微氧活性污泥-Fenton-AF-BAF组合工艺对垃圾渗滤液处理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根据杭州天子岭垃圾填埋场垃圾渗滤液有机成分复杂、氮含量高、毒性大、可生化性差等特点,采用“微氧活性污泥/两级Fenton-AF-BAF”组合工艺处理垃圾渗滤液。
     微氧活性污泥以短程硝化-反硝化为理论基础,通过对溶解氧的控制来实现短程硝化反硝化。其中1#生化池DO在0.1mg/L左右,2#生化池DO在1 mg/L左右,3#生化池DO在0.5 mg/L左右,4#生化池DO在0.1mg/L左右,形成缺氧/兼氧/兼氧/缺氧工艺。通过出水和污泥回流稀释进水的氨氮和有机物浓度和增加反应器中的MLSS,以增强处理能力和抗冲能力,形成了高效的脱除有机污染物、NH_3-N和TN的系统,其对COD、NH_3-N和TN的平均去除率分别达到90%、99.8%和90%。C/N比是短程硝化-反硝化反应非常重要的影响因素之一,它是NO_2~--N和NH_3-N转化为N_2的重要限制因素之一。C/N≥4时能取得较好的短程硝化-反硝化效果。
     微氧活性污泥出水仍含有一部分总氮和难生物降解的有机物,采用两级Fenton-AF-BAF深度处理组合工艺进行处理。Fenton氧化反应能有效去除废水中难以生物降解的有机物,在提高废水可生化性的同时很好的降低色度。
     Fenton氧化反应的小试结果表明,Fenton氧化反应处理微氧活性污泥出水的最佳条件是:H_2O_2/COD=1.5,n(Fe~(2+)) / n(H_2O_2)投配比为1,初始pH值=4,反应时间为2 h,则能把废水COD从740 mg/L降到240 mg/L,COD去除率达到68%。根据随着某一反应条件的变化,COD的去除率变化范围可知,n(Fe~(2+)) / n(H_2O_2)投配比和废水初始pH值,对处理效果影响最大,H_2O_2/COD次之,反应时间影响相对最小。
     经Fenton氧化后,通过补充碳源甲醇,使废水C/N在3-5之间,AF-BAF反应器通过硝化-反硝化反应去除废水中的总氮和有机物,使出水满足《生活垃圾填埋场污染控制标准GB16887-2008》规定的相关标准。
Landfill leachate in Hangzhou Tianziling landfill contains complicated organic component, high nitrogen, so the wastewater is high toxic and hard to biodegrade. According to the characteristic of the landfill leachate, limited oxygen activated sludge cooperated with the two stage Fenton -anaerobic filter (AF)- biological aerated filter(BAF) processes were applied.
     The theoretical principle of limited oxygen activated sludge is short-cut nitrification and denitrification. The DO value of the bioreactor is the main control method to achieve short-cut nitrification and denitrification reaction. The DO values of 1#, 2#, 3#, 4# bioreactor were about 0.1 mg/L, 1 mg/L, 0.5 mg/L, 0.1 mg/L respectively basing on the pilot plant study. The measure made the four bioreactors into the anaerobic/ facultative/ facultative/ anaerobic bioreactor. In order to strengthen the treating capacity and anti impact load, the effluent and sludge of bioreactor were backflowed to dilute pollutant concentration and increase mixed liquor suspended solid(MLSS). It helped to form high efficient organic, ammonia nitrogen and total nitrogen treatment process. Therefore, the average COD, ammonia nitrogen and total nitrogen removal rate reached 90%、99.8% and 90% separately. The C/N ratio was one of very important influencing factors in short-cut nitrification and denitrification. And it was significant restricting factor of nitrate nitrogen and nitrite nitrogen transforming into nitrogen. It was able to achieve favorable result in the condition of C/N ratio≥4.
     Because the effluent of limited oxygen activated sludge still contained a portion of total nitrogen and refractory organic, the two stage Fenton-AF-BAF advanced treatment process was applied. Fenton oxidative reaction was capable of removing refractory organic and colour in wastewater effectively. The experimental result showed that the optimal operational condition of Fenton oxidative reaction treating effluent of limited oxygen activated sludge was: H_2O_2/COD= 1.5, n(Fe~(2+)) / n(H_2O_2)= 1, the initial pH of wastewater= 4, the retention time= 2 h. In the condition, the COD declined from 740 mg/L to 240 mg/L and the COD removal rate was 68%. In the light of the varieties of the reaction condition and COD removal rate, n(Fe~(2+)) / n(H_2O_2) ratio and the initial pH of wastewater were the most significant factor of treatment effect. H_2O_2/COD ratio took the second place. And the retention time was the least important factor.
     And then increase C/N ratio to 3-5 through adding carbon source methanol. Through nitrification- denitrification reaction, AF- BAF process could remove total nitrogen and organic in wastewater. And it made the effluent meet the the requirement of national landfill leachate discharge standard (GB-16889-2008).
引文
[1] O’leary P. R., Tchobanoglous G..Handbook of solidwaste management[M]. NewYork: McGraw-Hill, 2002.
    [2] DvaoliE , GnagaiML, MorselliL , et al. Charaeterization of odorants emissions from landfills by SPME and GCM/S[J].Chemosphere,2003(51):357-368.
    [3]宋亚彬,马文超,高影.浅谈城市垃圾的危害和处理方法.中国环境管理, 2003(5):155.
    [4]欧远洋.渗滤液化学性质研究:[硕士学位论文].上海:同济大学, 2004.
    [5]陈丹,李国建.国内外垃圾填埋渗滤液控制的比较及对策[J].环境保护,2001,1(6):16-18.
    [6] Alan J. Shuckrow, Andrew P Pajak, and C. J. Touhill [J]. Hazardous waste leachate management manual.Noyes Data Corporation.1982, New Jersey, USA.
    [7]倪晋仁,邵世云,叶正芳.垃圾渗滤液特点与处理技术比较[J].应用基础与工程科学学报,2004,12(2):148-157.
    [8]沈耀良,王宝贞.垃圾填埋场渗滤液的水质特征及其变化规律的分析[J].污染防治技术,1993 12 (1):10-13.
    [9] James B., Robert C.. Leachate from municipal landfill. CERMES-EN- PC France,1989,139-158
    [10]陈长太,曾扬.城市垃圾填埋场渗滤液水质特性及其处理.环境保护,2001,9:19-21
    [11]张彤,赵庆祥,朱怀兰等.城市垃圾渗滤液及其生物处理对策[J].城市环境与城市生态,1994,7(4 ):42-48.
    [12] Chian E S K. Sanitary Landfill Leachate and their treatment JEF,1976,102 (2):400-413.
    [13]李兵,满瑞林,倪网东.垃圾渗滤液处理技术的现状及发展趋势.工业安全与环保,2006,32(7):30一32
    [14]林绍葵,崔松阳,饶欠平.优化A/O工艺合并处理城市污水及垃圾渗滤液.市政技术,2007,25(4):279一281
    [15] Anthonisen A. C.. Inhibition of nitrification by ammonia and nitous acid. J.W.P.C.F.1976, 48(5):835-850
    [16]张兰英,张德安.垃圾渗滤液中有机污染物的污染及去除[J].中国环境科学,1998,18(2): 184-188.
    [17]楼紫阳,赵由才,张全等.渗滤液处理处置技术及工程实例[M].北京:化学工业出版社,2007
    [18]杨志泉,周少奇.广州大田山垃圾填埋场渗滤液有害成分的检测分析[J].化工学报, 2005,56(11):2183-2188.
    [19]刘书俊.垃圾渗滤液污染处理的现状及对策明[J].长江建设,2001, 37 (3): 36-37.
    [20]陶涛,王宗平.垃圾填埋场渗滤液处理研究[J].武汉城市建设学院学报,1998 15(3):58-62.
    [21]郑曼英,李丽桃,邢益和,雷泽辉.垃圾浸出液对填埋场周围水环境污染的研究[[J].重庆环境科学,1998(3):17-20.
    [22]黄立南,蓝崇钮,姜必亮.卫生填埋场渗滤液及其处理研究[J].生态科学,1999, 18(1):39-43.
    [23] Chynoweth D. P., Owens J. , O’Keefe, et al. Sequential batch anaerobic compo sting of the organic fraction of municipal solid waste[J]. Water Science and Technology,1992, 25 (7) :327~339
    [24]张春晖.聚硫氯化铁铝对渗滤液预处理[J].环境污染控制技术与设备,2001, 12(1):59-61.
    [25] Matin Steensen. Chemical Oxidation for the Treatment of Leachate-Process. Comparison and Results from Full-Scale Plants[J]. Water Science& Technology,1997,35 (4):249-256.
    [26]沈耀良,杨铨大,王宝贞.垃圾渗滤液的混凝-吸附预处理研究[J].中国给水排水,1999, 15(11)10-14.
    [27]周爱姣,陶涛.垃圾填埋场渗滤液物化处理的现状及发展趋势[J].重庆环境科学,2001,23(6):67-70.
    [28] J. Doyle. Exceptionally high-rate nitrification in sequencing batch reactor treating high ammonia landfill leachate[J]. Water Science and Technology, 1999,43(3): 315-322.
    [29] Ilies, P; Mavinic, DS. The effect of decreased ambient temperature on the biological nitrification and denitrification of a high ammonia landfill leachate [J]. Water Res, 2001,35(8): 2065-2072
    [30] Knox.K. Practice and trends in landfill in the UK. ISWA Symposium process[J], Technology and Environmental Impact of Sanitary landfill, Cagliari, Italy, 1987.
    [31] Blakey N.C. et al. Anaerobic lagoons and UASB reactors: laboratory experiments. In:Landfilling of Waste leachate, London[J], Elsevier Applied Science, 1992.
    [32] Jans J.. Combination of UASB pre-treatment and reverse osmosis. In: Landfilling of Waste leachate, London[J], Elsevier Applied Science, 1992.
    [33] Kennedy K. J., Lentz E. M.. Treatment of landfill leachate using sequencing batch and continuous flow up flow anaerobic sludge blanket(UASB)reactors[J], Water Res,2000, 34(14): 3640-3656.
    [34] Chiron S.,Fernandez-Alba A., Rodriguez A., et al.. Pesticide Chemical Oxidation: State-Of-The-Art [J]. Wat Res,1999, 34 ( 2) : 366-377.
    [35]沈耀良,张建平,王惠民.苏州七子山垃圾填埋场渗滤液水质变化及处理工艺方案研究[J].给水排水,2000,26(5):22-25.
    [36]卢平,曾丽璇,张秋云等.高浓度氨氮垃圾渗滤液处理方法研究[J] .中国给水排水, 2003, 19( 5) : 44- 45.
    [37]吴方同,苏秋霞,孟了等.吹脱法去除城市垃圾渗滤液中氨氮[J].给水排水, 2001.27(6): 20~24
    [38]陈石,王克虹,孟了等.垃圾填理场渗滤液处理中试研究川.给水排水,2000,26(6):20~24
    [39] I. Ozturk, M. Altinbas, I. Koyuncu, O. Arikan, C. Gomec- Yangin. Advanced physico-chemical treatment experiences on young municipal landfill leachates[J]. Waste Management, 2003, 23: 441-446
    [40] Li X Z, Zhao Q L, Hao X D.Ammonium removal from landfill leachate by chemical precipitation[J].Waste Management.1999,19(6):409-415
    [41]钟理,詹怀宇,Hilld O.化学沉淀法去除废水中的氨氮及其反应的讨论[J].重庆环境科学,2000,3(12):60~63
    [42]柯水洲,欧阳衡.城市垃圾填埋场渗滤液处理工艺及其研究进展[J].给水排水, 2004,30(11): 26-32.
    [43]王锋,周恭明.铁-碳微电解法预处理老龄垃圾填埋场渗滤液的研究[J].环境污染治理技术与设备, 2004, 5(3): 63-65.
    [44]李小明,王敏,矫志奎等.电解氧化处理垃圾渗滤液研究[J].中国给水排水, 2001, 17(8):14-17.
    [45] Galluzzo M, Ducato R. Expert control of DO in the aerobic reactor of an activate sludge process [J]. Computers and Chemical Engineering, 2001,25:619-625.
    [46] Chamg Gwo Jih, Ju Sheng Huang, Kwo Chiang Hsieh. Performance evaluation of sing-sludge reactor system high strength nitrogen wastewater[J]. Journal of Hazardous Materials, 2001,85:213-227 .
    [47] Zehnder A J B. Biology of Anaerobic Microorganisms [M]. NewYork :John wiley&Sons. 1998,179-244.
    [48] Ahn YH. Sustainable nitrogen elimination biotechnologies: A review[J].Process Bioehemistry,2006,41:1709-1721.
    [49] J.Doyle. Exceptionally high-rate nitrification in sequencing batch reactor treating high ammonia landfill leachate [J]. Water Science and Technology, 1999, 43(3): 315-322.
    [50] Zumft W. G.. The denitrifying prokaryotes[M]. In: Balows A, Truper H. G., Dworkin M., Harder W., Schleifer K. H, editors. 2nd ed. The prokaryotes A handbook on the biology of bacteria: ecophysiology isolation identification applications, vol.1, 2nd ed. New York, NY: Springer-verlag; 1992,554-582
    [51] Berne N. Activity, diversity and population size of nitrite aceumulation in a nitrifying biofilm reactor. Bioehemical Engineering Journal,2005,24:173-1
    [52] Strous M,Fuerst J A,Kamer E H,etal. Missing lithotroph identified as new planctomycete. Natrure, 1999, 400:446-449
    [53]徐冬梅,聂梅生,金承基.亚硝酸型硝化的实验研究.给水排水,1999,25(7):37- 39
    [54] Turk O, Mavinic D S. Preliminary assessment of a shortcut in nitrogen removal from wastewater. Can. J. Civ. Eng.1986,13(6):600-605
    [55] Hellinga C, Schellen A A J C, Mulder J W, et al. The sharon process: an innovative method for nitrogen removal from ammonium rich wastewater.[J] Wat.Sci.Tech.1998, 37(9):135-142
    [56]郑平,徐向阳,胡宝兰.新型生物脱氮理论与技术(第一版).北京:科学出版社,2004.10一203
    [57]邱兆富,周琪,杨殿海等.低碳氮比城市污水短程生物脱氮试验研究[J].工业水处理,2006,26(11):35-37
    [58] KuaiL.P., Verstraete W.. Ammonium removal by the oxygen-limited autotrophic nitrification-denitrification system[J].AppI.Environ.Mierobiol,1998,64: 4500-4506
    [59] Sheng Chen, Dezhi Sun, Jong-Shik Chung. Simultaneous methanogenesis anddenitrification of aniline wastewater by using anaerobic–aerobic biofilm system with recirculation. Journal of Hazardous Materials[J]. 169 ,2009,575–580
    [60] Jetten M.S.M., Strous M., Katinka T.P,et al. The anaerobic of anammox[J].FEMS Microbiology Reviews,1998,22,421-437
    [61] Mulder J W, Rogiet van Kempen. N2 removal by SHARON [C]. IAWQ Conference, 1997, 1: 30-31
    [62]于德爽,彭永臻.中温短程硝化反硝化的影响因素研究[J].中国给水排水,2003,9(1), 40-42
    [63] ELISABETH V. MUNCH, PAUL LANT,JURG KELLER. Simultaneous nitrification and denitrification in bench-scale sequencing batch reactors [J]. Wat. Res. , 1996, 30(2): 277-284
    [64] Y.Z. Li , Y.L. He , D.G. Ohandja, etc. Simultaneous nitrification–denitrification achieved by an innovative internal-loop airlift MBR: Comparative study[J]. Bioresource Technology, 2008, (99) :5867–5872
    [65] HYUNGSEOK YOO, KYU-HONG AHN, HYUNG-JIB LEE. Nitrogen removal from synthetic wastewater by simultaneous nitrification and denitrification (SND) via nitrite in an intermittently-aerated reactor [J]. Wat. Res., 1999,33, (1): 145-154
    [66] Helmer CH, Kunst S. Simultaneous nitrification/denitrification in an aerobic biofilm system[J]. Wat. Sci. Tech., 1998, 37(4-5):183-187.
    [67] Klangduen Pochana, Jurg keller. Study of factors affecting simultaneous and denitrification (SND). Wat. Sci. Tech., 1999,39(6):61-68
    [68]高廷耀,周增炎,朱晓君.生物脱氮工艺中的同步硝化反硝化现象[J].城市给排水, 1998, 24(12):6-9
    [69]曹国民,赵庆祥,张彤.单级生物脱氮技术的进展[J].中国给水排水,2000,16 (2):22-24
    [70] van de GraafA.A., de Bruijn P.,Robertson L.A.etal. Metabolic Pathway of anaerobic ammonium oxidation on the basis of 15 N studied in a fuidized bed reaetor[J]. Microbiology,1997,143,2415-2421
    [71] Sehalk J., Oustad H., Kuenen J.G, etal. The anaerobic oxidation of hydrazine:a novel reaction in microbial nitrogen metabolism[J]. FEMS Microbiology Letters,1998,158 :61-67.
    [72]周少奇.厌氧氨氧化的微生物反应机理[J].华南理工大学学报, 2000,28(11):16- 19
    [73]袁维芳.渗滤液的水质特点及处理工艺[J].中国沼气,2004,22(3):24-27.
    [74] Ahn W, Kang M, Yim S, et al. Advanccd Landfill leachate treatment using an integrated membrane process[J]. Desalination,2002,149:109-114.
    [75]刘琰,孙德智.高级氧化技术处理染料废水的研究进展[J].工业水处理, 2006,26(6): 125.
    [76]谭小萍,王国生,汤克敏.光催化法深度处理垃圾渗滤液的影响因素[J].中国给排水,1999,15(5):52-54.
    [77]王敏.垃圾渗滤液深度处理技术及其分析[J].江苏环境科技,2002, 15(2):32-34.
    [78] Xiaojun Wang, Sili Chen, Xiaoyang Gu, Kaiyan Wang.Pilot study on the advanced treatment of landfill leachate using a combined coagulation, fenton oxidation and biological aerated filter process[J]. Waste Management, 2009,29(4),1354-1358
    [79]汪晓军,简磊,李景达等.混凝/化学氧化/曝气生物滤池深度处理垃圾渗滤液[J].中国给水排水,2008,24(6):72-74
    [80] Eyüp Atmaca.Treatment of landfill leachate by using electro-Fenton method[J]. Journal of Hazardous Materials,2009,163(1):109-114
    [81]国家环保局《水和废水监测分析方法》编委会.水和废水监测分析方法[M].第4版.北京:中国环境科学出版社, 2002: 216-219
    [82]陈胜,孙德智,陈桂霞,等.厌氧一好氧移动床生物膜反应器串联处理垃圾渗滤液[J].环境科学,2006,27(10):2076一2050.
    [83] DH Zitomer, J DShrout. Feasibility and benefits of methanogenesis under oxygen- limited conditions[J]. Waste Management, 1998,18(2): 107- 116.
    [84]彭永臻,郭建华,王淑莹等.低溶解氧污泥微膨胀节能理论与方法的发现、提出及理论基础[J].环境科学,2008,29,(12):3342-3347
    [85] Allferi P, Valter T, Carmela L. Influence of aeration and sludge retention time on ammonium oxidation to nitrite and nitrate [J].Water Res, 2002,36: 2541-2546.
    [86] Wang J L, Yang N. Partial nitrification under limited dissolved oxygen conditions [J]. Process Biochemistry,2004,39(10):1223-1229.
    [87]林绍葵,崔松阳,饶欠平.优化A/O工艺合并处理城市污水及垃圾渗滤液.市政技术,2007,25(4):279-281
    [88] Hanaki K., Wantswin C., Ohgaki S.. Nitrification at low levels of dissolved oxygen with and without organic loading in suspended growth reactor [J]. Wat. Res, 1990,24(3): 297-302
    [89] G. Ruiz, D. Jeison, R. Chamy. Nitrification with high nitrite accumulation for the treatment of wastewater with high ammonia concentration. Water Research.2003,37(5):1-5
    [90]施永生.亚硝酸型生物脱氮技术[J].给水排水,2000,26(11):21-23
    [91] H. A.Painter, Microbial transformations of inorganic nitrogen. Prog. Wat. Tech.1977,8(4-5):3-29
    [92]徐亚同.废水中氮磷的处理[M].上海:华东师范大学出版社,1996
    [93] Pochana K, Keller J. Study of factors affecting simultaneous nitrification and denitrification (SND) [J]. Watter Sci Tech, 1999,39(6):61-68.
    [94] Lu M. C., Chent C. P.. Chemical oxidation of dichlorvos insecticide with Fenton’s reagent. Chemosphere, 1997, 35:2285-2293
    [95] Watts R. J.. Mineral catalyzed Fenton like oxidation of sorbed chlorobenzene. Water Environmental Research, 1997,69:269-275
    [96] Chem R., Pignatello J. J.. Role of quinone intermediates as electron shuttle in Fenton and photoassisted Fenton Oxidtions of aromatic compounds [J]. Environ Sci Technal, 1997, 31(8): 2399-2406.
    [97] Kang C., Sobkowiak A.. sawyer D T Iron(Ⅱ)-induced generation of hydrogen peroxide from dioxygen:induction of Fenton chemistry and ketonization of hydrocarbons Inorg[J], Chem., 1994, 33(1): 79-82. 
    [98]祝万鹏,杨志华,王利,等.亚铁-过氧化氢法处理DSD酸生产氧化母液的研究[J].环境科学,1995, 16(1): 19-23. 
    [99] Bishop D.F. Hydrogen peroxide catalytic oxidation of refractory organics in municipal wastewaters. Industry and Engineering Chemistry. Process design and development.1968, 7:110-117.
    [100] Nora San,et a1.Fre-oxidation of an extremely polluted industrial wastewater by the Fenton's reagent.Journal of Hazardous Materia1s, 2003,101(3):315-322.
    [101]谢银德,陈锋,何建军,等. Photo-Fenton反应研究进展.感光科学与光化学,2000,18(4):357-365.
    [102]徐向荣,王文华,李华斌. Fenton试剂与染料溶液的反应[J].环境科学,1999,20 (3):72-74.
    [103]陈传好,谢波,任源,等. Fenton试剂处理废水中各影响因子的作用机制[J].环境科学,2000,(21):93-96.
    [104]汪晓军,陈思莉,顾晓扬,王开演.混凝-Fenton-BAF深度处理垃圾渗滤液中试研究[J].环境工程学报, 2007,1(10):42-45
    [105]沈文豪,夏好戎.氧化-吸附法处理高浓度有机废水[J].上海大学报,2001,7 (1):69-72.
    [106]刘雨,赵庆良,郑兴灿.生物膜法污水处理技术[M].北京:中国建筑工业出版社, 2000: 60-67
    [107] Westerman P.W., Bicudo J.R., Kantardjieff A.. Upflow Biological Aerated Filters for the Treatment of Flushed Swine Manure[J]. Bioresource Technology, 2000, 74(1): 181-190
    [108]陈志伟,汪晓军.高浓度食品添加剂废水中试研究[J].环境科学与技术,2010,33(1): 174-177
    [109]陈志伟,汪晓军.曝气生物滤池对印刷电路板废水深度处理的研究[J].现代化工, 2010,30(5):70-74
    [110]郑兴灿,李亚新.污水除磷脱氮技术[M].北京:中国建筑工业出版社,1998: 43-55
    [111]张杰,曹相生,孟雪征.曝气生物滤池的研究进展.中国给水排水,2002,18(8): 26-29
    [112]马军,邱立平.曝气生物滤池及其研究进展[J].环境工程,2002,20(3):7-11
    [113]吕其军,施永生.同步硝化反硝化脱氮技术[J].昆明理工大学学,2003, 28 (6):91-95
    [114] Wang X. J.,Gu X.Y.,Lin D.X.,et al. Treatment of acid rose dye containing wastewater by ozonizing-biological aerated filter[J]. Dye sand Pigments,2007,74(3):736-740
    [115] Shen J.Y., He R., Yu H.X., et al. Biodegradation of Z,4,6-trinitroPhenol (Picricacid) in a biological aerated filter[J]. Biological Technology, 2009, 100(6): 1922-1930
    [116] Pujol R.Biological aerated filters: assessment of the process based on sewage treatment palnts[J]. Water Science and Technology, 2004, 29(10-11):13-22
    [117] Kent T., Fitzpatriek C., Williams S.Testing of Biological aerated filter media[J].Water Science and Technology,2006,(34):363-370
    [118]李汝琪,钱易,孔波.曝气生物滤池去除污染物的机理研究[J].环境科学,1999,20(6):49-52
    [119] Mogens Henze ,等.污水生物与化学处理技术[M] .国家城市给水排水工程技术研究中心译.北京:中国建筑工业出版社,2000. 49-62.
    [120]谢曙光,张晓建,王占生.曝气生物滤池最新发展和运用.水处理技术,2004,30(l):4-7
    [121]阎宁,金雪标,张俊清.甲醇与葡萄糖为碳源在反硝化过程中的比较[J].上海师范大学学报(自然科学版) ,2002 ,31 (3) :41~44.
    [122]章非娟,杨殿海,傅威.碳源对生物反硝化的影响[J].给水排水,1996 ,22(7) : 26-28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700