半导体纳/微米材料的合成及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料由于其独特的物理化学性质,以及潜在的应用价值成为了当今基础研究与应用的热点之一。而半导体纳米材料因其所具有的优异性能在发光器件、非线性材料、光敏感材料、光催化材料等方面表现了出了广阔的应用前景,未来的趋势,半导体的制造技术将进入一个纳米时代。本文综述了纳米材料及半导体纳米材料的研究进展,采用液相化学方法合成了ZnS、InVO_4、BiVO_4三种半导体纳米材料,实现了在合成过程中对尺寸和形貌的调控,主要研究了它们的光催化性质和光致发光性质。
     1.运用溶剂热条件辅助四元微乳体系(CTAB/水/环己烷/正戊醇)成功地合成出尺寸均匀、单分散性好的ZnS纳米球。探讨了该反应的最佳反应条件及实验参数对产物形貌和尺寸的影响。提出了表面活性剂(CTAB)辅助下ZnS纳米晶自组装形成ZnS纳米球的反应机理。在紫外光照射下,考察了ZnS纳米球降解对硝基苯酚的光催化活性。
     2.在表面活性剂SDBS辅助下,水热合成了具有介孔结构的InVO_4微米球。根据实验结果,提出了该InVO_4微米球结构的形成机理,并探讨了SDBS的加入量对InVO_4微米球尺寸、形貌及晶型的影响。研究了其固体粉末的UV-Vis漫反射吸收性质、光催化活性以及光致发光性质。
     3.在水热条件,实现了对具有树枝结构的单斜晶型BiVO_4的成功合成。探讨了不同温度和反应时间对BiVO_4产物形貌及晶型的影响,实现了最佳条件下对单斜晶型BiVO_4的可控合成。
Nanomaterials have been the focus of current researches in both fundamental science and industrial application because of their many unusual properties and potential applications. However, semiconductor nanomaterials have potential applications in LBD, non-linear material, light-sensitive materials, and photocatalyst materials, due to their extraordinary performance. In the future, the manufacture of semiconductor will go into a nano epoch. In this paper, we summarized the investigation and development of nano/micro-semiconductor materials, and chemically synthesized ZnS, InVO_4, and BiVO_4 nano/micro-semiconductor materials using solution-based method. We have achieved the control of size and morphology during the synthesis process and studied their photocatalysis and photoluminescence properties.
     1. Using the solvothermal–assisted microemulsion system (cetyltrimethyammoniumbro- mide/cyclohexayl/1-pentanol/water) we have successfully synthesized monodisperse ZnS nanospheres with uniform size. The best reaction condition and the relative parameters influencing on the experiments have been discussed in details. The formation mechanism that ZnS nanocrystalls self-assemble into ZnS nanospheres has been proposed. The photocatalysis of these ZnS cnanospheres has been investigated by the degradation of p-nitrophenol under UV irradiation.
     2. In the presence of surfactant SDBS, mesoporous structured InVO_4 microspheres have been hydrothermally synthesized. On the basis of experiment results, the formation mechanism has been proposed and the amount of SDBS that could strongly affect the InVO_4 samples has been discussed in details. We also have studied the UV-Vis DRS, photocatalysis, and photoluminescence of the InVO_4 microspheres.
     3. Branched structured monoclinic BiVO_4 have been hydrothermally synthesized at different temperatures. The relationship between reaction temperatures/times and morphology/crystal-structure has been studied. By exactly controlling reaction conditions, monoclinic BiVO_4 was synthesized under the best conditions.
引文
[1] John I Brauman. Room at the Bottom [J]. Science, 1991, 254: 1277-1279.
    [2] 张立德,牟季美主编. 纳米材料和纳米结构[M]. 北京: 科学出版社, 2001.3-9.
    [3] 王世敏,许祖勋,傅晶主编. 纳米材料制备技术[M]. 北京: 化学工业出版社,2001.
    [4] 李晓俊, 刘丰, 刘小兰主编. 纳米材料的制备及应用研究[M]. 济南: 山东大学出版社,2006.2-5.
    [5] R A Webb, S Washburn, C P Umbach. Observation of h / e Aharonov-Bohm Oscillations in Normal-Metal Rings [J]. Phys Rev Lett, 1985, 54(25): 2696-2699.
    [6] Martel R,Schmidt T,Shea H R,et al.Single-and multi-wall carbon nanotube field-effect transistors [J]. Appl Phys Lett, 1998, 73(17):2447-2449.
    [7] Barbara B, Wernsdorfer W. Quantum tunneling affects in magnetic particles [J].Curr Opin Solid State Mater Sci, 1997, 2(2):220-225.
    [8] 严东生,冯瑞. 材料新星-纳米材料科学[M]. 长沙:湖南科学技术出版社,1997.17-20.
    [9] 赵于文. 现代化工[J].1991(5):52-58
    [10] Wang Y, Mahler W. Structure of nm-sized InSb clusters formed by spontaneous alloying [J]. Opt Commun, 1987, 61:233.
    [11] Renzhi Ma, Yoshio Bando, Tadao Sato. Controlled Synthesis of BN Nanotubes Nanobaoboos, and Nanocables. Adv Mater 2002, 14: 366-368.
    [12] 王焕英,纳米材料的制备及应用研究[J]. 衡水师专学报2002,4(2):44-47.
    [13] TTakagahara. Effects of dielectric confinement and electron-hole exchange interaction on excitonic states in semiconductor quantum dots [J]. Phys Rev B ,1993,47: 4569-4584.
    [14] R Bringer, H Gleiter,H P Klein. An approach to a novel solid structure with gas-like disorder [J]. Phy.Lett. A, 1984, 102:365-369.
    [15] I Furubayashi,T Takahsshi. Preparation and magnetic Properties of colloidal Ferromagnetic metals [J]. Journal of Magnetism and Magnetic Materials, 1987, 65:261-264.
    [16] P W Chien, S L Wu,S C Lee. Boron-δdoped Si grown by ultra-high vacuum Chemical vapor deposition [J]. Mater.Chem.Phys, 2002 77:426-429.
    [17] H Ahn, J E Whiten. Vapor-Deposition of Alummum on Thiophene-Teminated Self-Assembled Monolayers on Gold [J]. J. Phys. Chem. B, 2003, 107(27):6565-6572.
    [18] W Liu, C G Gu.. The Preparstion and Properties of nanostructured diamond films Deposited by a hot-filament Chemica1vapor deposition method via continuous ion bombardment [J].Thin solid Films, 2004, 467:4-5.
    [19] J P Creene. Preparation of isotopic ruthenium targets using an ion beam sputtering source [J]. Nuclear Instruments and Methods in Physics Research Section A, 2002, 480(5):119-125.
    [20] P Wang,C M Jensen. Preparation of Ti-Doped Sodium Aluminum Hydride from Mechanical Milling of NaH/Al with Off-the-Shelf Ti Powder [J]. J. Phys. Chem. B, 2004, 108 (40):15827 -15829.
    [21] S Meyer, R Gorges, G Kreisel. Preparation and characterisation of titanium dioide filmls for catalytic app1ications generated by anodic spark deposition[J]. Thin Sol id Films, 2004, 450(2):276-281.
    [22] 张传历,李海滨,韩伟.用非晶晶化法制备纳米晶材料[J],钢铁研究学, 1994(4):38-42.
    [23] 樊东辉,徐政,李世普. Fe离子注入ZrO2的研究[J],南京大学学报. 2003, 39(1):76-80.
    [24] M Ogawa,H Kailio. Homogeneous Precipitation of Uniform Hydrota1citeParticles[J],Langnluir 2002, 18:4240-4243.
    [25] T lto,K Inumaru,M Mison. EPitaxially self-Assembled Aggregates of Polyoxotugstate Nanocrystallites, (NH4)3PW12O40: Sthesis by Homogeneous Precipitation Using Decomposition of Urea [J]. Chem. Mater. 2001, 13(3):824-831.
    [26] D Gao, R He, C Carraro. Selective Growth of Si Nanowire Arrays via Galvanic Displacement Processes in Water-in-oil Microemulsions [J] J.Am.Chem Soc, 2005 127(13):4574-4575.
    [27] R B Khomane, A.Mana, A B Mandale. Synthesis and Characterization of Doecanethiol-Capped Cadmiu Sulfide Nanoparticles in a winsor Ⅱ Microemulsion of Diethyl Ether/AOT/Water[J]. Langnluir, 2002, 18(21):8237-8240.
    [28] H Ohde, M Ohde, E Bailey. Water-in-CO2 Microemulsions as Nanoreactors for Synthesizing CdS and ZnS Nanoparticles in Supercntioa1 CO2 [J]. Nano Let, 2002, 2(7): 721-724.
    [29] 吴腊英,李长江. 纳米二氧化钛粉末的溶胶一凝胶法合成及晶相转化[J].无机化学学报, 2002,18(4):399-403.
    [30] F Dumeignil,M Rigole, M Guelton. Characterization of Boria-Alumina Mixed Oxides Prepared by a sol-Gel Method.1.NMR Characterization of the Xerogels [J]. Chem Mater, 2005, 17(9):2361-2368.
    [31] S Lee, C Jeon, Y park. Fabrication of Ti02TuIbules by Template Synthesis and Hydrolysis with Water Vapor [J]. Chem Mater, 2004, 16(22): 4292-4295.
    [32] W E Stallings, H.H.Lamb. Synthesis of Nanostructu red Titania Powders via Hydrolysis of Thanium Isopropoxide in Supercntical Carbon Dioxide [J]. Langlluir, 2003, 19(7): 2989-2994.
    [33] Y C zhang,R Xing, X Y Hu. A green hydrothermal route to copper Nanocrystallites [J].J Crystal Growth, 2004, 273:280-284.
    [34] R A McMillan,J Howard, N.J.Zaluzec. A Self-Assembling Protein Template for Constrained Sythesis and Paterning of Nanoparticle Arrays [J]. J. Am. Chem .Soc, 2005, 127(9): 2800-2801.
    [35] 朱宏杰,李春忠,陈红. 化学气相淀积制备Si3N4超细粉末[J].无机材料学报,1995,10(1):43-48.
    [36] 王菊香,赵拘,潘进. 超声电解法制备超细金属粉的研究[J].材料科学与工程,2000,18(4):71-72.
    [37] 施尔畏,夏长泰,王步国等,水热法的应用及发展[J].无机材料学报,1996, 11(2):193-206.
    [38] 施尔畏,夏长泰,王步国,仲维卓,水热法制备BaTiO3粉体[J].无机材料学报,1995,10(3):293-299.
    [39] H Zhu,D Yang,G Yu,H Zhang,D Jin,K Yao. Hydrothermal Synthesis of Zn2SnO4 as Anode Materials for Li-Ion Battery [J]. J. Phys. Chem. B 2006; 110(30); 14754-14760.
    [40] 李玲,向航. 功能材料与纳米技术[M]. 北京:化学工业出版社,2002,48-51.
    [41] Peng Q, Dong Y J, Li Y D, ZnSe semiconductor hollow microspheres [J]. Angew Chem Int Edit, 2003, 42(26): 3027-3030.
    [42] Wang X, Li Y D. Synthesis and characterization of lanthanide hydroxide single-crystal nanowires [J].Angew Chem Int Ed, 2002, 41(24):4790-4793.
    [43] Li Y D, Li X L, He R R, et al.Artificial lamellar mesostructures to WS2 nanotubes [J].J Am Chem Soc, 2002, 124(7):1411-1416.
    [44] Wang J W, Li Y D.Rational synthesis of metal nanotubes and nanowires from lamellar structures [J]. Adv Mater, 2003, 15(5):445-447.
    [45] Yu D,Yam V W.Hydrothermal-Induced Assembly of Colloidal Silver Spheres into Various Nanoparticles on the Basis of HTAB-Modified Silver Mirror Reaction[J]. J Phys Chem B,2005,109(12):5497-5503.
    [46] Liu B, Zeng H C.Mesoscale organization of CuO nanoribbons:formation of"dandelions"[J].J Am Chem Soc,2004,126(26):8124-8125.
    [47] Liu B,Zeng H C.Fabrication of ZnO"dandelions"via a modified Kirkendall process[J].J Am Chem Soc,2004,126(51):16744-16746.
    [48] Cao M H,Hu C W,Peng G,et al.Selected-Control Synthesis of PbOz and Pb,O,Single-Crystalline Nanorods[J].J Am Chem Soc,2003,125(17):4982-4983.
    [49] 李玲编著.表面活性剂与纳米技[M].北京:化学工业出版社 2003.105-111.
    [50] 周海成,徐建,李亚栋,等.PbSO4纳米片晶的微乳法制备与自组装[J].高等学校化学学报,2002,23(9):1645-1647.
    [51] 周海成,徐建,李亚栋,等.PbSO4纳米片晶的微乳法制备与自组装[J].高等学校化学学报,2002,23(9):1645-1647.
    [52] Cao M H, Hu C W, Wang E B. The First Fluoride One-Dimensional Nanostructures: Microemulsion-Mediated Hydrothermal Synthesis of BaF2 Whiskers [J].J Am Chem Soc, 2003, 125(37):11196-11197.
    [53] 华瑞年,雷炳富,谢德民,等.微乳液法制备CaF2纳米颗粒[J].高等学校化学学报,2003,24(10):1756-1757.
    [54] Cao M H,Hu C W,Peng G,et al.Selected-Control Synthesis of PbO2 and Pb3O4 Single-Crystalline Nanorods[J]. J Am Chem Soc, 2003, 125(17):4982-4983.
    [55] Cao M H, Hu C W, Wang Y H, et al.A controllable synthetic route to Cu,Cu2O,and CuO nanotubes and nanorods[J]. Chem Commun,2003,15:1884-1885.
    [56] Cao M H, Guo C X, Qi Y J, et al. A Simple Route Towards CuO Nanowires and Nanorods [J].JNanosci Nanotech, 2004, 4(7):824-828.
    [57] Zhao Y W,Zhang Y,Zhu H,et al.Low-Temperature Synthesis of Hexagonal(Wurtzite) ZnS Nanocrystals[J]. J Am Chem Soc, 2004, 126(22):6874-6875.
    [58] 陈津,魏丽乔,许并社. 纳米非金属功能材料[M]. 北京:化学工业出版社,2006.29-33.45-46.
    [59] Rosseti R, Hull R, Ellison J L, et al. Size effects in the excited electronic states of small colloidal CdS crystallites [J]. J Chem Phys,1984, 80:4464-4466.
    [60] Y Du, W L Cai, C M Mo. Preparation and photo- luminescence of alumina membranes with ordered pore arrays A ppl.Phys.Lett.1999, 74:2951-2953.
    [61] 王彦斌,祝钧,周磊,复合半导体纳米材料的研究与制备[J].化工新型材料,2005(11):33-35.
    [62] Murray C B, Norris D J, Bawendi M G. Synthesis and characterization of nearly monodisperse CdE(E=sulfur, selenium, tellurium) semiconductor n anocrystallites [J].J Am Chem Soc, 1993, 115:8706-8715.
    [63] 刘成林,李远光,顾建华等.ZnO/ZnS 复合超微粒子有序组装的研究[J].半导体杂志,1997,22(4):12-16.
    [64] 王石泉. 纳米硫系化合物的制备及表征[D]: [博士学位论文]. 杭州:浙江大学理学院,2006.
    [65] Joshy J, Khadar M. Role of grain boundaries on the electrical conductivity of nanophase zinc oxide [J]. Mater Sci Eng A, 2001, 304-306:810-813.
    [66] 钱逸泰. 结晶化学导论[M].合肥:中国科技大学出版社, 1999, 263-265.
    [67] Deng Z X, Wang C, Sun X M, et al. Structure-Directing Coordination Template Effect of Ethylenediamine in Formation of ZnS and ZnSe Nanocrystallites via Solvothermal Route [J]. Inorg Chem, 2002, 41(4):869-873.
    [68] Chen X, Xu H, Xu N, et al. Kinetically Controlled Synthesis of Wurtzite ZnS Nanorods through Mild Thermolysis of a Covalent Organic-Inorganic Network [J]. Inorg Chem, 2003, 42(9):3100-3106.
    [69] 李玉斌,徐运生. 8-12μm长波红外材料ZnS多晶的制备[J].人工晶体学报,2003(5):508-511.
    [70] 宋健全,刘正堂等. ZnS头罩增透保护膜系制备[J]. 红外与毫米波学报,2001(3):43-46.
    [71] 王鹏飞,袁媛等. 纳米硫化锌的制备及其研究进展[J].化学世界,2003(8): 441-446.
    [72] 李道华,叶向荣等. 纳米材料的室温(湿)固相化学反应合成[J].化学研究与应用,1999,11(4):415-418.
    [73] Calandra P, Longo A, Turco Liveri V. Synthesis of Ultra-small ZnS Nanoparticles by Solid-Solid Reaction in the Confined Space of AOT Reversed Micelles[J]. J. Phys. Chem. B., 2003, 107(1):25-30.
    [74] Tsuzuki T, Ding J, Mccorm P G. Mechanochemical synthesis of ultrafine zinc sulfide particles [J]. PhysicaB, 1997(293):378-387.
    [75] Sanchez-Lopez J C, Fernandez A. The gas-phase condensation method for the preparation of quantum-sized ZnS nanoparticles [J]. Thin Solid Films, 1998, 317(1-2):497-499.
    [76] Jiang Y, Meng X, Li J, et al. ZnS nanowires with wurtzite polytype modulated structure [J]. AdvMater,2003,15(14):1195-1198.
    [77] Wang Y, Zhang, Liang C, et al. Catalytic growth and photoluminescence Properties of semiconductor single-crystal ZnS nanowires [J]. Chem Phys Lett, 2002, 357 (3-4):314-318.
    [78] Lenggow I L, Okuyama K, et al. Preparetion of ZnS nanoparticles by elecrospray-pyrolysis [J]. J Aerosol Sci, 2000, 31(1):121-136.
    [79] 郭广生,唐芳琼. 单分散ZnS及其复合颗粒的制备[J]. 无机化学学报, 2000,16(3):492- 495.
    [80] Xia B, Lenggoro I W, Okuyama K. Synthesis and Photoluminescence of Spherical ZnS: Mn2+ Particles [J]. Chem Mater, 2002, 14(12):4969-4972.
    [81] Guiton T A, Organometallic sol/gel chemistry of metal sulfides [J]. J. Non-Cryst S olids, 1990, 121(1-3):7-15.
    [82] Selvan S T. Synthesis of Tunable, Highly Luminescent QD-Glasses through Sol-Gel Processing [J]. Adv Mater, 2001, 13(12-13):985-989.
    [83] Vesna S, Thomas H E, Alain C P, et al. Sol-gel processing of ZnS[J]. Mater Lett, 1997, 31(1-2):35-38.
    [84] Saener D U. Optical and Structural Properties of Doped ZnS Nanoparticles Produced by the Sol- Gel Method [J]. J Sol-Gel Sci Tec, 1998, 13:635-639.
    [85] 杨柏,黄金满等. 半导体纳米微粒在聚合物基体中的复合与组装[J]. 高等学校化学学报,1997(18):1219-1222.
    [86] 陈宗高,陈建明等. 高分子凝胶法蓝色发光ZnS微晶的制备及形成机理[J].人工晶体学报, 2001(30):348-351.
    [87] 成国祥, 沈锋. 智能微反应器及纳米微粒制备[J]. 化工进展, 1998(2):39-45.
    [88] Hirai T, Sato H, Komasawa I. Mechanism of Formation of CdS and ZnS Ultrafine Particles in Reverse Micelles [J]. Ind Eng Chem Res, 1994, 33(12):3262-3266.
    [89] 成国祥,沈锋. 反相胶束微反应器特性与ZnS纳米微粒制备[J]. 功能材料,1998(29):183-187.
    [90] Qian Y T, Su Y, Chen Q W, et al. Hydrothermal preparation and characterization of nanocrystalline powder of sphalerite [J]. Materials Research Bulletin, 1995, 30(5):601-605.
    [91] 苏宜, 谢毅等. 纳米ZnS/CdS水热合成及其表征[J].应用化学,1996(13):56- 57.
    [92] 仲维卓,王步国等水热条件下ZnS晶体的极性生长机制与双晶的形成[J].人工晶体学报,1998(1):27-31.
    [93] 陈爽,刘维民.亲油性Zns纳米微粒的合成. 高等学校化学学报[J]. 2000 (21): 472-475.
    [94] 汪乐余,赵长庆等.功能性ZnS纳米荧光探针的合成及其光谱性质研究[J].光谱学与光谱分析,2004(1):98-101.
    [95] Heine J R, Rodriguez J, Bawendi M G. Synthesis of CdSe quantum dot-ZnS ma trix thin films via electrospray organometallic chemical vapor deposition [J]. Journal of Crystal Growth, 1998, 195(1-4):564-568.
    [96] 谢颖,徐静娟等.水溶性的CdSe/ZnS纳米微粒的合成及表征[J]. 无机化学学报,2004,20(6):663-668.
    [97] Song K K, Lee S. Highly luminescent (ZnSe) ZnS core-shell quantum dots for blue to UV emission: synthesis and characterization [J]. Current Applied Physics, 2001, 1(2-3):169-173.
    [98] Li J Q, Kessler H, Soulard M, et al. Nanosized Zinc Sulfide Obtained in the Presence of Cationic Surfactants[J]. Adv Mater, 1998, 10(12):946-949.
    [99] Rana R K, Zhang L, Yu J C, et al., Mesoporous Structures from Supramolecular Assembly of in situ Generated ZnS Nanoparticles[J]. Langmuir, 2003, 19(14):5904-5911.
    [100] 徐如人,庞文琴等. 分子筛与多孔材料化学[M]. 北京:科学出版社,2004, 639-640.
    [101] Hao L Y, You M, et al. Fabrication of Ordered Macroporous CdS and ZnS by Clloidal Crystal Template [J]. Chinese Chemical Letters, 2002(13):181-185.
    [102] Ma Y, Qi L, Ma J, et al. Facile Synthesis of Hollow ZnS Nanospheres in Block Copolymer Solutions[J].Langmuir,2003,19(9):4040-4042.
    [103] Liddell C M, Summers C J. Monodispersed ZnS Dimers, Trimers, and Tetramers for Lower Symmetry Photonic Crystal Lattices [J]. Adv Mater, 2003, 15(20):1715-1719.
    [104] 徐耀.溶胶-凝胶法制备光学薄膜的化学基础[D].山西太原:中科院山西煤炭化学研究所,2004.
    [105] Cheng J, Fan D, Wang H, et al. Chemical bath deposition of crystalline ZnS thin films[J]. Semicond Sci Technol, 2003, 18(7):676-671.
    [106] Rincón M E, Martínez M W, Miranda-Hernández M. Nanostructured vs. polycrystalline CdS/ZnS thin films for photocatalytic applications[J]. semicond sci technol, 2003, 425(1-2):127-134.
    [107] 陈宗高,陈建明.高分子凝胶法蓝色发光ZnS微晶的制备及形成机理[J].人工晶体学报,2001(30):348-351.
    [108] 金炎,蒋雪茵.壳聚糖中ZnS: Mn纳米微晶的制备及其发光特性发光学报[J].1997(18):253- 257.
    [109] Surca V A, Orel B, Drazie G. IR spectroelectrochemical studies of Fe2V4O13, FeVO4 and InVO4 thin films obtained via sol-gel synthesis[J].J Solid State Electrochem, 2001, 5(7-8):437-449.
    [110] Ye J H, Zou Z G, Oshikiri M, et al. A novel hydrogen-evolving photocatalyst InVO4 active under visible light irradiation [J]. Chemical Physics Letters 2002, 356(2-3): 221–226.
    [111] Lin H Y, Chen Y F, Chen Y W. Water splitting reaction on NiO/InVO4 under visible light irradiation [J]. International Journal of Hydrogen Energy, 2007, 32:86-88.
    [112] Cimino N, Artuso F, Decker B F, et al. XPS and IR studies of transparent InVO4 films upon Li charge–discharge reactions [J]. Solid State Ionics, 2003, 165:89-96.
    [113] Orel B, Vuk A S, Krasovec U O, et al. Electrochromic and structural investigation of InVO4 and some other vanadia-based oxide films [J]. Electrochimica Acta, 2001, 46(13-14):2059-2068.
    [114] Zhang L W, Fu H B, Zhang C, et al. Synthesis, characterization, and photocatalytic properties of InVO4 nanoparticles[J]. Journal of Solid State Chemistry, 2006, 179(3):804–811.
    [115] Roncaglia D I, Botto I L, Baran E J. Characterization of a low-temperature form of InVO4[J]. J Solid State Chem, 1986, 62(1): 11-15.
    [116] Chen L M, Liu Y N, Lu Z G, Zeng D M. Shape-controlled synthesis and characterization of InVO4 particles[J]. Journal of Colloid and Interface Science 2006, 295 (2):440–444.
    [117] Zou Z G,Ye J H, Arakawa H.Structural properties of InNbO4 and InTaO4: correlation with photocatalytic and photophysical properties [J]. Chem Phys Lett,2000,332(3-4):271- 277.
    [118] Par Marcel T, Toledano P. Structure du vanadate d'indium: InVO4 [J]. Acta Cryst B, 1980, 36:240-245.
    [119] Touboul M, Ingrain S. Syntheses et proprietes thermiques de InVO4 et tlvo4 [J]. J Less-Common Met, 1980, 71(1):55-62.
    [120] Touboul M, Toledano P.Structure du vanadate d'indium: InVO4 [J]. Acta Crystallogr Sect B, 1980, 36(2):240-245.
    [121] Zou Z, Ye J, Sayama K, Arakawa H. Photocatalytic and photophysical properties of a novel series of solid photocatalysts, BiTa1?xNbxO4 (0 x 1)[J]. Chemical Physics Letters, 2001, 343(3-4):303-308.
    [122] Zou Z, Ye J, Sayama K, Arakawa H. Photocatalytic and photophysical properties of a novel series of solid photocatalysts, Bi2MNbO7 (M=Al3+, Ga3+ and In3+)[J]. Chemical Physics Letters, 2001, 333(1-2):57-62.
    [123] Roncagha D I, Botto I L, Baran E. Characterization of a low-temperature form of InVO4[J]. J Solid State Chem, 1986, 62(1):l1-15.
    [124] 胥利先, 桑丽霞, 马重芳等. 介孔InVO4光催化剂的合成及其光催化分解水的性能[J].催化学报, 2006,27(2):100- 102.
    [125] 胥利先,马重芳,桑丽霞等. 高效可见光光催化分解水制氢催化剂InVO4/CNTs[J]. 催化学报,2007,28(12):1083-1088.
    [126] Zhang L W, Fu H B, Zhang C, et al. Synthesis, characterization, and photocatalytic properties of InVO4 nanoparticles[J]. Journal of Solid State Chemistry, 2006, 179(3):804–811.
    [127] Zhanga S C, Zhang C, Yang H P, et al. Formation and performances of porous InVO4 films [J]. Journal of Solid State Chemistry 2006, 179(3):873–882.
    [128] Chen L M, Liu Y N, Lu Z G, Zeng D M. Shape-controlled synthesis and characterization of InVO4 particles[J]. Journal of Colloid and Interface Science 2006, 295 (2):440–444.
    [129] Reid A F, Ringwood A E. Newly observed high pressure transformations in Mn304, CaA12O4 and ZrSiO4 [J]. Earth Planetary Science Lett, 1969, 6(3):205-208.
    [130] 张力. 纳米钒酸铋黄色颜料的制备与应用研究[D]: [硕士学位论文]. 济南: 山东大学, 2006.
    [131] Tokunaga S, Kato H, Kudo A. Selective Preparation of Monoclinic and Tetragonal BiVO4 with Scheelite Structure and Their Photocatalytic Properties [J]. Chem Mater, 2001, 13(12): 4624-4628.
    [132] Kudo A, Omori K, Kato H. A Novel Aqueous Process for Preparation of Crystal Form-Controlled and Highly Crystalline BiVO4 Powder from Layered Vanadates at Room Temperature and Its Photocatalytic and Photophysical Properties[J]. J. Am. Chem. Soc, 1999, 121(49): 11459-11467.
    [133] David W I F. Ferroelastic phase trastion in BiV04: Ⅲ . Thermodynamics [J]. J Phys C: Solid State Phys, 1983, 16:5093-5118.
    [134] David W I F. Ferroelastic phase transition in BiVO4: IV. Relationships between spontaneous strain and acoustic properties [J]. J Phys C: Solid State Phys, 1983, 16:5119-5126.
    [135] David W I F, Wood I G. Ferroelastic phase transition in BiVO4: V. Temperature dependence of Bi3+ displacement and spontaneous strains [J]. J Phys C: Solid State Phys, 1983, 16:5127-5148.
    [136] David W I F, Wood I G. Ferroelastic phase transition in BiVO4: VI. Some comments on the relationship between spontaneous deformation and domain walls in ferroelastics [J]. J Phys C: Solid State Phys, 1983, 16:5149-5166.
    [137] Barreca D, Depero L E, Noto V D, et al. Thin Films of Bismuth Vanadates with Modifiable Conduction Properties [J]. Chem Mater, 1999, 11(2): 255-261.
    [138] Carp O, Huisman C L. Photoinduced reactivity of titanium dioxide [J]. Progress in solid state chemistry, 2004, 32(1-2):33-177.
    [139] Shigeru K, Shigeki M, Akihiko K, et al. Photocatalytic Degradation of 4-n-Nonylphenol under Irradiation from Solar Simulator: Comparison between BiVO4 and TiO2 Photocatalysts [J]. Chem Lett, 2002, 31(7):660-661.
    [140] Shigeru K, Masaya K, Akihiko K, et al. Photodegradation of 4-alkylphenols using BiVO4 photocatalyst under irradiation with visible light from a solar simulator[J]. Applied CatalysisB: Environmenta, 2003, 46(3):573-586.
    [141] Bhattacharya A K, Mallick K K, Hartridge A. Phase transition in BiVO4 [J]. Mater Lett, 1997, 30(1):7-13.
    [142] Neves M C, Trindade T. Chemical bath deposition of BiVO4 [J]. Thin Solid Films, 2002, 406(1-2):93-97.
    [143] Galembeck A, Alves O L. Bismuth vanadate synthesis by metallo-organic decomposition: thermal decomposition study and particle size control [J]. J Mater Sci, 2002, 37:1923-1927.
    [144] Shantha K, Subbanna G N, Varma K B R. Mechanically Activated Synthesis of Nanocrystalline Powders of Ferroelectric Bismuth Vanadate [J]. 1999, 142(1):41-47.
    [145] Thurston J H, Ely T O, Trahan D, et al. Nanostructured Bimetallic Oxide Ion-Conducting Ceramics from Single-Source Molecular Precursors[J]. Chem Mater, 2003, 15(23): 4407-4416.
    [146] Yu J Q, Kudo A. Hydrothermal Synthesis of Nanofibrous Bismuth Vanadate [J]. Chem Lett, 2005, 34(60):850-851.
    [1] Pujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238:37-38.
    [2] 李晓平,徐宝琨 ,刘国范等. 纳米Ti02光催化降解水中有机污染物的研究与进展[J].功能材料, 1999, 30(3):242-245.
    [3] 周祖飞,蒋伟川,刘维屏. 水溶液中α-萘乙酸的光降解研究[J].环境科学, 1997, 18(1):35-37.
    [4] 颜秀茹,宋宽秀,霍明亮. Ti02/SiO2的制备及其光催化降解敌敌畏[J].应用化学,1999(4):94- 96.
    [5] Hidaka H, Zhao J. Photodegradation of surfactant glass electrode comparison of Photocatalytic processes between antionic sodium dodecylbenzene sulfonate and cationic benzyldecy1dimethylammonium chloride on the TiO2 surface[J]. J Phys Chem, 1992, 96:2226-2230.
    [6] 赵进才,张丰雷,Hidaka H. 二氧化钛微粒存在下表面活性剂光催化分解机理研究[J]. 感光科学与光化学,1996(14):269-273.
    [7] Takita Y, Yamada H, Hashida M, et al. Conversion of 1,1,2-trichloro 1,2,2-trifluoroethane(CFC113)over Ti02-supported metal and metal oxide catalysts[J]. Chem Lett, 1990(221):715-718.
    [8] 张志军,包志成,王克欧等. 二氧化钛催化下的二苯并-对-二恶英光解反应[J]. 环境科学,1999(1):47-51.
    [9] Lakshmi B B, Dorhout P K, Martin C R. Sol-Gel Template Synthesis of Semiconductor Nanostructures [J]. Chem Mater, 1997, 9(3): 857-862.
    [10] Ho C, Yu J C, Kwong T, et al. Morphology-Controllable Synthesis of Mesoporous CeO2 Nano-and Microstructures [J]. Chem Mater, 2005, 17(17): 4514-4522.
    [11] Marci G, Augugliaro V, Lopez-Munoz M J, et al. Preparation Characterization and Photocatalytic Activity of Polycrystalline ZnO/TiO2 Systems.1.Surface and Bulk Characterization[J]. J Phys Chem B. 2001, 105(5): 1026-1032.
    [12] Shangguan W, Yoshida A. Photocatalytic Hydrogen Evolution from Water on Nanocomposites Incorporating Cadmium Sulfide into the Interlayer [J]. J Phys Chem B. 2002, 106(47): 12227-12230.
    [13] Yin H, Wada Y, Kitamura T, et al. Photoreductive Dehalogenation of Halogenated Benzene Derivatives Using ZnS or CdS Nanocrystallites as Photocatalysts [J]. Environ Sci Technol, 2001, 35(1): 227-231.
    [14] Sun J Q, Wang J S, Wu X C, et al. Novel Method for High-Yield Synthesis of Rutile SnO2Nanorods by Oriented Aggregation [J]. Cryst Growth Des, 2006, 6(7): 1584-1587.
    [15] Yoon M, Seo M, Jeong C, et al. Synthesis of Liposome-Templated Titania Nanodisks: Optical Properties and Photocatalytic Activities [J]. Chem Mater, 2005, 17(24): 6069-6076.
    [16] Lin Y M, Tseng Y H, Huang J H, et al. Photocatalytic Activity for Degradation of Nitrogen Oxides over Visible Light Responsive Titania-Based Photocatalysts[J]. Environ Sci Technol, 2006, 40(5): 1616-1621.
    [17] Nagaveni K, Sivalingam G., Hegde M S, et al. Photocatalytic Degradation of Organic Compounds over Combustion-Synthesized Nano-TiO2[J]. Environ Sci Technol, 2004, 38(5): 1600-1604.
    [18] Priya M H, Madras G. Kinetics of TiO2-Catalyzed Ultrasonic Degradation of Rhodamine Dyes [J]. Ind Eng Chem Res, 2006, 45(3): 913-921.
    [19] Tayade R J, Kulkarni R G., Jasra R V. Photocatalytic Degradation of Aqueous Nitrobenzene by Nanocrystalline TiO2 [J]. Ind Eng Chem Res, 2006, 45(3): 922-927.
    [20] Alvaro M, Aprile C, Benitez M, et al. Photocatalytic Activity of Structured Mesoporous TiO2 Materials [J]. J Phys Chem B, 2006, 110(13): 6661-6665.
    [21] 范崇政,肖建平,丁延伟. 纳米TiO2的制备与光催化反应研究进展[J].科学通报,2001,46(4):256-273.
    [22] Yim H, Wada Y J, Kitamura T, et al. Photoreductive Dehalogenation of Halogenated Benzene Derivatives Using ZnS or CdS Nanocrystallites as Photocatalysts[J]. Environ Sci Technol, 2001, 35(1): 227-231.
    [23] Hoffmann M R., S T Martin, Choi W, et al. Environmental Applications of Semiconductor Photocatalysis [J]. Chem Rev, 1995, 95(1): 69-96.
    [24] 丁士文,张绍岩,刘淑娟等. 均相沉淀法合成纳米ZnO及其光催化性能研究[J].化学学报,2002,60(7):1225-1229.
    [25] 丁士文,张绍岩,刘淑娟等. 水热法合成ZnO及其光催化性能研究[J]. 河北大学学报,2002, 3:346-349.
    [26] Matsushita S, Miwa T, Fujishima A. Preparation of new nanostructure TiO2 surface using a two-dimensional array-based template. Chem Lett, 1997, 309:925-926.
    [27] Wada Y, Yin H, Kitamura T S, et al. Photoreductive dechlorination of chlorinated benzene derivatives catalyzed by ZnS nanocrystallites [J]. Chem Commun, 1998,(24): 2683-2684.
    [28] Yanagida S, Mizumoto K, Pac C. Semiconductor photocatalysis. Part 6. Cis-trans photoisomerization of simple alkenes induced by trapped holes at surface states[J]. J Am Chem Soc, 1986, 108(4): 647-654.
    [29] Nakaoka Y, Nosaka Y. Electron Spin Resonance Study of Radicals Produced by Photoirradiation on Quantized and Bulk ZnS Particles [J]. Langmuir. 1997, 13(4): 708-713.
    [30] Tsuji I, Kato H, Kudo A. Photocatalytic Hydrogen Evolution on ZnS-CuInS2-AgInS2 Solid Solution Photocatalysts with Wide Visible Light Absorption Bands[J]. Chem Mater, 2006, 18(7):1969-1975.
    [31] Fujiwara H, Hosokawa H, Murakoshi K, et al. Surface Characteristics of ZnS Nanocrystallites Relating to Their Photocatalysis for CO2 Reduction [J]. Langmuir, 1998 14(18): 5154-5159.
    [32] Yanagida S, Kawakami H., Midori Y, et al. Semiconductor Photocatalysis. ZnS-Nanocrystallite-Catalyzed Photooxidation of Organic Compounds [J]. Bull Chem Soc Jpn, 1995, 68(7): 1811-1823.
    [33] Tsuji I, Kudo A. H2 evolution from aqueous sulfite solutions under visible-light irradiation over Pb and halogen-codoped ZnS photocatalysts [J]. J Photochem Photobiol A, 2003, 156: 249-252.
    [34] Dai J, Jiang Z, Li W, et al.Solvothermal preparation of inorganic–organic hybrid compound of [(ZnS)2(en)]∞ and its application in photocatalytic degradation[J]. Mater Lett, 2002, 55(6): 383-387.
    [35] Yu J H, Joo J, Park H M, et al.Synthesis of Quantum-Sized Cubic ZnS Nanorods by the Oriented Attachment Mechanism[J]. J Am Chem Soc, 2005, 127(15): 5662-5670.
    [36] Zhang Y, Li Y. Synthesis and Characterization of Monodisperse Doped ZnS Nanospheres with Enhanced Thermal Stability [J]. J Phys Chem B, 2004, 108(46): 17805-17811.
    [37] Jiang X., Xie Y, Lu L, et al. Simultaneous In Situ Formation of ZnS Nanowires in a Liquid Crystal Template by -Irradiation [J]. Chem. Mater. 2001, 13(4): 1213-1218.
    [38] Wang Y, Zhang L, Liang C, et al. Catalytic growth and photoluminescence properties of semiconductor single-crystal ZnS nanowires Chem Phys Lett, 2002,357(3-4): 314-318.
    [39] Li Y, Li X, Yang C, Li Y. Ligand-Controlling Synthesis and Ordered Assembly of ZnS Nanorods and Nanodots [J]. J Phys Chem B, 2004, 108(41): 16002-16011.
    [40] Ma Y, Qi L, Ma J, Cheng H. Facile Synthesis of Hollow ZnS Nanospheres in Block Copolymer Solutions [J]. Langmuir, 2003, 19(9): 4040-4042.
    [41] Schwuger M, Stickdom K, Schomacker R. Microemulsions in Technical process [J]. Chem Rev, 1995, 95(4):849-864.
    [42] Gan L M, Liu B, Chew C H, et al. Enhanced Photoluminescence and Characterization of Mn-Doped ZnS Nanocrystallites Synthesized in Microemulsion [J]. Langmuir, 1997, 13(24): 6427-6431.
    [43] Xu S J, Chua S J, Liu B,et al. Luminescence characteristics of impurities-activated ZnS nanocrystals prepared in microemulsion with hydrothermal treatment[L]. App Phys Lett, 1998, 73(4):48-480.
    [44] So W W, Jang J S, Rhee Y W, et al. Preparation of Nanosized Crystalline CdS Particles by the Hydrothermal Treatment [J]. J Collold Interf Sci, 2001, 237:136-141.
    [45] K Kabra, R Chaudhary, R L Sawhney. Treatment of Hazardous Organic and Inorganic Compounds through Aqueous-Phase Photocatalysis: A Review [J]. Ind Eng Chem Res, 2004, 43(24): 7683-696.
    [1] Picardi G,Varsano F, Decker F, et al. Electrochemical characterization of optically passive CeVO4 counterelectrodes [J]. Orel Electrochim Acta, 1999, 44(8): 3157-3164.
    [2] Bencic S, Orel B, Surca A, et al. Structural and electrochromic properties of nanosized Fe/V-oxide films with FeVO4 and Fe2V4O13 grains: comparative studies with crystalline V2O5[J]. Sol Energy, 2000, 68(6): 499-515.
    [3] Opara Krasˇovec U, Orel B, Surca A, et al. Structural and spectroelectrochemical investigations of tetragonal CeVO4 and Ce/V-oxide sol-gel derived ion-storage films [J]. Solid State Ionics , 1999, 118: 195-214.
    [4] Isasi M J, Sáez-Puche R, Veiga M L, et al. Jerez Synthesis and magnetic properties of crystalline CrVO4[J]. Materials Research Bulletin, 1988, 23(4):595-601.
    [5] Aleksandra T, Bojan O, Magdy L L, et al. GISAXS study of temperature evolution in nanostructured CeVO4 films[J]. Solar Energy Materials and Solar Cells, 2007, 91(14): 1299-1304.
    [6] Leyer B, Schmel H, G?bel H, et al. Preparation of AlVO4-films for sensor application via a sol-gel/spin-coating technique[J]. Thin Solid Films, 1997, 310: 228-233.
    [7] Blasse G, Hop J. Luminescence of aluminum vanadate (AlVO4) [J]. Journal of Solid State Chemistry, 1979, 27(3):423-424.
    [8] Zhang L, Chen D, Jiao X. Monoclinic Structured BiVO4 Nanosheets: Hydrothermal Preparation, Formation Mechanism, and Coloristic and Photocatalytic Properties [J]. J. Phys. Chem. B, 2006, 110(6): 2668-2673.
    [9] Wang Y, Cao G Z. Synthesis and electrochemical properties of InVO4 nanotube arrays [J]. Journal of Materials Chemistry, 2007, 17: 894-899.
    [10] Cimino N, Artuso F, Decker B F, et al. XPS and IR studies of transparent InVO4 films upon Li charge–discharge reactions [J]. Solid State Ionics, 2003, 165:89-96.
    [11] Artuso F, Decker F, Krasilnikova A, et al. Indium-Vanadium Oxides Deposited by Radio Frequency Sputtering: New Thin Film Transparent Materials for Li-Insertion Electrochemical Devices [J]. Chem. Mater, 2002, 14(2): 636-642.
    [12] Orel B, Surca V A., Opara K U, Drazic G, Electrochromic and structural investigation of InVO4 and some other vanadia-based oxide films [J]. Electrochim Acta, 2001, 46: 2059-2068.
    [13] Ye J H, Zou Z G, Oshikiri M, et al. A novel hydrogen-evolving photocatalyst InVO4 active under visible light irradiation [J]. Chemical Physics Letters 2002, 356(2-3): 221–226.
    [14] Lin H Y, Chen Y F, Chen Y W. Water splitting reaction on NiO/InVO4 under visible lightirradiation [J]. International Journal of Hydrogen Energy, 2007, 32:86-88.
    [15] Xu L X, Sang L X, Ma C F, et al. Preparation of Mesoporous InVO4 Photocatalyst and Its Photocatalytic Performance for Water Splitting [J]. Chinese Journal of Catalysts, 2006, 27(2):100-102.
    [16] Zhang L W, Fu H B, Zhang C, et al. Synthesis, characterization, and photocatalytic properties of InVO4 nanoparticles[J]. Journal of Solid State Chemistry, 2006, 179 (3):804–811.
    [17] Chen L M, Liu Y N, Lu Z G, Zeng D M. Shape-controlled synthesis and characterization of InVO4 particles[J]. Journal of Colloid and Interface Science 2006, 295(2):440–444.
    [18] Orel B, Vuk A S, Krasovec U O, et al. Electrochromic and structural investigation of InVO4 and some other vanadia-based oxide films [J]. Electrochimica Acta, 2001, 46:2059-2068.
    [19] Roncaglia D I, Botto I L, Baran E J. Characterization of a low-temperature form of InVO4 [J]. J Solid State Chem, 1986, 62(1): 11-15.
    [20] Li Y, Wang J, Deng Z, et al. Bismuth Nanotubes: A Rational Low-Temperature Synthetic Route [J]. J Am Chem Soc. 2001, 123(40): 9904-9905.
    [21] Wang X, Li, Y. Selected-Control Hydrothermal Synthesis of - and β-MnO2 Single Crystal Nanowires [J]. J. Am. Chem. Soc, 2002, 124(12): 2880-1881.
    [22] Chen L M, Liu Y N, Li Y D. Preparation and characterization of ZrO2:Eu3+ phosphors [J]. Journal of Alloys and Compounds, 2004, 381(1-2):266-271.
    [23] Lu Z G, Tang Y G, Chen L M, Li Y D. Shape-controlled synthesis and characterization of BaZrO3 microcrystals [J]. J. Cryst. Growth, 2004, 266: 539-544.
    [24] Zhanga S C, Zhang C, Yang H P, et al. Formation and performances of porous InVO4 films [J]. Journal of Solid State Chemistry 2006, 179(3):873–882.
    [25] Ye J, Zou Z, Arakawa H, et al. Correlation of crystal and electronic structures with photophysical properties of water splitting photocatalysts InMO4 (M = V5+, Nb5+, Ta5+)[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2002, 148: 79–83.
    [26] Li Y, Liu J, Huang X, et al. Hydrothermal Synthesis of Bi2WO6 Uniform Hierarchical Microspheres [J]. Cryst Growth Des, 2007, 7(7):1350-1355.
    [27] Bavykin D V, Parmon V N, Lapkin A A, et al. The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes [J]. J Mater Chem. 2004, 14(22):3370-3377.
    [28] Liu J, Huang X, Sulieman K M, et al. Solution-Based Growth and Optical Properties of Self-Assembled Monocrystalline ZnO Ellipsoids[J]. J Phys Chem B, 2006, 110( 22) : 10612-10618.
    [29] Jia B, Gao L. Growth of Well-Defined Cubic Hematite Single Crystals: Oriented Aggregation and Ostwald Ripening [J]. Cryst Growth Des, 2008, 8(4): 1372-1376.
    [30] McCoy B J. Distribution Kinetics Modeling of Nucleation, Growth, and Aggregation Processes [J]. Ind Eng Chem Res, 2001, 40(23), 5147-5154.
    [31] 崔庆洲主编. 纳米技术[M]. 北京: 兵器工业出版社, 2006, 232-233.
    [32] 周永慧, 林君, 张洪杰, 纳米发光材料研究的若干进展[J].化学研究与应用, 2001,1 3:117-122.
    [33] 孙家跃,杜海燕,胡文祥编著. 固体发光材料[M].化学工业出版社出版,2003.
    [34] 黄波主编. 固体材料及其应用[M]. 上海: 华东理工大学出版社,1994.
    [35] Riwotzki K, Hasse M. Wet-chemical synthesis of doped colloidal nanoparticles: YVO4 (Ln=Eu, Sm, Dy) [J]. J Phys Chem B, 1998, 102(50):10129-10135.
    [36] Huignard A, Buissete V, Franville A C, et al. Emission Processes in YVO4:Eu N anoparticles[J]. J Phys Chem B, 2003, 107(59):6754-6759.
    [37] Riwotzki K, Haase M. Colloidal YVO4: Eu and YP0.95V0.05O4: Eu Nanoparticles: Luminescence and Energy Transfer Processes [J]. J Phys Chem B 2001, 105(51):12709-12713.
    [1] Frank S N, Bard A J. Heterogeneous photocatalytic oxidation of cyanide and Sulfite in aqueous solutions at semiconductor powders [J]. J Phys Chem,1977,81(15):1484-1488.
    [2] H. Endriss. High Performance Pigments[C]. in: H M Smith eds. Wiley-VCH, Weinheim, Germany, 2002, 7 –12.
    [3] Yeom T, Choh S H, Du M L, et al. EPR study of Fe3+ impurities in crystalline BiVO4[J]. 1996, 53(6):3415-3421.
    [4] Fujishima A,Honda K. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature, 1972, 238:37-39.
    [5] Tyk D A, Fuj1shima A, Honda K. Recent Topics in photoelectron chemistry: Achievements and future prospects [J]. Electrochimica Acta, 2000, 45:2363-2376.
    [6] Fujishima A,RaoT N,Tryk D A. Titanium dioxide photocatalysis [J]. J Photochem Photobiolo C,2000, 1:1-21.
    [7] Sun L, Bolton J R. Determination of quantum yield for the photochemical Generation of hydroxyl radicals in Ti02 suspensions [J]. J. Phys. Chem,1996,100:4127-4123.
    [8] Kudo A, Ueda K, Kato H, Mikami I. Photocatalytic O2 evolution under visible irr adiation on BiV04 in a queous AgN03 solution[J]. Catal. Lett, 1998, 53:229-230.
    [9] Kudo A, Omori K, Kato H. A Novel Aqueous Process for Preparation of Crystal Form-Controlled and Highly Crystalline BiVO4 Powder from Layered Vanadates at Room Temperature and Its Photocatalytic and Photophysical Properties[J]. J. Am. Chem. Soc, 1999, 121(49): 11459-11467.
    [10] Oshikiri M, Boero M, Ye J, et al. Electronic structures of promising photocatalysts InMO(4M=V, Nb, Ta) and BiV04 for water decomposition in the visible wavelength region[J]. J Chem Phys, 2002, 117(16):7313-7318.
    [11] Kudo A, Ueda K, Kato H, Mikami I. Photocatalytic O2 evollution under visible light irradiation on BiV04 in aqueous AgNO3 solution[J]. Catal Lett, 1998, 53:229-230.
    [12] Tokunaga S, Kato H, Kudo A. Selective Preparation of Monoclinic and Tetragonal BiVO4 with Scheelite Structure and Their Photocatalytic Properties [J]. Chem. Mater, 2001, 13(12): 4624-4628.
    [13] Sayama K, Nomur A, Zou Z, et al. Photoelectrochemical decomposition of water on nanocrystalline BiV04 film electrodes under visible light [J]. Chem Commun, 2003, 2908-2909.
    [14] Liu H, Nakamura R, Nakato Y. Promoted photooxidation reactivity of particulate BiV04 photocatalyst prepared by a photoassissted sol-gel method[J]. J Electrochem soc, 2005, 152(11):G856-G861.
    [15] Kohtani S, Makino S, Kudo A, et al. Photocatalytic degradation of 4-n-nonylphenol underirradiation from solar simulator: comparition between BiVO4 and TiO2 photocatalysts[J]. Chem Lett, 2002(7): 660-661.
    [16] kohtani S, Koshiko M, Kuudo A, et al. Photodegration of 4-alklphenols using BiVO4 photocatalyst under irradiation with visible light from a solar simulator[J]. Appl Catal B, 2003, 46:573-586.
    [17] Zhang L, Chen D, Jiao X. Monoclinic Structured BiVO4 Nanosheets: Hydrothermal Preparation, Formation Mechanism, and Coloristic and Photocatalytic Properties [J]. J Phys Chem B, 2006, 110(6): 2668-2673.
    [18] Roth R S, Warling J L. Synthesis and stability of bismuthotantalite, stibiotantalite, and chemically similar AB04 compounds [J].Am.Mineral, 1963, 48:1348-1356.
    [19] Sleight A W, Chen H Y, Ferretti A, Cox D E.Crystal growth and structure of bismuth vanadate(BiV04)[J]. Mater Res Bull, 1979, 14 (12):15 71-1581.
    [20] Lim A R, Choh S H, Jang M S. Twin structure deduced from elastic constants of ferroelastic bismuth vanadate(BiV04)[J]. J Phys Condens Matter, 1989, 1 (9):1571 -1576.
    [21] Lim A R, Choh S H, Jang M S, Prominent ferroelastic domain walls in BiVO4 crystal [J]. J. Phys.: Condens. Matter, 1995, 7:309-7323.
    [22] Zhao Y, Xie Y, Zhu X, et al. Surfactant-Free Synthesis of Hyperbranched Monoclinic Bismuth Vanadate and its Applications in Photocatalysis, Gas Sensing, and Lithium-Ion Batteries [J]. Chemistry - A European Journal, 2008, 14(5): 1601-1606.
    [23] Tokunaga S, Kato H,Kudo A. Selective preparation of monoclinic and tetragonal BiV04 with scheelite structure and their photocatalytic properties [J]. Chem Mater,2001, 13:4624-4628.
    [24] Yu J, Kudo A. Effects of Structural Variation on the Photocatalytic Performance of Hydrothermally Synthesized BiVO4 [J]. Advanced Functional Materials, 2006, 16(16):2163-2169.
    [25] Zhou L, Wang W Z, Zhang L S, et al. Single-Crystalline BiVO4 Microtubes with Square Cross-Sections: Microstructure, Growth Mechanism, and Photocatalytic Property[J]. J Phys Chem C, 2007, 111(37): 13659-13664.
    [26] Kudo A, Omori K, Kato H. A Novel Aqueous Process for Preparation of Crystal Form-Controlled and Highly Crystalline BiVO4 Powder from Layered Vanadates at Room Temperature and Its Photocatalytic and Photophysical Properties[J]. J. Am. Chem. Soc, 1999, 121(49): 11459-11467.
    [27] Hirota K, Komatsu G, Yamashita M, et al. Formation, characterization and sintering of alkoxy-derived bismuth vanadate[J]. Mater Res Bull, 1992, 27(7): 823 –830.
    [28] Galembeck A, Alves O L. BiVO4 thin film preparation by metalorganic decomposition [J]. Thin Solid Films, 2000, 365: 90-63.
    [29] Marcia C N, Tito T. Chemical bath deposition of BiVO4 [J]. Thin Solid Films, 2002, 406:93-97.
    [30] K. Sayama, A. Nomura, Z. Zou, R. Abe, Y. Abe, H, Arakawa, Chem.Commun. 2003, 2908.
    [31] Rullens, F.; Laschewsky, A.; Devillers, M. Bulk and Thin Films of Bismuth Vanadates Prepared from Hybrid Materials Made from an Organic Polymer and Inorganic Salts Chem. Mater.; 2006; 18(3); 771-777.
    [32] Higgins J F. US Patent 4063 956, 1977.
    [33] Rustioni M, Balducci L. S. P. A. Montedison, US Patent 4316746, 1982.
    [34] Livage C, Egger C, Ferey G. Hydrothermal versus Nonhydrothermal Synthesis for the Preparation of Organic-Inorganic Solids: The Example of Cobalt (II) Succinate [J]. Chem Mater, 2001, 13(2): 410-414.
    [35] Yang W, Lu C, Zhan X., Zhuang H. Hydrothermal Synthesis of the First Vanadomolybdenum Polyoxocation with a "Metal-Bonded" Spherical Framework[J]. Inorg. Chem, 2002, 41(18), 4621-4623.
    [36] Ju J, Wang D, Lin J, et al. Hydrothermal Synthesis and Structure of Lead Titanate Pyrochlore Compounds[J]. Chem. Mater, 2003, 15(18): 3530-3536.
    [37] Subramanian V, Zhu H, Vajtai R, Ajayan P M Wei, B. Hydrothermal Synthesis and Pseudocapacitance Properties of MnO2 Nanostructures[J]. J. Phys. Chem. B, 2005, 109(43): 20207-20214.
    [38] Wang D, Guo Z, Chen Y, Hao J, Liu W. In Situ Hydrothermal Synthesis of Nanolamellate CaTiO3 with Controllable Structures and Wettability [J]. Inorg Chem, 2007, 46(19): 7707-7709.
    [39] Zhou F, Zhao X M, Xu H, et al. CeO2 Spherical Crystallites: Synthesis, Formation Mechanism, Size Control, and Electrochemical Property Study [J]. J Phys Chem, 2007, 111(4):1651-1657.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700