新型无推力空间钢网拱桥理论分析与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
桥梁创新是桥梁发展的灵魂,它展现了设计者的创造能力和探索精神;近代桥梁的创新是桥梁“因地制宜”、“巧夺天工”的最高境界,是力学和美学的最佳结合和完美统一;当代桥梁的创新顺应城市发展和经济繁荣的需要,使得桥梁成为当地的标志性建筑;天津海河桥梁的创新,是近代桥梁创新的发展,它打破了桥梁传统理念上美学和力学之间的固有平衡,使得桥梁成为当地人文社会的一种象征和灵魂。
     本文以安阳桥为依托,研究了软土地基上空间大跨度钢网拱桥水平推力的问题,空间钢网拱桥桥梁结构的整体刚度和拱梁连接方式、拱梁刚度匹配的问题,空间钢网拱桥拱脚单点平动支撑的整体稳定。
     研究了双轴对称空间钢网主拱的结构、节点构造、刚度突变的处理、施工工艺,超大吨位铸钢的设计、受力性能、加工施工工艺,大吨位拉杆的布置和设计,空间钢网拱桥复杂关键节点的受力分析。
     安阳桥主拱为14条小拱组成的空间钢网结构,具有桥梁建筑艺术的独创性。与常规概念的主拱有所不同,安阳桥主拱结构复杂,整体刚度弱,交汇节点多,刚度突变处理难。在主拱的设计研究中,不仅要考虑结构刚度、受力需求、施工工艺、运输安装,更要考虑主拱的建筑艺术独创性。
     研究了空间钢网拱桥的特征值屈曲稳定和非线性屈曲稳定。在非线性屈曲研究中,以拱顶面外偏移0.22m(L/1000)的一阶屈曲模态作为安装误差的代表值,以十分之一自重产生的应力作为残余应力的代表值,研究了典型荷载工况的极值点失稳稳定系数和变形形状。
     研究了空间钢网拱桥的动力特性,空间钢网拱桥在反应谱和时程波下的受力性能。在安阳桥减隔震体系布置上,采用了双曲面球形减隔震支座和阻尼器,减隔震支座能有效降低下部结构的地震反应,阻尼器能有效降低主梁的纵向位移。
     研究了空间钢网拱桥的抗风性能问题。虽然借助计算软件可以准确地计算主拱和主梁三分力系数和结构周围的流场压力,但对于安阳桥这样如此复杂的桥梁结构,需要以主拱节段模型试验、主梁节段模型试验和全桥气动弹性模型试验,来评价桥梁结构的动风稳定性。
Bridge innovation is the soul of the bridge development,which shows the designer'screativity and the spirit of exploration. The modern innovative bridge is the highest levelsof’according to local conditions” and “wonderful artical excelling nature”. It is the bestcombination and perfect unity of mechanics and aesthetics. Contemporary bridgeinnovation adapts to urban development and economic prosperity,and it makes bridge to bea local landmark. As an example, The innovation of Tianjin Haihe River bridge is thedevelopment of modern bridge innovation. It breaks the inherent balance between thetraditional bridge aesthetics and mechanics, and makes the bridge to be a symbol and soulof the local cultural and social.
     This paper relies on Anyang Bridge. The horizontal thrust of the spacial large spansteel mesh arch bridge on soft ground, the overall stiffness of the special steel mesh archbridge structure and the connections between arch and beam, the stiffness matching of archand beam, and overall stability of the bridge with single point of translational support arestudied.
     The concerns are also including the structure of the biaxial symmetry spacial meshmain arch, node formation, processing stiffness mutation, construction techniques, designand layout of large tonnage trolley, and complex stress analysis of the key nodes.
     Main arch of Anyang Bridge is spacial stencil structure consisting of14small arch,which has bridge construction artistic originality. The main arch is different from theconventional concept. Anyang Bridge structure is complex, overall stiffness is weak, andmore intersection nodes are included. In the design of the main arch, the structural stiffness,force requirements, construction technology, transportation and installation are not onlyconsidered, but also the construction of the main arch artistic originality.
     In this thesis, eigenvalue buckling and nonlinear buckling of the bridge are conducted.In the study of nonlinear buckling, first order buckling mode with the dome surface outsideoffset0.22m (L/1000) is treated as a representative value of the installation error. Stressgenerated by the one tenth of weight is treated as a representative value of the residualstress. Also it studies the stability factor at the extreme points and the deformed shape ofthe typical load case instability.
     It studies the dynamic characteristics of the bridge, mechanical performance of thespacial steel mesh arch bridge with response spectrum and time-histories wave. In thesystem of Anyang bridge earthquake-reduction and seismic-isolation, the hyperboloidspherical less isolation bearings and dampers are brought in. Isolation bearings can effectively reduce the seismic response of the lower part of the structure, and the dampercan effectively reduce the longitudinal displacement of the main beam.
     It studies wind resistance of the spacial steel mesh arch bridge. Although aerodynamiccoefficients of the main arch and the main beam and the pressure of the structure of theflow field around can be accurately calculated, It needs to the evaluate dynamic windstability of the bridge structure with the main arch segment model test, the main beamsegment model tests and full-bridge aeroelastic model test, due to the specificity of AnyangBridge.
引文
[1]马丁·皮尔斯,理查德·乔布森.桥梁建筑.大连理工大学出版社,2003.
    [2]王慧萍.浅谈城市内河桥梁景观的整治.第十七届全国桥梁学术会议论文集,2006.
    [3]布赖恩·劳森.设计思维.中国水利水电出版社,2007.
    [4]林同炎著,高立人译.结构理念和体系.中国建筑工业出版社,1999.
    [5]滕家俊,沈平.现代桥梁建筑设计.人民交通出版社,2008.
    [6]王应良,高宗余.欧美桥梁设计思想.中国铁道出版社,2008.
    [7]尹德兰.邓文中与桥梁.清华大学出版社,2006.
    [8]王小兰.建筑文化解读丛书-桥.中国人民大学出版社,2007.
    [9]世界建筑杂志.
    [10]陈艾荣,盛勇,钱锋.桥梁造型.人民交通出版社,2005。
    [11]王慧平,浅谈城市内河桥梁景观的整治。
    [12]项海帆,等.桥梁理念设计.北京:人民交通出版社,2011
    [13]李国豪.桥梁与结构理论研究[M].上海科技文献出版社,1983.
    [14]中国建筑设计研究院,亚太建设科技信息研究院.国内外地震灾害和灾后重建经验与对策研究[R].2009.3
    [15]范立础,卓卫东.桥梁延性抗震设计(第一版).北京:人民交通出版社,2001.
    [16]张艳玲.中国地震台网:全球每年平均发生18次7级以上地震[EB/OL].
    [17]刘建新,赵国辉.“5·12”汶川地震典型桥梁震害分析[J].建筑科学与工程学报,2009,26(2),92-97.
    [18]中国地震信息网.唐山地震综述[EB/OL].
    [19]程进,江见鲸,肖汝城等.不同加载方式对大跨度钢拱桥极限承载力的影响.公路交通科技,2003,20(1):67-70
    [20]陈宝春.拱桥技术成就与展望[C].第二届全国公路科技创新高层论坛论文集.北京:朝阳出版社,2004:121-125
    [21]贺栓海,何福照,张翔.拱桥的几何非线性分析——挠度理论.中国公路学报,1991-3
    [22]程进,江见鲸,肖汝诚等.静风荷载作用下大跨度钢拱桥极限承载力分析.计算力学学报.2003,20(4).417-422
    [23]徐大光.钢箱拱肋局部稳定的分析方法.桥梁.2009年5月,28-31
    [24]刘军.系杆拱桥力学特性与稳定性分析:(硕士学位论文).大连:大连理工大学,2009Joonam P,
    [25]John L B, James M L, Joseph P W, et al. Seismic evaluation of vulnerable highway bridges withwall piers on emergency routes in southern Illinois[C]. Proceedings of the13th World Conferenceon Earthquake Engineering, CD-ROM, Vancouver, Canada, No.3286,2004.
    [26]Seiichiro F, Harumi Y. Seismic performance level of buildings considering risk financing[C].Proceedings of the13th World Conference on Earthquake Engineering, Vancouver, Canada,CD-ROM, No.41,2004.
    [27]Pierre M, et al. The European RISK-UE project: An advanced approach to earthquake riskscenarios[C]. Proceedings of the13th World Conference on Earthquake Engineering, Vancouver,Canada, CD-ROM, No.3329,2004.
    [28]Alok K, Martin B, Silvil T. Vulnerability parameters for probability risk modeling-lessons learnedfrom earthquakes of last decade[C]. Proceedings of13th World Conference on EarthquakeEngineering, Vancouver, Canada, CD-ROM, No.217,2004.
    [29]Cornell C A. Engineering siesmic risk analysis[J]. Bulleting of the Seismological Society ofAmerica,1968,58(6):1583-1606.
    [30]Shome N, Cornell C A, Bazzurro P, et al. Earthquakes, records, and nonlinear responses[J].Earthquake Spectra,1998,14(3):467-500.
    [31]Shome N, Cornell C A. Probabilistic seismic demand analysis of nonlinear structures[R]. Stanford,California: Stanford University,1999.
    [32]Cornell C A, Krawinkle H. Progress and challenges in seismic performance assessment[J]. PEERCenter News,2000,3(2):1-4.
    [33]Deierlein G G. Overview of a comprehensive framework for earthquake performance evaluation[C].Proceedings of an Internatioal Workshop on performance-Based Seismic Design Concepts andImplementation, Bled, Slovenia,2004:15-26.
    [34]Moehle J, Deierlein G G. A framcwork methodology for performance-based earthquake[C].Proceedings of the13th World Conference on Earthquake Engineering, Vancouver, Canada,2004,Paper No.679.
    [35]Carballo J E, Cornell C A. Probabilistic seismic demand analysis: spectrum matching and design[R].Stanford, California: Stanford University,2000, Report No.RMS-41.
    [36]Shome N, Cornell C A. Structural seismic demand analysis: consideration of “collapse”[C].Proceedings of the8th ACSE Speciality Conference on Pbrobabilistic Mechanics and StructuralReliability,2000.
    [37]Luco N. Probabilistic seismic demand analysis, SMRF connection fractures, and near-sourceeffects[D]. Stanford, California: Stanford University,2002.
    [38]Luco N, Cornell C A. Structure-specific scalar intensity measures for near-source and ordinaryearthquake ground motions[J]. Earthquake Spectra,2007,23(2):357-392.
    [39]Tothong P, Luco N. Probabilistic seismic demand analysis using advanced ground motion intensitymeasures[J]. Earthquake Engineering and Structural Dynamics,2007,36(13):1837-1860.
    [40]Bazzurro P. Probabilistic seismic demand analysis[D]. Stanford, California: Stanford University,1998.
    [41]Luco N, Mai P M, Cornell C A, et al. Probabilistic seismic demand analysis at a near-fault site usingground motion simulations based on a stochastic-kinematic earthquake source model[C].Proceedings of the7th US National Conference on Earthquake engineering, Boston,2002.
    [42]Tothong P, Cornell C A. Application of nonlinear static analysis to probabilistic seismic demandanalysis[C]. Proceeding of the8th U.S. National Conference on Earthaquake Engineering,2006,San Francisco, California, USA, Paper No.505.
    [43]Baker J W, Cornell C A. A verctor-valued ground mtion intensity measure consisting of sepctralacceleration and epsilon[J]. Earthquake Engineering and Structural Dynamics,2005,34(10):1193-1217.
    [44]Development of a two-parameter seismic nitensity measure and probabilistic assessmentprocedure[C]. Proceeding of the2th U.S.-Japan Workshop on Performance-Based EarthquakeEngineering for Reiforced Building Structures, Sapporo, Japan,2000.
    [45]Medina R A, Krawinkler H. Seismic demand for nondeteriorating frame structures and theirdependence on ground motions[R]. John A. Blume Earthquake Engineering Certer Report No.144.Stanford University: Stanford, CA,2003.
    [46]Zareian F, Krawinkler H. Assessment of probability of collapse and design for collapse safety[J].Earthquake Engineering and Structural Dynamics,2007,36(13):1901-1914.
    [47]Krawinkler H, Medina R, Alavi B. Seismic drift and ductility demands and their dependence onground motions[J]. Engineering Structures,2003,25(5):637-653.
    [48]Aalani H, Miranda E. Probability-based seismic response analysis[J]. Engineering Structures,2005,27(8):1151-1163.
    [49]Mackie K, Stojadinavic B. Seismic demand for performance-based design of bridges[R]. College ofEngineering University of California, Berkeley. PEER Report,2003.
    [50]Mackie K, Stojadinavic B. Optimal probabilistic seismic demand models for typical highwayoverpass bridges[C]. Proceedings of the12th European Conference on Earthquake Engineering,Elsevier Science Ltd,2002.
    [51]Mackie K, Stojadinovic B. Relation between probabilistic seismic demand analysis and incrementaldynamic analysis[C]. Proceedings of the7th US National Conference on Earthquake engineering,Boston,2002.
    [52]Mackie K, Stojadinovic B. Bridge abutment model sensitivity for probabilistic seismic demandevalution[C]. Proceeding of the3th U.S. National Seismic Conference and Workshop on Bridgesand Highways,2002, Portland, Oregon, USA
    [53]Zhang Y Y. Probabilistic structural seismic performance assessment methodology and application toan actual bridge-foundation-ground system[D]. San Diego: University of California,2006.
    [54]Gardont P, Mosalam K M, Kiureghian A D.Probabilistic seismic demand models and fragilityestimates for RC bridges[J]. Journal of Earthquake Engineering,2003,7(1):79-106.
    [55]Taftali B. Probabilistic seismic demand assessment of steel frames with shape memory alloyconnections[D]. Georgia Institute of Technology,2007.
    [56]Rigato A B, Medina R A. Influence of angle of incidence on seismic demands for inelasticsingle-storey structures subjected to bi-directional ground motions[J]. Engineering Structures,2007,29(10):2593-2601.
    [57]Stoica M, Medina R A, McCuen R H. Improved probabilistic quantification of drift demands forseismic evaluation[J],2007,29(2):132-145.
    [58]Zhong J Q, Gardoni P, Rosowsky D, et al. Probabilistic seismic demand models and fragilityestimates for reinforced concrete bridges with two-column bents[J]. Journal of EngineeringMechanics,2008,134(6):495-504.
    [59]Ramamoorthty S K, Gardoni P, Bracci J M. Probabilistic demand models and fragility curves forreinforced concrete frames[J]. Journal of Structural Engineering,2006,132(10):1563-1572.
    [60]Barroso L R, Winterstein S. Probabilistic seismic demand analysis of controlled steelmoment-resisting frame structures[J]. Earthquake Engineering and Structural Dynamics,2002,31(12):2049-2066.
    [61]Padgett J E, Nielson B G, DesRoches R. Selection of optimal intensity measures in probabilisticseismic demand models of highway bridge portfolios[J]. Earthquake Engineering and StructuralDynamics,2008,37(5):711-725.
    [62]Bradley B A, Dhakal R P, Cubrinovski M, et al. Improved seismic hazard model with application toprobabilistic seismic demand analysis[J]. Earthquake Engineering and Structural Dynamics,2007,36(14):2211-2225.
    [63]Bradley B A, Dhakal R P, MacRae G A, et al. Prediction of spatially distributed seismic demands inspecific structures: ground motion and structural response[J]. Earthquake Engineering andStructural Dynamics,2010,39(5):501-520.
    [64]Bradley B A, Dhakal R P. Error estimation of closed-form solution for annual rate of structuralcollapse[J]. Earthquake Engineering and Structural Dynamics,2008,37(15):1721-1737.
    [65]Dolsek M, Fajfar P. Simplified probabilistic seismic performance assessment of plan-asymmetricbuildings[J]. Earthquake Engineering and Structural Dynamics,2007,36(13):2021-2041.
    [66]Dolsek M. Incremental dynamic analysis with consideration of modeling uncertainties[J].Earthquake Engineering and Structural Dynamics,2009,38(6):805-825.
    [67]Akkar S, Ozen O. Effect of peak ground velocity on deformation demands for SDOF systems[J].Earthquake Engineering and Structural Dynamics,2005,34(13):1551-1571.
    [68]王建民,朱晞.地面运动强度度量参数与双线性单自由度系统变形需求的相关性研究[J].地震学报,2006,28(1):76-84.
    [69]王建民.基于概率的桥梁结构抗震性能研究[博士学位论文].北京:北京交通大学,2006.
    [70]申彦利,杨庆山,田玉基.基于概率的多点激励地震场强度参数研究[J].工程力学,2010,27(1):202-208.
    [71]张海燕,易伟建.概率地震需求分析的简化方法研究[J].工程抗震与加固改造,2009,31(4):8-12.
    [72]冯清海,袁万城.基于IDA-MC的桥梁地震风险概率评估方法[J].长安大学学报(自然科学版),2010,30(3):60-65.
    [73]冯清海,袁万城.基于IDA的钢筋混凝土桥墩随机地震响应概率特征分析[J].武汉理工大学学报(交通科学与工程版),2009,33(5):936-939.
    [74]陈亮,李建中,盛光祖.考虑强地面运动持时影响的概率地震需求模型[J].地震研究,2009,32(1):56-61.
    [75]陈亮,李建中,管仲国等.强地面运动持时对钢筋混凝土桥墩地震需求的影响[J].振动与冲击,2008,27(11):154-159.
    [76]吕大刚,于晓辉,潘峰等.基于改进云图法的结构概率地震需求分析[J].世界地震工程,2010,26(1):7-15.
    [77]潘峰.钢筋混凝土框架结构的整体概率地震需求分析[硕士学位论文].哈尔滨:哈尔滨工业大学,2007.
    [78]王丹.钢框架结构的地震易损性及概率风险分析[硕士学位论文].哈尔滨:哈尔滨工业大学,2006.
    [79]徐雪源.地面运动强度参数对RC桥梁地震需求的影响[J].世界地震工程,2008,24(4):154-158.
    [80]Vamvatsikos D, Cornell C A. Incremental dynamo+ic analysis[J]. Earthquake Engineering andStructural Dynamics,2002,31(3):491-514.
    [81]Baker J W, Cornell C A. Uncertainty sepcification and propagation for loss estimation using FOSMmethod[R]. College of Engineering University of California, Berkeley. PEER Report,2003.
    [82]Kiureghian A D. Non-ergodicity and PEER’s framework formula[J]. Earthquake Engineering andStructural Dynamics,2005,34(13):1643-1652.
    [83]Baker J W, Cornell C A. Vector-valued ground motion intensity measures for probabilistic seismicdemand analysis[R]. College of Engineering University of California, Berkeley. PEER Report,2006.
    [84]Cornell C A. Calculating building seismic performance reliability: A basis for multi-level designnorms[C]. Proceedings of the11th World Conference on Earthquake Engineering, Acapulco,Mexico,1996a:2122.
    [85]Luco N. Probabilistic seismic demand analysis, SMRF connection fractures, and near-sourceeffect[D]. Standford University, California,2002.
    [86]Barry G, Ann B, et al. Probabilistic decision analysis for seismic rehabilitation of a regional buildingsystem[C]. Proceedings of the13th World Conference on Earthquake Engineering, Vancouver,Canada, CD-ROM, No.2254,2004.
    [87]Omer O E, Daniel P A. A methodology to assess seismic risk for populations of unreinforcedmasonry buildings[C]. Proceedings of the13th World Conference on Earthquake Engineering,Vancouver, Canada, CD-ROM, No.2445,2004.
    [88]Aslani H, Miranda E. Probabilistic response assessment for building-specific loss estimation[R].College of Engineering Universitye of California, Berkeley. PEER Report,2003.
    [89]Erberic M A, Elnashai A S. Vulnerability anslysis of flat slab structures[C]. Proceedings of the13thWorld Conference on Earthquake Engineering, Vancouver, Canada, CD-ROM, No.3102,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700