空航天大学,2006.
    [25]孙智民.功率分流齿轮系统非线性动力学研究[D].西安:西北工业大学博士学位论文,2001.
    [26]赵海斌.1450mm可逆冷轧轧辊负荷平衡控制系统的研究与应用[D].河北工业大学,2006.
    [27]朱德春.抓斗起重机大车行走控制系统研究[D].中南大学,2006.
    [28]许勇.重载夹持装置液压同步驱动系统的建模及内模控制研究[D].中南大学,2009.
    [29]胡香平.锻造操作机夹钳旋转机构的位置与负载均衡控制[D].中南大学,2011.
    [30]刘振.重载大惯性液压驱动系统的神经网络近似内模控制[D].中南大学,2010.
    [31]李许岗.重载锻造操作机夹钳旋转系统的模糊控制研究[D].中南大学,2012.
    [32]Gui-xian L, Guang-bin Y, Jian-min W, et al. Method of multiple scales in solving nonlinear dynamic differential equations of gear systems[J]. Journal of Jilin University (Engineering and Technology Edition),2008,1.
    [33]Liu G, Parker R G. Nonlinear dynamics of idler gear systems[J]. Nonlinear Dynamics,2008,53(4):345-367.
    [34]Li S. Nonlinear Simulation of Gear Transmission System[C],2009. IEEE.
    [35]Walha L, Fakhfakh T, Haddar M. Nonlinear dynamics of a two-stage gear system with mesh stiffness fluctuation, bearing flexibility and backlash[J]. Mechanism and Machine Theory,2009,44(5):1058-1069.
    [36]Meagher J, Wu X, Kong D, et al. A comparison of gear mesh stiffness modeling strategies[J]. Structural Dynamics, Volume 3,2011:255-263.
    [37]Han X, Ge M, Bai Y, et al. The effect of backlash nonlinear on resonance frequency of electric actuator transmission system[C],2011. IEEE.
    [38]Moradi H, Salarieh H. Analysis of nonlinear oscillations in spur gear pairs with approximated modelling of backlash nonlinearity[J]. Mechanism and Machine Theory,2012,51:14-31.
    [39]Kolivand M, Kahraman A. An Ease-Off Based Method for Loaded Tooth Contact Analysis of Hypoid Gears Having Local and Global Surface Deviations[J]. Journal of Mechanical Design,2010,132:71004.
    [40]J. S. Chen F L L A. Computerized Simulation of Meshing and Contact of Loaded Gear Drives[C]:Proc. Inter Gearing'94,1994.
    [41]Wu S H, Tsai S J. Contact stress analysis of skew conical involute gear drives in approximate line contact[J]. Mechanism and Machine Theory,2009,44(9): 1658-1676.
    [42]Chen L, Xie P. Numerical analysis and experimental research of deformation of gear shaft in laser cladding on teeth surfaces[C],2010. IEEE.
    [43]Barlam D, Zahavi E. The reliability of solutions in contact problems[J]. Computers & structures,1999,70(1):35-45.
    [44]刘辉,吴昌林.支承系统变形对斜齿轮承载特性的影响[J].华中理工大学学报,1998,26(011):72-74.
    [45]Liu G, Parker R G. Impact of tooth friction and its bending effect on gear dynamics[J]. Journal of Sound and Vibration,2009,320(4-5):1039-1063.
    [46]Wang P Y, Fan S C, Huang Z G. Spiral Bevel Gear Dynamic Contact and Tooth Impact Analysis[J]. Journal of Mechanical Design,2011,133:84501.
    [47]姚文席,魏任之.渐开线直齿轮的啮合冲击研究[J].振动与冲击,1990,9(004):57-61.
    [48]姚文席,魏任之.渐开线直齿轮的啮合冲击响应[J].振动,测试与诊断,1992,2:27-30.
    [49]王玉芳,童忠钫.齿轮的误差对啮合冲击的影响[J].振动与冲击,1994,13(002):14-19.
    [50]唐进元,肖利民.齿轮齿顶修缘时啮合冲击速度的计算[J].长沙铁道学院学报,1995,13(001):26-30.
    [51]唐进元,金培.基于啮合冲击的修缘齿轮设计[J].工程设计学报,1998(001):38-40.
    [52]李润方,陈兵奎.冲击/动力接触问题有限混合方法及其应用[J].非线性动力 学学报,1997,4(3):236-242.
    [53]林腾蛟,李润方.齿轮传动三维间隙非线性冲击—动力接触特性数值仿真[J].机械工程学报,2000,36(006):55-58.
    [54]林腾蛟,李润方,郭晓东,等.准双曲面齿轮三维间隙非线性冲击特性分析[J].中国机械工程,2003,14(009):727-730.
    [55]Bajer A, Demkowicz L. Dynamic contact/impact problems, energy conservation, and planetary gear trains[J]. Computer methods in applied mechanics and engineering,2002,191(37-38):4159-4191.
    [56]谢海东,周照耀,夏伟,等.斜齿轮传动中啮合冲击数值研究[J].机械传动,2005,29(003):6-9.
    [57]刘德贵.动力学系统数字仿真算法[M].北京:科学出版社,2000.
    [58]Spalding D B. A novel finite difference formulation for differential expressions involving both first and second derivatives[J]. International Journal for Numerical Methods in Engineering,1972,4(4):551-559.
    [59]Bathe K J, Wilson E L. Solution methods for eigenvalue problems in structural mechanics[J]. International Journal for Numerical Methods in Engineering, 1973,6(2):213-226.
    [60]Newmark N M. A method of computation for structural dynamics[J]. Journal of the Engineering Mechanics Division,1959,85(7):67-94.
    [61]Park K C. An improved stiffly stable method for direct integration of nonlinear structural dynamic equations[J]. Journal of Applied Mechanics,1975,42:464.
    [62]Kanwal R P, Liu K C. A Taylor expansion approach for solving integral equations[J]. International Journal of Mathematical Education in Science and Technology,1989,20(3):411-414.
    [63]Butcher J C. The numerical analysis of ordinary differential equations: Runge-Kutta and general linear methods[M]. Wiley-Interscience,1987.
    [64]Norsett S. An A-stable modification of the Adams-Bashforth methods[C],1969. Springer.
    [65]Brown R R, Riley J D, Bennett M M. Stability properties of Adams-Moulton type methods[J]. Math. Comp,1965,19:90-96.
    [66]华卫江.柔性机器人碰撞动力学建模及其仿真[D].南京:南京理工大学,2005.
    [67]赵玉立.柔性撞击系统的建模、精细算法及控制研究[D].西北工业大学,2003.
    [68]陈萌.基于虚拟样机的接触碰撞动力学仿真研究[D].武汉:华中科技大学,2003.
    [69]Laursen T A, Oancea V G. Automation and assessment of augmented lagrangian algorithms for frictional contact problems [J]. Journal of applied mechanics, 1994,61:956.
    [70]Wosle M, Pfeiffer F. Dynamics of multibody systems containing dependent unilateral constraints with friction[J]. Journal of Vibration and Control, 1996,2(2):161.
    [71]Watson L T. Solving the nonlinear complementarity problem by a homotopy method[J]. SIAM Journal on Control and Optimization,1979,17:36.
    [72]Meitinger T, Pfeiffer F. Dynamic simulation of assembly processes[C],1995. IEEE.
    [73]Baraff D. Interactive simulation of solid rigid bodies[J]. Computer Graphics and Applications, IEEE,1995,15(3):63-75.
    [74]Li G Y, Tan M J, Liew K M. Springback analysis for sheet forming processes by explicit finite element method in conjunction with the orthogonal regression analysis[J]. International journal of solids and structures,1999,36(30):4653-4668.
    [75]Shimizu T, Sano T. An application of a penalty method contact and friction algorithm to a 3-dimensional tool surface expressed by a B-spline patch[J]. Journal of materials processing technology,1995,48(1):207-213.
    [76]Farahani K, Mofid M, Vafai A. A solution method for general contact-impact problems[J]. Computer methods in applied mechanics and engineering,2000,187 (1-2):69-77.
    [77]Garcia C E, Morari M. Internal model control. A unifying review and some new results[J]. Industrial & Engineering Chemistry Process Design and Development, 1982,21(2):308-323.
    [78]Garcia C E, Morari M. Internal model control.2. Design procedure for multivariable systems[J]. Industrial & Engineering Chemistry Process Design and Development,1985,24(2):472-484.
    [79]Economou C G, Morari M, Palsson B O. Internal model control:Extension to nonlinear system[J]. Industrial & Engineering Chemistry Process Design and Development,1986,25(2):403-411.
    [80]Zafiriou E, Morari M. Internal model control:robust digital controller synthesis for multivariable open-loop stable or unstable processes[J]. International Journal of control,1991,54(3):665-704.
    [81]张乃尧,人工智能,阎平凡,等.神经网络与模糊控制[M].清华大学出版社,1998.
    [82]Narendra K S, Parthasarathy K. Identification and control of dynamical systems using neural networks[J]. IEEE Transactions on Neural Networks,1990,1(1): 4-27.
    [83]Hunt K J, Sbarbaro D, Zbikowski R, et al. Neural networks for control systems-a survey[J]. Automatica,1992,28(6):1083-1112.
    [84]Adetona O, Garcia E, Keel L H. A new method for the control of discrete nonlinear dynamic systems using neural networks[J]. IEEE Transactions on Neural Networks.2000,11(1):102-112.
    [85]Deng H, Li H X. On the new method for the control of discrete nonlinear dynamic systems using neural networks [J]. IEEE Transactions on Neural Networks,2006,17(2):526-529.
    [86]Ge S S, Wang C. Adaptive neural control of uncertain MIMO nonlinear systems[J]. IEEE Transactions on Neural Networks,2004,15(3):674-692.
    [87]Deng H, Li H X. A novel neural approximate inverse control for unknown nonlinear discrete dynamical systems[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics,2005,35(1):115-123.
    [88]Hornik K, Stinchcombe M, White H. Multilayer feedforward networks are universal approximators[J]. Neural networks,1989,2(5):359-366.
    [89]Hornik K, Stinchcombe M, White H. Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks[J]. Neural networks,1990,3(5):551-560.
    [90]Bhat N, McAvoy T J. Use of neural nets for dynamic modeling and control of chemical process systems[J]. Computers & Chemical Engineering,1990,14(4): 573-582.
    [91]Hunt K J, Sbarbaro D. Neural networks for nonlinear internal model control[C], 1991. IET.
    [92]Pottmann M, Peter Jorgl H. Radial basis function networks for internal model control[J]. Applied mathematics and computation,1995,70(2-3):283-298.
    [93]Zhang Z J, Wang X M. Internal model control based on dynamic fuzzy neural network[C],2007. IEEE.
    [94]Xie W F, Rad A B. Fuzzy adaptive internal model control[J]. IEEE Transactions on Industrial Electronics,2000,47(1):193-202.
    [95]Ho D W C, Ma Z. Multivariable internal model adaptive decoupling controller with neural network for nonlinear plants[C],1998. IEEE.
    [96]Zhao Z, Liu Z, Wen X, et al. A new multi-model internal model control scheme based on neural network[C],2008. IEEE.
    [97]Li M, Zhou Z, Shi L. The neural network decoupling control based on the internal model control[C],2004. IEEE.
    [98]Li H X, Deng H. An approximate internal model-based neural control for unknown nonlinear discrete processes[J]. IEEE Transactions on Neural Networks, 2006,17(3):659-670.
    [99]Deng H, Xu Z, Li H X. A novel neural internal model control for multi-input multi-output nonlinear discrete-time processes[J]. Journal of Process Control, 2009,19(8):1392-1400.
    [100]Rivals I, Personnaz L. Nonlinear internal model control using neural networks: application to processes with delay and design issues[J]. IEEE Transactions on Neural Networks,2000,11(1):80-90.
    [101]Yang P, Peng D G, Yang Y H, et al. Neural networks internal model control for water level of boiler drum in power station[C],2004. IEEE.
    [102]Yu C, Zhu J, Sun Z. Nonlinear adaptive internal model control using neural networks for tilt rotor aircraft platform[C],2005. IEEE.
    [103]Awais M M. Application of internal model control methods to industrial combustion[J]. Applied Soft Computing,2005,5(2):223-233.
    [104]Colin G, Chamaillard Y, Bloch G, et al. Neural control of fast nonlinear systems —application to a turbocharged SI engine With VCT[J]. Neural Networks, IEEE Transactions on,2007,18(4):1101-1114.
    [105]Mujtaba I M, Aziz N, Hussain M A. Neural network based modelling and control in batch reactor[J]. Chemical Engineering Research and Design,2006,84(8): 635-644.
    [106]Yuan X, Wang Y, Wu L. SVM-based approximate model control for electronic throttle valve[J]. IEEE Transactions on Vehicular Technology,2008,57(5): 2747-2756.
    [107]Li H, Zhang Y, Wu X. Nonlinear internal model control using neural networks for gas collectors of coke oven[C],2009. IEEE.
    [108]Deuflhard P, Krause R, Ertel S. A contact-stabilized Newmark method for dynamical contact problems[J]. International Journal for Numerical Methods in Engineering,2008,73(9):1274-1290.
    [109]江见鲸,贺小岗.工程结构计算机仿真分析[M].清华大学出版社,1996.
    [110]Chopra A K. Dynamics of structures:theory and applications to earthquake engineering[M]. Prentice Hall Englewood Cliffs, New Jersey,1995.
    [111]Clough R W, Penzien J. Dynamics of structures[M]. Computers and Structures, 2010.
    [112]梅凤翔.关于达朗贝尔原理——理论力学札记之六[J].力学与实践,2009(005):61-63.
    [113]Nakamura Y, Ghodoussi M. A computational scheme of closed link robot dynamics derived by D'Alembert Principle[C],1988. IEEE.
    [114]Hughes T J R, Taylor R L, Sackman J L, et al. A finite element method for a class of contact-impact problems[J]. Computer Methods in Applied Mechanics and Engineering,1976,8(3):249-276.
    [115]Chang S Y. A technique for overcoming load discontinuity in using Newmark method[J]. Journal of sound and vibration,2007,304(3-5):556-569.
    [116]Lin T, Ou H, Li R. A finite element method for 3D static and dynamic contact/impact analysis of gear drives[J]. Computer methods in applied mechanics and engineering,2007,196(9-12):1716-1728.
    [117]Lankarani H M, Nikravesh P E. A contact force model with hysteresis damping for impact analysis of multibody systems[J]. Journal of Mechanical Design, 1990,112:369.
    [118]赵经文,王宏钰.结构有限元分析[M].科学出版社,2001.
    [119]张洪武.有限元分析与CAE技术基础[M].2003.
    [120]张洪信,赵清海.ANSYS有限元分析完全自学手册[M].机械工业出版社,2008.
    [121]林腾蛟,李应超,杨妍妮.准双曲面齿轮箱响应分析及动力优化[J].振动与冲击,2011,30(3):145-149.
    [122]李昌,韩兴.基于显式动力学的齿轮箱动态有限元数字仿真[J].兵工学报,2009(007):978-983.
    [123]Li Q, Wu S Q, Yan H B. Dynamic Contact Emulate Analysis of Logarithmic Spiral Bevel Gear with ANSYS/LS-DYNA[J]. Applied Mechanics and Materials, 2011,86:531-534.
    [124]Chen S, Tang J, Liu X. The Dynamic Transmission Error and the Tooth Meshing Force Based on ANSYS/LS-DYNA[C],2007. ASME.
    [125]Jao Huang K, Wei Su H. Approaches to parametric element constructions and dynamic analyses of spur/helical gears including modifications and undercutting[J]. Finite Elements in Analysis and Design,2010,46(12):1106-1113.
    [126]柯显信.仿人形机器人双足动态步行研究[M].上海大学出版社,2009.
    [127]魏承,赵阳,田浩.空间机器人捕获漂浮目标的抓取控制[J].航空学报,2010,31(3):632.
    [128]陈志煌,陈力.闭链双臂空间机器人动力学建模及载荷基于滑模补偿的力/位置混合控制[J].工程力学,2011,28(5):226-232.
    [129]Bicchi A, Kumar V. Robotic grasping and contact:A review[C],2000. Ieee.
    [130]Diolaiti N, Melchiorri C, Stramigioli S. Contact impedance estimation for robotic systems[J]. Robotics, IEEE Transactions on,2005,21(5):925-935.
    [131]Li Y, Kao I. A review of modeling of soft-contact fingers and stiffness control for dextrous manipulation in robotics[C],2001. IEEE.
    [132]Ciocarlie M, Lackner C, Allen P. Soft finger model with adaptive contact geometry for grasping and manipulation tasks[C],2007. IEEE.
    [133]Brach R M. Formulation of rigid body impact problems using generalized coefficients[J]. International journal of engineering science,1998,36(1):61-71.
    [134]Hunt K H, Crossley F. Coefficient of restitution interpreted as damping in vibroimpact[J]. Journal of Applied Mechanics,1975,42:440.
    [135]Gilardi G, Sharf I. Literature survey of contact dynamics modelling[J]. Mechanism and Machine Theory,2002,37(10):1213-1239.
    [136]Marhefka D W, Orin D E. A compliant contact model with nonlinear damping for simulation of robotic systems[J]. Systems, Man and Cybernetics, Part A:IEEE Transactions on Systems and Humans,1999,29(6):566-572.
    [137]Erickson D, Weber M, Sharf I. Contact stiffness and damping estimation for robotic systems[J]. The International Journal of Robotics Research,2003,22(1): 41.
    [138]Zhang Y, Sharf I. Force reconstruction for low velocity impacts using force and acceleration measurements[J]. Journal of Vibration and Control,2011,17(3): 407-420.
    [139]Sun T, Hu H Y. Nonlinear dynamics of a planetary gear system with multiple clearances[J]. Mechanism and machine theory,2003,38(12):1371-1390.
    [140]李润方,力学,王建军,等.齿轮系统动力学:振动,冲击,噪声[M].科学出版社,1997.
    [141]Ma O. Contact dynamics modelling for the simulation of the space station manipulators handling payloads[C],1995. IEEE.
    [142]Voros J. Modeling and parameter identification of systems with multisegment piecewise-linear characteristics[J]. IEEE Transactions on Automatic Control, 2002,47(1):184-188.
    [143]Isermann R, Munchhof M. Parameter Estimation for Non-Linear Systems[J]. Identification of Dynamic Systems,2011:453-468.
    [144]Ding F, Liu X P, Liu G. Identification methods for Hammerstein nonlinear systems[J]. Digital Signal Processing,2011,21(2):215-238.
    [145]孔晓武,魏建华.大流量插装式伺服阀数学模型及试验验证[J].浙江大学学报:工学版,2007,41(10):1759-1762.
    [146]易达云,邓华,夏毅敏,等.高速大流量插装式比例节流阀的建模与验证[J].现代制造工程,2009(006):38-41.
    [147]Garagic D, Srinivasan K. Application of nonlinear adaptive control techniques to an electrohydraulic velocity servomechanism[C],2002. IEEE.
    [148]Karpenko M. Fault tllerant control design for an electrohydraulic actuator with application to positioning of aircraft flight control surfacesfD]. Manitoba: University of Manitoba,2002.
    [149]Lee S Y, Cho H S. A fuzzy controller for an electro-hydraulic fin actuator using phase plane method[J]. Control Engineering Practice,2003,11(6):697-708.
    [150]Lee J K. The Design of a Real-Time Simulator on the Hydraulic Servo System[J]. International Journal of the Korean Society of Precision Engineering, 2003,4(1):9-14.
    [151]Keles O, Ercan Y. Theoretical and experimental investigation of a pulse-width modulated digital hydraulic position control system[J]. Control Engineering Practice,2002,10(6):645-654.
    [152]Kim S J. An Investigation into the PID Control for the Electro-Hydraulic Servo System of Skin Pass Mill[J]. International Journal of the Korean Society of Precision Engineering,2001,2(4):47-53.
    [153]许益民.电液比例控制系统分析与设计[M].机械工业出版社,2005.
    [154]李洪人.液压控制系统[M].国防工业出版社,1981.
    [155]宋鸿尧,丁忠尧,段.液压阀设计与计算[M].机械工业出版社,1982.
    [156]Pommier V, Sabatier J, Lanusse P, et al. Crone control of a nonlinear hydraulic actuator[J]. Control Engineering Practice,2002,10(4):391-402.
    [157]熊美华.电液比例阀控制马达速度控制系统分析与仿真研究[D].西安:长安大学,2004.
    [158]Sukumaran J, Ando M, De Baets P, et al. Modelling gear contact with twin-disc setup[J]. Tribology International,2011.
    [159]Shuting L. Gear contact model and loaded tooth contact analysis of a three-dimensional, thin-rimmed gear[J]. Journal of Mechanical Design,2002, 124:511.
    [160]易达云.重载夹持装置双马达消隙传动系统的建模与控制[D].中南大学,2009.
    [161]朱孝录.机械传动设计手册[M].电子工业出版社,2007.
    [162]邓华,李许岗,段小刚.重载操作机夹钳角位移控制策略研究[J].控制工程,2013,20(002):235-238.
    [163]Funahashi K I. On the approximate realization of continuous mappings by neural networks[J]. Neural networks,1989,2(3):183-192.
    [164]Kermani B G, Schiffinan S S, Nagle H T. Performance of the Levenberg-Marquardt neural network training method in electronic nose applications[J]. Sensors and Actuators B:Chemical,2005,110(1):13-22.
    [165]Hagan M T, Menhaj M B. Training feedforward networks with the Marquardt algorithm[J]. IEEE Transactions on Neural Networks,1994,5(6):989-993.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700