会切场约束ICP增强非平衡磁控溅射放电及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文的研究内容分为两大部分:第一部分研究了一种新型的薄膜制备技术,即会切场约束ICP(Inductively Coupled Plasma)增强非平衡磁控溅射沉积薄膜技术,并应用该技术在合适的参数条件下沉积了性能良好的铜膜;第二部分用发射光谱和Langmuir探针研究了该技术中等离子体参数随气压、射频功率、会切磁场及放电室中不同位置处的变化规律。
     ICP增强非平衡磁控溅射技术使用自制的非平衡磁控溅射装置,外加以射频线圈增强等离子体电离,并在基片台上加脉冲负偏压,来增加离子到达基片的速率。溅射靶位于真空室内上方,和真空室上壁之间采用绝缘的聚乙烯连接。放电室外共有两组永久磁铁:真空室外侧环绕真空室的三匝永久磁铁环和溅射靶上面的永久磁铁。两组磁铁产生的磁场在真空室中相互叠加,形成会切场磁场位形。此设备在实现射频放电及射频增强磁控溅射放电过程中,在会切场的约束下,放电室中间区域等离子体均匀。在调节气压、功率及考虑到离子流密度不致过大的情况下,选择了沉积铜膜的最佳沉积参数。我们在传统的磁控溅射沉积的基础上,由柱形真空室外增加的永久磁铁和靶上面的永久磁铁叠加形成会切磁场约束作用,增加了电子的自由程,提高了等离子体的电离率。真空室外还加了由柱状天线传输的射频功率,进一步激励等离子体,增强了等离子体的密度和电子温度。
     实验过程中,使用纯度为99.99%的高纯氩气,纯度为99.9%的铜作为溅射靶。用发射光谱法研究了射频放电氩等离子体随射频功率、气压和放电室中位置的变化规律,选用了两条特定氩的原子和离子谱线。射频放电中谱线强度表现出了模式跳变和回滞现象,即射频功率增加到400 W时,射频放电从E模式跳变到H模式,Ar原子谱线强度证明了增加的跳变,而Ar~+谱线强度只是有小的变化,而从高功率降低时,到300W时射频放电从H模式跳变到E模式。还用发射光谱法研究了放电室在有无会切磁场及射频情况下,特定的氩和铜的原子和离子谱线的变化情况,从而定性的研究等离子体参数的变化。用Langmuir探针测量了放电室内等离子体参数。研究了射频放电时,等离子体参数如电子温度、电子密度和离子密度等在轴向和径向的分布及会切磁场会对等离子体参数的影响。证实了在有外约束磁场的情况下,ICP增强的非平衡磁控溅射等离子体参数都有明显的提高。
     用该实验设备在硅基片上沉积了铜膜。在如下三种条件下沉积了薄膜:有射频无会切磁场、无射频有会切磁场和有射频有会切磁场。膜的表面形貌和织构通过扫描电子显微镜(SEM)和X射线衍射(XRD)测得。用电子能谱(ES)对薄膜的成分进行了分析。膜的表面特性由原子力显微镜(AFM)和来自原子力显微镜数据的粗糙度来表征。电阻率通过四探针法测量。通过比较最后的实验结果,表明射频和会切磁场的加入明显改善了放电室中等离子体参数如电子温度、电子密度及离子密度等。因此,在有射频和会切磁场时,膜的表面光滑致密,晶粒尺度在几百纳米,粗糙度也不大,电阻率最小。原因可能是射频放电和会切磁场增强等离子体密度,高密度的等离子体在相同的脉冲偏压下能更好的改善了离子轰击效应。离子轰击可以明显地影响着沉积Cu膜的表面生长和性能。通过实验,可以找到沉积性能好的Cu膜的最佳实验参数,并希望这一工艺能应用在集成电路中。
The present work includes two main parts: The first part mainly investigates a new technique of thin film deposition, referred as to the technology of thin film deposition by ICP enhanced unbalanced magnetron sputtering process in cusp-field confined magnetron. Then it is applied to deposit Cu film of good characteristics under appropriate parameter condition. In the second part, the regularity of plasma parameter, which varies with the air pressure, the power of radio frequency (rf), the cusp magnetic field and different positions in the chamber is studied, by using the emission spectrometry and Langmuir probe.
     The self-regulating unbalanced magnetron sputtering device and rf winding, which enhance the plasma ionization, are used in ICP (Inductively Coupled Plasma) enhanced unbalanced magnetron sputtering technique. The pulse minus bias voltage is applied to the substrate to increase the velocity of ions arriving at the substrate. The magnetron target is lied above the vacuum chamber, connected with the chamber's upper wall by the insulating polyethylene. There are two groups of permanent magnet outside the discharge chamber: one is three circles of permanent magnet hoop around the outside of the vacuum chamber, and the other is a permanent magnet on the top of the sputtering target. The magnetic fields resulting from the two groups above interact with each other and form a figure of cusp magnetic field. With the confinement of the cusp magnetic field, during the rf discharge and rf enhanced magnetron sputtering discharge, the uniform plasma could be obtained in the middle area of the chamber. The optimum parameters of Cu film deposition are chosen by adjust considering the pressure, the power of rf and the ion current which should not be over large. On the basis of the conventional magnetron sputtering, the permanent magnets outside the column vacuum chamber and above the target interact with each other and form a combined cusp magnetic field, which plays the role of confinement and increases the electron free path, and improves the plasma ionization rate as well. Besides this, the rf power is added through a cylinder antenna to inspire the plasma further and increase plasma density and electron temperature effectively.
     In this experiment, Ar with the purity of 99.99% is used as discharging gas, and Cu with the purity 99.9% is used as the material of sputtering target. The changing regularity of rf Ar plasma, which varies with the power of radio frequency, the air pressure and the position in the discharge chamber, is investigated by the emission spectrometry. Two given atom and ion spectral lines of Ar are selected. The intensity of spectral lines in RF discharge shows a jumping mode and a hysteresis phenomenon with the change of RF power. When the rf power increases to 400 W, the discharge jumps from E-mode to H-mode, where the line intensity of Ar atom demonstrates an increase jumpily, but the intensity of Ar~+ ion only has a little bit changes. If the RF power decreases from a high power, such as from 1000 W, the discharge jumps from H-mode back to E-mode at 300W. Moreover, under the condition of with or without cusp magnetic field and rf, the change of given atom and ion lines of Ar and Cu is studied by the method of emission spectrometry. In this way, the variety of plasma parameters is investigated qualitatively. The plasma parameters in the discharge chamber are measured by Langmuir probe. The distributing of the plasma parameters (electron temperature, electron density and ion density) at the axis and radial and the influence of cusp magnetic field on plasma parameters are investigated during the process of rf discharge. It has been proved that, with the confinement of cusp magnetic field, parameters of ICP enhanced unbalanced magnetron sputtering plasma are improved obviously.
     Cu films are deposited on the Si substrate by using this experiment equipment. The films are deposited under three conditions as follows: with rf and without cusp magnetic field, without rf and with cusp magnetic field and with rf and with cusp magnetic field. The morphology and structure of films are examined by scanning electron microscopy (SEM), x-ray diffraction (XRD) and electron spectroscopy (ES). The surface average roughness of the deposited Cu film is characterized by atomic force microscope (AFM) data. The resistivity is measured by four probe method. The results show that rf and cusp magnetic field play an important role in plasma discharge and improve plasma parameters significantly, including electron temperature, electron and ion density. Therefore, the Cu film deposited with rf discharge enhanced ionization and cusp magnetic field confinement has smooth and dense surface, low surface roughness and low resistivity. The scale of the crystal grain is about 100~1000 nm. The reason may be attributed to that the rf discharge and cusp magnetic field could enhance the plasma density, which further improves ion bombardment effect under the same bias voltage. Ion bombardment can influence the growing feature and characteristics of deposited Cu films obviously. From the experiments, the best experiment parameters for the deposition of Cu film with good characteristics can be found. This technique will be contributed to integrated circuit, and is expected to be applied to practical work.
引文
[1] Colpo P, Ernst R. Determination of the equivalent circuit of inductively coupled plasma sources. Journal of applied physics. 1999, 85: 1366-1371.
    
    [2] Keller J H. Inductive plasmas for plasma processing. Plasma Sources Science and Technology. 1996, 5 (2) : 166-172.
    [3] Hittorf P C. Ann. Phys. 1884, Lpz 21 90.
    [4] Thomson J J. Phil. Mag. 1891, 32 321.
    [5] Keller J H. Inductive plasmas for plasma processing. Plasma Sources Sci. Technol. 1996, 5: 166-172.
    [6] Keller J H, Forster J C, Barnes M S. Novel radio-frequency induction plasma processing techniques. J. Vac. Sci. Technol. 1993, All: 2487-2491.
    [7] Hopwood J. Review of inductively coupled plasmas for plasma processing. Plasma Sources Sci. Technol. 1992, 1: 109-114.
    [8] Carter J B, Holland J P, Peltzer E et al. Transformer coupled plasma etch technology for the fabrication of subhalf micron structures. J. Vac.Sci. Technol. 1993, All: 1301-1306.
    [9] Patrick R, Schoenborn P, Toda H et al. Application of a high density inductively coupled plasma reactor to polysilicon etching. J. Vac. Sci. Technol. 1993, All: 1296-1300.
    [10] Gabriel C T, Melaku Y. Gate oxide damage in a high density inductively coupled plasma. J. Vac. Sci. Technol. 1994, B12: 454-460.
    
    [11] Schwabedissen A, E C Benck, J R Roberts. Comparison of electron density measurements in planar inductively coupled plasmas by means of the plasma oscillation method and Langmuir probes. Plasma Sources Science and Technology. 1998, 7: 119-129.
    
    [12] Godyak V A, Piejak R B, Alexandrovich B M. Experimental setup and electrical characteristics of an inductively coupled plasma. Journal Of Applied Physics. 1999, 85(2): 703-712.
    [13] Czerwiec T, Graves D B. Mode transitions in low pressure rare gas cylindrical ICP discharge studied by optical emission spectroscopy. Journal of Physics. D: Applied Physics. 2004, 37: 2827-2840.
    [14] Kang D H, Lee D K. Ion energy distribution change at the transition of power-coupling modes in an immersed-coil-type inductively coupled Ar discharge. Applied Physics Letters. 2004, 84(17): 3283-3285.
    [15] Chiu K F, Barber Z H. Characterization of inductively coupled plasma in the ionized physical vapor deposition system. Journal of Applied Physics. 2002, 91(4): 1797-1803.
    [16]Wang W,Foster J.An rf sustained argon and copper plasma for ionized physical vapor deposition of copper.Journal of Applied Physics.1999,85(11):7556-7561.
    [17]吴自勤,王兵.薄膜生长.北京:科学出版社.2001,178-185.
    [18]杨烈宇,关文铎,顾卓明.材料表面薄膜技术.北京:人民交通出版社.1991,89-95.
    [19]刘瑞鹏,李刘合.磁控溅射镀膜技术简述.科技前沿.2006,8:56-59.
    [20]刘红飞,程晓农,徐桂芳等.RF磁控溅射制备Al_2O_3薄膜及其介电性能研究.材料开发与应用.2007,22(1):5-8.
    [21]王玉恒,马瑾,计峰等,射频磁控溅射法制备SnO_2:Sb薄膜的结构和光致发光性质研究.物理学报.2005,54(4):1731-1735.
    [22]赵云清.溅射功率对RF磁控溅射HfO_2薄膜介电特性的影响.科技咨询导报.2007,26:21.
    [23]黄宝歆.用射频磁控溅射法制备金属/半导体颗粒膜.大学物理.2007,26(9):43-51.
    [24]金桂,周继承,射频磁控溅射SiO_2薄膜的制备与性能研究.武汉理工大学学报.2006,28(8):12-15.
    [25]曹培江,姜志刚,李俊杰等.射频磁控溅射CN_x薄膜的结构与衬底温度关系的研究.高等学校化学学报.2002,23(2):275-278.
    [26]郭大刚,刘正堂,宋健全等.射频磁控溅射GaP薄膜的光学性能.红外技术.2002,24(4):49-52.
    [27]王卿璞,张德恒,薛忠营.射频磁控溅射ZnO薄膜的光致发光.半导体学报.2003,24(2):157-161.
    [28]宋学萍,周旭,孙兆奇.射频磁控溅射ZnO薄膜的结构和应力特性.合肥工业大学学报(自然科学版).2007,30(9):1117-1120.
    [29]Na H D,Park H S,Jung D H et al.A study on the low temperature coating process by inductively coupled plasma assisted DC magnetron sputtering.Surface and Coatings Technology.2003,169-170:41-44.
    [30]Jung S J,Han Y H,Koo B M et al.Low temperature deposition of Al-doped zinc oxide films by ICP-assisted reactive DC magnetron sputtering.Thin Solid Films.2005,475:75-278.
    [31]Tadashi Nakamura,Kunio Okimura.Ti ion density in inductively coupled plasma enhanced dc magnetron sputtering.Vacuum.2004,74:391-395.
    [32]Rossnagel S M,Hopwood J.Magnetron sputter deposition with high levels of metal ionization.Applied Physics Letters.1993,63(24):3285-3287.
    [33]Rossnagel S M and Hopwood J.Metal ion deposition from ionized magnetron sputtering discharge.J.Vac.Sci.Technol.1994,B12(1):449-453.
    [34]Wang W,Foster J,Wendt A E et al.Magnetic field enhanced rf argon plasma for ionized sputtering of copper.Applied Physics Letters.1997,71(12):1622-1624.
    [35]Meng W J,Meletis E I,Rehn L E et al.Inductively coupled plasma assisted deposition and mechanical properties of metal-free and Ti-containing hydrocarbon coatings.Journal of Applied Physics.2000,87(6):2840-2848.
    [36]Fujimaki S,Kashiwase,Kokaku Y.New DLC coating method using magnetron plasma in an unbalanced magnetic field.Vacuum.2000,59:657-664.
    [37]Overzet L J,Hopkins M B.Comparison of electron-density measurements made using a Langmuir probe and microwave interferometer in the Gaseous Electronics Conference reference reactor.Journal Of Applied Physics.1993,74:4323-4330.
    [38]ChinWook Chung.Experimental investigation on the floating potential of cylindrical Langmuir probes in non-Maxwellian electron distributions.Physics of Plasmas.2005,12(12):123505-123505-3.
    [39]Mezei P,Cserfalvi T,Csillag L.The spatial distribution of the temperatures and the emitted spectrum in the electrolyte cathode atmospheric glow discharge.Journal of Physics.D:Applied Physics.2005,38:2804-2811.
    [40]辛仁轩.等离子体发射光谱分析.北京:化学工业出版社.2005,43-47.
    [41]吴国安.光谱仪器设计.北京:科学出版社.1978,86-89.
    [42]陈新坤.原子发射光谱分析原理.天津:天津科学技术出版社.1991,168-185.
    [43]Vanderbecq A C,Wautelet M.Diagnostics of inductively amplified magnetron discharges by optical emission,absorption spectroscopy,and Langmuir probe measurements.Journal of Applied Physics.1998,84(1):100-106.
    [44]Spolaore M,Antoni V,Bagatin M.Automatic Langmuir probe measurement in a magnetron sputtering system.Surface and Coatings Technology.1999,116-119:1083-1088.
    [45]张光华.等离子体与成膜基础.北京:国防工业出版社.1994,186-201.
    [46]王恩耀.在RF等离子体中应用的探针和离子能量分析技术.核聚变与等离子体物理.1988,(3):129-132.
    [47]姚若河,池凌飞,林璇英等.射频辉光放电等离子体的电探针诊断及数据处理.物理学报.2000,49:922-925.
    [48]池凌飞,林揆训,姚若河.Langmuir单探针诊断射频辉光放电等离子体及其数据处理.物理学报.2001,50:1313-1317.
    [49]Hopwood J,Guarnieri C R,Whitehair S J et al.Langmuir probe measurements of a radio frequency induction plasma.Journal of Vacuum science and technology.1993,A11:152-156.
    [50]Tuszewski M,Tobin J A.The accuracy of Langmuir probe ion density measurements in low-frequency RF discharges.Plasma Sources Science and Technology.1996,5(4):640-647.
    [51]邓新绿.Langmuir探针实验.大连理工大学物理系讲义.2005,10月
    [52]Chang C Y,Sze S M.ULSI Technology.The McGraw-Hill Company,Inc.1996:372-471.
    [53]Torres J.Advanced copper interconnections for silicon CMOS technologies.Applied Surface Science.1995,91:112-123.
    [54]Gandikota S,Voss S,Tao R et al.Adhesion studies of CVD copper metallization.Microelectr Engng.2000,50:547-553.
    [55]Kim S,Park J M,Choi D J.The carrier gas and surface passivation effects on selectivity in chemical vapor deposition of copper films.Thin Solid Films.1998,320:95-102.
    [56]Bollmann D,Merkel R,Klumpp A.Conformal copper deposition in deep trenches.Microelectr Engng.1997,37/38:105-110.
    [57]吴德鑫.迈进二十一世纪的集成电路.世界科技研究与发展.1999,21(4):1-3.
    [58]Pramanik D,Saxena A N.VLSI metallization using aluminum and its alloys.Solid State Tech.1983,26(1):127-133.
    [59]施敏.半导体器件—物理与工艺.王阳元,嵇光大译.北京:科学出版社.1992.412-489.
    [60]Murarka S P.Multilevel interconnections for ULSI and GSI era.J.Mater Sci.Eng.R19.1997,(3-4):87-151.
    [61]陶波,王崎.化学气象沉积铜薄膜研究进展.真空科学与技术.2003,23(5):340-346.
    [62]马洁荪.中国集成电路多层布线工艺技术的实践及发展方向.微电子技术.1999,27(3):54-57.
    [63]Siemroth P,Schulke T.Copper metallization in microelectronics using filtered vacuum arc eposition—principles nd technological development.Surf.Coaf.Technol.2000,133-134:106-113.
    [64]Hayden B,Juliano D R,Neumann M N et al.Helicon plasma source for ionized physical vapor deposition.Surf.Coaf.Technol.1999,120-121:401-404.
    [65]Kelly P J,Arnell R D.Magnetron sputtering:a review of recent developments and applications.Vacuum.2000,56:159-172.
    [66]姚若河,邹心遥,张红等.用磁控溅射法制备Cu薄膜的研究.广西物理.2004,25(1):14-16.
    [67]Kim D H,Wentorf R H,Gill W N.Low pressure chemical vapor deposition copper films for advanced device metal metallization.J.Electrochem.Soc.1993,140(11):3273-3279.
    [68]茅敦民,连志睿,金忠(告羽).激光化学气相沉积法制备铜膜的性能与形态分析.量子电子学.1995,12(2):169-173.
    [69]陈先带,张红,赵寿南.磁控溅射Cu膜之Cu/SiO2/Si结构的应力.华南理工大学学报(自然科学版).2002,30(5):29-32.
    [70]杨杰,范玉殿,陶琨.氩离子束辅助淀积Cu/Si薄膜相变研究.真空科学与技术.1994,14(3):187-191.
    [71]马洁荪.中国集成电路多层布线工艺技术的实践及发展方向.微电子技术.1999,27(3):54-57.
    [72]Dickson M,Zhong G,Hopwood J.Radial uniformity of an external-coil ionized physical vapor deposition source.J.Vac.Sci.Technol.B.1998,Mar/Apr16(2):523-531.
    [73]徐学基,诸定昌.气体放电物理.上海:复旦大学出版社.1996,106-108.
    [74]Griem H R.Plasma Spectroscopy.New York:McGraw-Hill Inc.1964,129-168.
    [75]江祖成,胡斌,彭天右等.原子发射光谱分析.分析实验室.2001,21(2):101-108.
    [76]Bogearts A,Gijbels R.Modeling of metastable argon atoms in a direct-current glow discharge.Phys.Rev.A.1995,52(5):3743-3751.
    [77]NIST Atomic Spectra Database(ver2.0)2003,Gaitherburg,MD:National Institute of Standards and Technology(http://www.nist.gov/srd)
    [78]Takeo Na,Noriyuki O,Shigeru B.Pressure dependence of optical emission from DC magnetron sputtering plasma observed with spatial resolution.Vacuum.2000,59:581-585.
    [79]Tang X M,Manos D M.Optical emission studies and neutral stream characterization of a surface reflection materials processing source.J.Vac.Sci.Technol.2000,A18(4):1359-1365.
    [80]El-Fayoumi I M,Jones I R,Turner M M.Hysteresis in the E- to H-mode transition in a planar coil,inductively coupled rf argon discharge.J.Phys.D:Appl.Phys.1998,31(21):3082-3094.
    [81]Zhang J L,Yu S J,Ma T C.Optical emission kinetics of argon inductively coupled plasma and argon dielectric barrier discharge.Vacuum.2002,65:327-333.
    [82]Watanabe M,Shaw D M,Collins G J et al.Radio Frequency Plasma Potential Variation Originating from the Coil Antenna in Inductively Coupled Plasma.J.Appl.Phys.1999,85(7):3428-3434.
    [83]张云驰,赵夔,张保澄.用自洽的蒙特卡罗-流体结合模型模拟溅射过程.强激光与粒子束.2000,12(2):196-200.
    [84]林揆训,余云鹏,林璇英等.射频辉光放电等离子体的电探针诊断.核聚变与等离子体物理1994,14:56-64.
    [85]1997 SmartProbe:Installation and Software Manual(Scientific Systems,Ltd)
    [86]Wendt A E.Passive external radio frequency filter for Langmuir probes.Review of Scientific Instruments.2001,72(7):2926-2930.
    [87]霍伟刚.射频感应耦合等离子体调谐基片自偏压特性的实验研究:(硕士学位论文).大连:大连理工大学,2005.
    [88]Field D J,Dew S K,Burrell R E.Spatial survey of a magnetron plasma sputtering system using a langmuir probe.Journal of Vacuum science and technology.2002,A20(6):2032-2041.
    [89]Hopkins M B,Graham W G.Langmuir probe technique for plasma parameter measurement in a medium density discharge.Review of Scientific Instruments.1986,57(9):2210-2217.
    [90]Tao W H,Prelas M A,Yasuda H K.Spatial distributions of electron density and electron temperature in direct current glow discharge.Journal of Vacuum science and technology.1996,A14(4):2113-2121.
    [91]金佑民,樊友三.低温等离子体物理基础.北京清华大学出版社.1983:164-165.
    [92]杨孝龙.电感耦舍高频放电等离子体的产生机理及其物理图象.渭南师专学报(自然科学版).1998,13(5):23-27.
    [93]J Musil.Planar magnetron with additional plasma confinement.Vacuum.1995,46(4):341-347.
    [94]Suzuki T,Sawado Y,Iida T et al.Diagnosis of plasmas in compact ECR ion source equipped with permanent magnet.Review of Scientific Instruments.2004,75(5):1520-1522.
    [95]Petr Spatenka,Igor Leipner,Jaroslav Vlcek et al.A comparison of internal plasma parameters in a conventional planar magnetron and a magnetron with additional plasma confinement.Plasma Sources Science and Technology.1997,6:46-52.
    [96]国家自然科学基金委员会.等离子体物理学.北京:科学出版社.1994
    [97]胡耀志,黄光周,于继荣.机电产品微细加工技术和工艺.广州:广东科技社.1993
    [98]Szuki K,Okudaira S,Sakudo N et al.microwave plasma etching.Jpn.J.Appl.Phys.1997,16(11):1979-1984.
    [99]Popov O A.Characteristics of electron cyclotron resonance plasma sources.J.Vac.Sci.Technol.1989,A7(3):894-898.
    [100]Asmussen J.Electron cyclotron resonance microwave discharges for etching and thin film deposition.J.Vac.Sci.Technol.1989,A7(3):883-893.
    [101]Steinberg G N,Reeinberg A R.Apparatus for the etching for semiconductor devices.US Patent.Surgace finishing,4368092.1983
    [102]Chen F F.Plasma ionization by helicon waves.Plasma Phys.and Controlled Fusion.1991,33(4):339-346.
    [103]Cook J M,Ibbotson D E,Flamm D L.Application of a low pressure radio frequency discharge source to polysilicon gate etching.J.Vac.Sci.Technol.1990,B8(1):1-4.
    [104]Carter J B,Holland J P,Peltaer E et al.Transformer coupled plasmas etch technology for the fabrication of subhalf micron structures.J.Vac.Sci.Technol.1993,A11(4):1301-1306.
    [105]Patrick R,Schoenborn P,Toda H.Application of a high density inductively coupled plasma reacotor to polysilicon etching.J.Vac.Sci.Technol.1993,A11(4):1296-1300.
    [106]Inberg A,Shacham-Diamand Y,Rabinovich E et al.Electroless-deposited Ag-W films for microelectronics applications.Thin Solid Films.2001,389:213-218.
    [107]Cao D M,Wang T,Feng B et al.Amorphous hydrocarbon based thin films for high-aspect-ratio MEMS applications.Thin Solid Films.2001,398-399:553-559.
    [108]Kwok T,Finnegan J,Johnson D.Effects of linelength and bend structure on electromigration lifetime in Al-Cu submicron interconnects.IEEE VLSI Multilevel Interconnection Conf.(Santa Clara,CA),1988.436-445.
    [109]吴德馨.迈进二十一世纪的集成电路[J].世界科技研究与发展,1999,21(4):1-3.
    [110]Harper J M E,Colgan E G,Hu C K et al.Materials issues in copper interconnections.MRS Bulletin.1994,23-29.
    [111]Murarka S P.Multilevel interconnections for ULSI and GSI era.J.Mater.Sci.Eng.1997,R19(3-4):87-151.
    [112]Hopwood J.Review of inductively coupled plasmas for plasma processing.Plasma Sources Sci.Technol.1992,1:109-116.
    [113]Keller J H,Foster J C,Barnes M S.Novel radio-frequency induction plasma processing techniques.J.Vac.Sci.Technol.1993,A11(5):2487-2491.
    [114]E.利弗森 主编.叶恒强等译.材料的特征检测(二).科学出版社,1998.
    [115]XU J,MAT C,LU W Q,DENG X L.A New Method for Thin Film Deposition:Faced Microwave Electron Cyclotron Resonance Plasma Sources Enhanced Direct Current Magnetron Sputtering.Chinese Physics Letters.2000,17(8):586-588.
    [116]Rossnagel S M,Hopwood J.Metal iondeposition from ionized magnetron sputtering discharge.J.Vac.Sci.Technol.1994,B12(1):449-453.
    [117]Choi n M,Choi S K,Anderson O et al.Influence of film density on residual stress and resistivity for Cu thin films deposited by bias sputtering.Thin Solid Films.2000,358:202-205.
    [118]Yoon Y S,Kim K H,Jang H G et al.Characteristics of Cu thin films on a glass substrate by partially ionized beam deposition at room temperature.J.Vac.Sci.Technol.1996,A14(4):2517-2521.
    [119]Lim Jongmin,Lee Chongmu.Enhancement of Cu nucleation in Cu-MOCVD by Pd sputtering pretreatment.Solid-State Electronics.2001,45(12):2083-2088.
    [120]Rudigier H,Bergmann E,Vogel J.Properties of ion-plated TiN coatings grown at low temperatures.Surf.Coat.Technol.1988,36:675-682.
    [121]LosbichlerP,Mitterer C.Non-reactively sputtered TiN and TiB2 films:influence of activation energy on film growth.Surf.Coat.Technol.1997,97:567-573.
    [122]Okolo B,lamparter P,Welzel U et al.The effect of deposition parameters and substrate surface condition on texture,morphology and stress in magnetron-sputter-deposited Cu thin films.Thin Solid Films.2005,474:50-63.
    [123] Liu C S, Chen L J. Effects of substrate cleaning and film thickness on the epitaxial growth of ultrahigh vacuum deposited Cu thin films on (001) Si. Appl Surf Sci. 1996, 92: 84-88.
    [124] Perez-prado M T, Vlassak J J. Microstructural evolution in elect roplated Cu thin films. Scr Mater. 2002, 47: 817-823.
    [125] Benouattas N, Mosser A, Bouabellou A. Etching effect on the texture and the stress of copper layers evaporated on Si (100). Mater Sci Eng A. 2000, 288: 253-256.
    [126] Lim J W, Isshiki M. Electrical resistivity of Cu films deposited by ion beam deposition: Effects of grain size, impurities, and morphological defect. J. Appl. Phys. 2006, 99: 094909-1-7.
    [127] Koh S K, Choi W K, Kim K H et al. Cu films deposited by a partially ionized beam (PIB). Thin Solid Films. 1996, 287: 266-270.
    [128] Mayadas A F, Shatzkes M. Electrical-resistivity model for polycrystalline films: the case of arbitrary reflection at external surfaces. Phys. Rev. B. : Cond. Matter. 1970, 1(4): 1382-1389.
    [129] Liu H D, Zhao Y P, Ramannath G et al. Thickness dependent electrical resistivity of ultrathin (|<|40 nm) Cu films. Thin Solid Films. 2001, 384: 151-156.
    [130] Lim J W, Miyake K, Isshiki M. Characteristics of ion beam deposited copper thin films as a seed layer: effect of negative substrate bias voltage. Thin Solid Films. 2003, 434: 34-39.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700