超声造影在乳腺癌诊断及疗效评估中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分乳腺癌超声造影表现与生物预后因子及微血管密度相关性的研究
     研究目的:乳腺癌是一种血管依赖性病变,其生长、浸润和转移与新生血管密切相关。超声造影技术的发展使研究肿瘤的微循环灌注成为可能。本研究采用超声造影技术对乳腺浸润性导管癌进行动态观察,分析乳腺癌超声造影表现,并将乳腺癌的增强特征及血流灌注参数与其生物预后因子及微血管密度的相关性进行初步评估,旨在为乳腺癌的血管生成及预后研究提供依据。
     研究方法:选取2010年10月至2012年2月在我院进行超声造影检查并经穿刺或手术病理证实为乳腺浸润性导管癌的45例患者,肿瘤最大直径9~86mmm,平均(30.5±18)mm。采用Philips公司IU22超声检查仪,L9-3宽频线阵探头与L5-1探头,超声造影剂为意大利Bracco公司的SonoVue,经肘正中静脉弹丸式注射4.8ml。分析乳腺癌超声造影增强特征,包括造影灌注模式、造影剂分布是否均匀、内部有无灌注缺损、造影剂进入的顺序、增强形态是否规则、边界是否清晰、周边有无扭曲或穿入血管等。并采用QLAB分析软件对肿瘤边缘和中心区域及周围正常乳腺组织取样获得时间-强度曲线,分析血流灌注参数指标,包括上升时间(RT)、峰值强度(PI)、达峰时间(TTP)、流入斜率(WIS)、平均渡越时间(MTT)等。将手术或穿刺病理标本进行HE染色利免疫组化染色,以细胞核、细胞膜或细胞浆内出现棕黄色颗粒为阳性标准,对乳腺癌生物预后因子,包括ER、PR、c-erb-B2、p53及Ki-67的表达结果进行判定,同时对肿瘤组织的微血管密度(MVD)进行计数。将超声造影增强特征及血流灌注参数与肿瘤预后因子、MVD结果进行相关性分析。
     结果:1.乳腺癌超声造影增强特征:45例乳腺癌造影后除2例(4.4%)无增强外,其余43例(95.6%)均出现不同程度增强。其中25例(55.6%)不均匀增强,14例(31.1%)均匀增强,4例(8.9%)周边增强。27例(60%)有血流灌注缺损;37例(82.2%)增强形态不规则;25例(55.6%)向心性增强;32例(71.1%)有穿支血管;34例(75.6%)增强边界不清晰。
     2.乳腺癌造影血流灌注参数分析:45例乳腺癌2例无增强外,43例(95.6%)造影时间-强度曲线表现为“快进快出”型或“快进慢出”型。肿瘤组织与周围正常乳腺组织相比,RT、TTP缩短,PI增高,WIS增大,差异有统计学意义(P<0.05);肿瘤边缘与肿瘤中心区域相比,TTP缩短,PI增高, WIS增大,差异有统计学意义(P<0.05);肿瘤直径≤2.Ocm和直径>2.Ocm两组血流灌注参数比较,差异无统计学意义(P>0.05)。
     3.乳腺癌造影增强特征与肿瘤预后因子相关性:不均匀增强多存在于直径>2cm肿瘤内;向心性增强多发生在ER阴性肿瘤内;穿支血管在组织学分级高、直径>2cm肿瘤内多见;血流灌注缺损常见于ER阴性、c-erb-B2阳性、Ki-67阳性及直径>2cm肿瘤内。以血流灌注缺损判断ER表达的灵敏性为86.7%,特异性为53.3%,约登指数为40%;判断Ki-67表达的灵敏性为78.2%,特异性为59.1%,约登指数为37.3%。肿瘤增强形态及增强边界与预后因子的表达无明显相关(P>0.05)。
     4.乳腺癌造影表现与肿瘤MVD相关性:肿瘤不均匀增强、血流灌注缺损均与高MVD有关(P<0.05);肿瘤增强形态、增强边界及穿支血管与MVD无明显相关(P>0.05)。高MVD组PI大于低MVD组,两组差异有统计学意义(P<0.05)。而RT、TTP及WIS两组间差异无统计学意义(P>0.05)。
     结论:1.超声造影不仅可以反映恶性肿瘤的形态学特征,还可以定量评价肿瘤的微循环灌注情况。
     2.乳腺癌超声造影的某些增强特征与肿瘤生物预后因子有一定的相关性,可以对肿瘤的浸润、转移进行在体评价,在一定程度上反映了肿瘤的预后。
     3.乳腺癌超声造影的某些增强特征及血流灌注参数与MVD有一定的相关性,可以作为评价肿瘤血管生成的依据。
     第二部分超声造影在乳腺癌新辅助化疗疗效评估中的应用价值
     研究目的:乳腺癌新辅助化疗已成为局部进展期乳腺癌系统治疗的常规方案,它的合理应用迫切需要切实有效的方法来动态监测并及时评价疗效。尽管常规超声已应用于乳腺癌新辅助化疗疗效的评估中,但其对于肿瘤大小测量的准确性一直受到质疑。本研究应用实时超声造影技术观察乳腺癌新辅助化疗前后原发灶的大小变化以及血流灌注参数变化,并与常规超声相比较,探讨超声造影在评估乳腺癌新辅助化疗疗效中的临床应用价值。
     研究方法:选取2010年10月至2012年2月间收入我院进行新辅助化疗并最终手术的乳腺浸润性导管癌患者31例,肿瘤最大径22~108mm,平均(43±19)mm。所有患者均在新辅助化疗前经粗针穿刺活检并组织病理学检查证实为乳腺浸润性导管癌(Ⅱ~Ⅲ级)。采用Philips公司IU22超声检查仪,L9-3宽频线阵探头与L5-1探头。超声造影剂为SonoVue (Bracco, Italy)4.8ml,经肘正中静脉弹丸式注入。常规超声确定原发灶的部位,测量肿瘤最大切面相互垂直的两个径线;彩色多普勒观察肿瘤的血流等级;超声造影分析造影前后原发灶大小变化及造影增强强度、血流灌注参数指标,并同时比较化疗前后原发灶大小变化及血流灌注参数变化。31例患者分别于化疗开始前、化疗三个周期结束后进行超声及超声造影检查。
     新辅助化疗用药方案:表柔比星(EPI)60mg/m2,第1天静脉滴注;多西他赛(DOC)75mg/m2,第1天静脉滴注。21天为一个周期,应用三个周期。新辅助化疗结束后,所有病人行乳腺全切手术。
     结果:1.乳腺癌新辅助化疗前后原发灶大小改变:31例乳腺癌新辅助化疗后25例(80.6%)疗效缓解,4例(12.9%)疗效稳定,2例(6.5%)疾病进展。超声造影增强范围比常规超声测值增大,与手术标本大小显著相关,r值为0.976。常规超声测值小于手术标本,两者差异有显著性(P<0.05)。
     2.超声造影评价乳腺癌新辅助化疗前后肿瘤血流灌注改变:常规超声显示化疗后肿瘤血流等级大部分从2-3级降至0-1级;超声造影显示化疗后除2例(6.5%)肿瘤增强强度较化疗前增加外,28例(90.3%)增强强度不同程度降低。有1例(3.2%)化疗前无血流灌注者化疗后内部可见不均匀血流灌注,而其大小化疗前后并无改变。超声造影较常规超声对肿瘤坏死液化区检测更敏感。超声造影显示化疗前可见肿瘤内血流灌注灌注缺损26例(83.9%),化疗后灌注缺损27例(87.1%)。而常规超声在化疗前后肿瘤内均未显示坏死液化区。
     3.超声造影时间一强度曲线可以定量观察新辅助化疗前后血流灌注参数改变,常规超声不具备此功能。将化疗前后血流灌注参数进行比较,化疗后肿瘤达峰时间增加,峰值强度降低,流入斜率减小(P<0.05),而上升时间、平均渡越时间化疗前后差异无统计学意义(P>0.05)。
     结论:1.超声造影不仅较常规超声更精确测量乳腺癌新辅助化疗前后肿瘤大小改变,而且可以显示肿瘤内部血流灌注缺损的存在,灌注缺损可作为预测化疗反应的重要指标。
     2.超声造影可以定性定量评估化疗前后肿瘤内部血流灌注变化,肿瘤血流灌注变化早于肿瘤形态学改变,是判断肿瘤存活的主要指标之一,应用超声造影可以更早期评价和预测乳腺癌新辅助化疗疗效。
Part1
     Association of contrast-enhanced ultrasound characteristics with biological prognostic factors and microvessel density in breast cancer
     Objective:Breast cancer is a vascular-dependent lesion, and its growth, infiltration and metastasis are closely related to the neovascularization. The development of contrast-enhanced ultrasound (CEUS) technology make it possible to reveal the tumor microcirculation. The aim of the study was to analyse the CEUS enhancement characteristics of invasive ductal carcinoma, and to investigate the association of CEUS enhancement characteristics and blood perfusion parameters with prognostic factors and microvessel density (MVD), which can be helpful to evaluate the tumor angiogenesis and prognosis.
     Methods:From October2010to February2012,45consecutive breast cancer patients were studied by CEUS. All patients were diagnosed with invasive ductal carcinoma on the basis of biopsy or surgery results. The tumor size was an average of (30.5±18) mm, ranging from9to86mm. Color Doppler Ultrasound Philips iU22with L9-3and L5-1probes were used in this study. The contrast agent used was SonoVue (Bracco, Italy). All patients accepted an elbow intravenous bolus injection of4.8ml. Breast cancer enhancement characteristics at CEUS imaging, including enhancement pattern, internal homogeneity, perfusion defect, enhancement order, margin, and penetrating vessels was analyzed. QLAB software was used with CEUS imaging to obtain the time-intensity curve of the periphery and inside region of tumor, and blood perfusion parameters (rising time, RT; time to peak, TTP; peak intensity, PI; wash-in slope, WIS; mean transit time, MTT) was evaluated. Pathologic prognostic factors, including estrogen receptor (ER) and progesterone receptor status (PR), c-erb-B2, p53, and Ki-67expression were determined by immunohistochemical staining, which considered positive when membranous or nuclear staining was observed. And the MVD were count. Association of CEUS enhancement characteristics with prognostic factors and MVD results was analyzed.
     Results:1. CEUS enhancement characteristics of breast cancer. For2cases (4.4%) without contrast agent perfusion in CEUS imaging, blood perfusion was observed in43cases (95.6%). The45malignancies displayed heterogeneous enhancement in25cases (55.6%), homogeneous enhancement in14cases (31.1%), peripheral enhancement in4cases (8.9%). Local blood perfusion defect was observed in27cases (60%), irregular enhancement shape in37cases (82.2%), centripetal enhancement in25cases (55.6%), penetrating vessels in32cases (71.1%) and poorly-defined margin in34cases (75.6%),
     2. CEUS blood perfusion parameters analysis. For2cases (4.4%) without contrast agent perfusion in CEUS imaging, the time-intensity curve of43cases was characterized as ascend rapidly and drop slowly or rapidly. Compared to that of the normal breast tissue, the RT and TTP seem faster (P<0.05), the PI and WIS seem higher in tumor tissues (P<0.05). Compared to that of the inside region of the tumor, TTP seem to be faster, PI and WIS seem higher in tumor periphery region (P<0.05). whereas blood perfusion parameters were no statistical differences in the2groups (≤2cm in diameter and>2cm in diameter)(P>0.05).
     3. Association of CEUS enhancement characteristics with prognostic factors. Heterogeneous enhancement was common in larger tumors (>2cm in diameter), and centripetal enhancement was common in negative ER expression. Penetrating vessel was found more often in the higher histologic grade and larger tumors. Perfusion defect was seen in negative ER expression, positive c-erb-B2expression, positive Ki-67expression and larger tumor diameter. The sensitivity, specificity and accuracy of perfusion defect for detection ER expression were86.7%,53.3%, and40%m, respectively. The sensitivity, specificity and accuracy of perfusion defect for detection Ki-67expression were78.2%,59.1%, and37.3%, respectively. The enhancement margin and enhancement shape showed no significant correlation with prognostic factors (P>0.05).
     4. Association of CEUS enhancement characteristics with MVD. Heterogeneous enhancement and perfusion defect were found more often in high-MVD group than in low-MVD group (P<0.05), whereas enhancement margin, enhancement shape and penetrating vessel showed no significant correlation with MVD (P>0.05). PI was higher in high-MVD group than that in low-MVD group (P<0.05), whereas the RT, TTP and WIS showed no significant correlation with MVD (P>0.05).
     Conclusions:1. CEUS not only evaluate the morphologic features of breast cancer, but also evaluate quantitatively the degree of blood perfusion.
     2. Some enhancement characteristics were associated with prognostic factors, which reflect in vivo the infiltration and metastasis of the tumor, and can be helpful to predict the breast caner prognosis.
     3. Some enhancement patterns and blood perfusion parameters were associated with MVD, which can be used as a quantitative basis for evaluation of tumor angiogenesis.
     Part2
     Potential application value of contrast-enhanced ultrasound in neoadjuvant chemotherapy of breast cancer
     Objective:Neoadjuvant chemotherapy (NAC) is the conventional treatment of choice for patients with locally advanced breast cancer. The reasonable application of NAC are pressing for a valuable tool to monitor and evaluate the response of breast cancer to neoadjuvant treatment. Although ultrasound (US) has applied to the efficacy evaluation of breast cancer, the accurate measurement of tumor sizes at US is still questioned all the time. The purpose of this study was to investigate the value of contrast-enhanced ultrasound (CEUS) in evaluating the response of breast cancer to NAC by assessing the tumor size changes and blood perfusion changes at CEUS before and after NAC.
     Methods:Thirty-one breast cancer patients treated with NAC (from2010.10until2012.02) and ultimately underwent surgery included. All patients were diagnosed with infiltrating ductal carcinoma (stage Ⅱ and Ⅲ) on the basis of results from a percutaneous core needle biopsy. The pre-therapy tumor size (at its longest dimension) was an average of (43±19) mm, ranging from22to108mm. Color Doppler Ultrasound Philips iU22(Philips, Bothell WA, USA) with Philips L9-3and L5-1probes were used in this examination. US was used to determine the site and maximum size of the primary tumor. Color Doppler was used to assess the grade of vascularization. CEUS was used to observe the tumor size changes, enhancement intensity and blood perfusion parameter changes before and after NAC. US and CEUS were performed for the31patients before and after3cycles NAC. The chemotherapy regimen included60mg/m2EPI intravenously (i.v.) on day1and75mg/m2DOC via i.v. on day1; these doses were repeated every21days for a total of3cycles prior to surgery. After completion of chemotherapy, all patients underwent mastectomy.
     Results:1. Tumor size changes before and after NAC. After NAC,25patients (80.6%) achieved a PR,4patients (12.9%) maintained a SD state, and2patients (6.5%) showed a PD state. The tumor sizes measured by CEUS were larger than those measured by US, and had high correlation with surgical specimens, with r values of 0.976. The sizes measured by US were smaller than the size of surgical specimens (P <0.05).
     2. Tumor blood perfusion changes before and after NAC. After NAC, US revealed the grade of vascularization decreased from the grade of2-3to0-1in most of the case. By comparison, the CEUS images revealed the enhancement intensity decreased in28cases (90.3%), but increased in2cases (6.5%). For one case (3.2%) without contrast agent perfusion in CEUS imaging pre-therapy, heterogeneous perfusion was observed post-therapy, while the tumor size remained stable. CEUS provided a more sensitive detection of the tumor necrosis. CEUS showed local blood perfusion defect in26cases (83.9%) prior to NAC, and27cases (87.1%) after NAC. However, the US did not show any necrosis liquefied areas in all cases before and after NAC.
     3. CEUS time-intensity curve analysis observed changes in blood perfusion quantitatively before and after chemotherapy, whereas US could not. After NAC, time to peak increased, peak intensity decreased, and wash-in slope decreased, with statistical differences between the two groups (P<0.05). However, the differences in the rise time and mean transit time were not statistically significant between the two groups (P>0.05).
     Conclusions:1. As compared with US, CEUS not only offers a more accurate measurement of the tumor size, but also reveals local blood perfusion defect in the tumor, which is critical for evaluating of breast cancer response to NAC.
     2. CEUS permits evaluation of the degree of blood perfusion in tumors qualitatively and quantitatively before and after NAC. Since a change in the tumor blood perfusion occurs earlier than a change in tumor size, which represents an indicator of the tumor survival, CEUS may represent a valuable tool for evaluating the early response of breast cancer to NAC.
引文
1. Jemal A, Siegel R, Xu J, et al. Cancer statistic. CA Cancer J Clin,2010,60(5): 277-300.
    2. Tabar L, Dean PB. Thirty years of experience with mammography screening:a new approach to the diagnosis and treatment of breast cancer. Breast Cancer Res. 2008,10(Suppl.4):S3.
    3. Autier P, Boniol M, La Vecchia C, et al. Disparities in breast cancer mortality trends between 30 European countries:retrospective trend analysis of WHO mortality database. BMJ 2010,341:c3620.
    4. Kushlinskii NE, Orinovskii MB, Gurevich LE.Expression of biomolecular markers (Ki-67, PCNA, Bcl-2, BAX, BclX, VEGF) in breast tumors. Bull Exp Biol Med,2004,137(2):182-185.
    5. Du WH, Liu LJ, Wang H, et al.The clinical significance of real-time contrast-enhanced ultrasonography in the differential diagnosis of breast tumor. Cell Biochem Biophys,2012,63(2):117-120.
    6. Saracco A, Szabo BK, Aspelin P, et al.Differentiation between benign and malignant breast tumors using kinetic features of real-time harmonic contrast-enhanced ultrasound. Acta Radiol,2012,53(4):382-388.
    7. Vallone P, D'Angelo R, Filice S, et al. Color-doppler using contrast medium in evaluating the response to neoadjuvant treatment in patients with locally advanced breast carcinoma. Anticancer Res,2005,25(1B):595-599.
    8. Zhao H, Xu R, Ouyang Q, et al. Contrast-enhanced ultrasound is helpful in the differentiation of malignant and benign breast lesions. Eur J Radiol,2010,73 (2): 288-293.
    9. Weidner N, Semple JP, Welch WR, et al. Tumor angiogenesisand metastasis correlation in invasive breast carcinoma. Nengl J Med,1991,324(1):1-8.
    10. Elston CW, Ellis IO.Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer:experience from a large study with long-term follow-up. Histopathology,1991,19(5):403-410.
    11. Liu H, Jiang YX, Liu JB, et al. Contrast-enhanced breast ultrasonography: imaging features with histopathologic correlation. J Ultrasound Med,2009, 28(7):911-920.
    12.刘书政,黄韬.磁共振动态增强对乳腺癌血管生成的研究.中国肿瘤临床,2005,32(9):516-519.
    13. Sedgwick E. The breast ultrasound lexicon:breast imaging reporting and data system (BI-RADS). Semin Roentgenol,2011,46(4):245-251.
    14. Costantini M, Belli P, Ierardi C. Solid breast mass characterization use of the sonographic BI-RADS classification. Radiol Med,2007,112(6):877-894.
    15.曹丹庆蔡祖龙.全身CT诊断学.北京人民军医出版社,1996,130-131.
    16.罗娅红,赵英杰,曲宁,等.54例乳腺浸润性导管癌的钼靶X线表现.肿瘤学杂志,2007,13(1):155-156.
    17. Jiang YX, Liu H, Liu JB, et al. Breast tumor size assessment:comparison of conventional ultrasound and contrast-enhanced ultrasound. Ultrasound Med Biol, 2007,33(2):1873-1881.
    18.方华,李凤华,夏建国,等.实时灰阶超声造影在乳腺肿瘤诊断中的应用研究.中国超声医学杂志,2007,23(6):423-425.
    19. Cassano E, Rizzo S, Bozzini A, et al. Contrast enhanced ultrasound of breast cancer. Cancer Imaging,2006,31(6):4-6.
    20. Hanby AM. The pathology of breast cancer and the role of the histopathology laboratory.Clinical Oncology,2005,17(4):234-239.
    21.李颖嘉,文戈,何洁.超声造影定量分析对乳腺良恶性肿瘤血流灌注异质性的评价.中华超声影像学杂志,2009,18(6):517-520.
    22. Nakopolou L, Stefanaki K, Panayotopoulou E, et al. Expression of the vasscular endothelial growth factor receptor-2/FIklin breast carcinomas:correlation with proliferation. Hum Pathol,2002,33(9):863-870.
    23.沈建红,林勇,沈嫱,等.应用曲线分析超声造影对乳腺癌的诊断价值.广东医学,2009,3(30):396-397.
    24. Caproni N, Marchisio F, Pecchi A, et al. Contrast-enhanced ultrasound in the characterisation of breast masses:utility of quantitative analysis in comparison with MRI. Eur Radiol,2010,20(6):1384-1395.
    25. Eisenbrey JR., Dave JK, Merton DA, et al. Parametric imaging using subharmonic signals from ultrasound contrast agents in patients with breast lesions. J Ultrasound Med,2011,30(1):85-92.
    26.杜文华,王晖,刘力嘉,等.实时超声造影在乳腺肿瘤鉴别诊断中的临床意义.临床超声医学杂志,2010,12(7):453-455.
    27. Saracco A, Aspelin P, Leifland K, et al. Bolus compared with continuous infusion of microbubble contrast agent using real time contrast harmonic imaging ultrasound in breast tumors. Acta Radiol,2009,50(8):854-859.
    28. Rizzatto G, Martegani A, Chersevani R, et al. Importance of staging of breast cancer and role of contrast ultrasound. Eur Radiol,2001, 11(Suppl 3):E47-51.
    29.刘赫,姜玉新,刘吉斌等.超声造影增强形式对乳腺病变的诊断价值.中华超声影像学杂志,2009,18(5):414-417.
    30. Huber S, Vesely M, Zuna I, et al. Fibroadenomas:computer assisted quantitative evaluation of contrast enhanced power Doppler features and correlation with histopathology. Ultrasound Med Biol,2001,27(1):325-330.
    31. Li BJ, Zhu ZH, Wang JY, et al. Expression correlation of Ki67 to P53, VEGF and C-erbB-2 genes in breast cancer and their clinical significances. Ai Zheng,2004,23(10):1176-1179.
    32.黄自明,赵倩倩,李杰.乳腺癌组织中C-erb-B2, p53, ER (?)PR的表达及临床意义.中华实用诊断与治疗杂志,2011,25(7):636-637.
    33. Gown AM. Current issues in ER and HER2 testing by IHC in breast cancer. Mod Pathol,2008,21(Suppl 2):S8-S15.
    34. Kulka J, Tokes AM, Toth AI, et al. Immunohistochemical phenotype of breast carcinomas predicts the effectiveness of primary systemic therapy. Magy Onkol, 2009,53(4):335-343.
    35. Iwase H, Ando Y, Ichihara S, et al. Immunohistochemical analysis on biological markers in ductal carcinoma in situ of the breast,2001,8(2):98-104.
    36. Guarneri V, Broglio K, Kau SW, et al.Prognostic value of pathologic complete response after primary chemotherapy in relation to hormone receptor status and other factors. Clin Oncol,2006,24(7):1037-1044.
    37. Craciunescu 01, Blackwell KL, Jones EL. DCE-MRI parameters have potential to predict response of locally advanced breast cancer patients to nadjuvant chemotherapy and hyperthermia:a pilot study. Int J Hyperthermia.2009,25(6): 405-415.
    38. Colpaert C, Vermeulen P, van Beest P, et al. Intratumoral hypoxia resulting in the presence of a fibrotic focus is an independent predictor of early distant relapse in lymphnode negative breast cancer patients. Histopathology,2001,39(4):416-425.
    39. Putti TC, El-Rehim DM, Rakha EA, et al. Estrogen receptor-negative breast carcinomas a review of morphology and immunophenotypical analysis. Mod Pathol,2005,18 (1):26-35.
    40. Wan CF, Du J, Fang H, et al. Enhancement patterns and parameters of breast cancers at contrast-enhanced US:correlation with prognostic factors. Radiology, 2012,262(2):450-459.
    41.Gasparini G. Prognostic value of vascular endothelial growth fact or in breast cancer. Oncologis t,2000,5(Suppl 1):37-44.
    42. Tuncbilek N, Unlu E, Karakas HM, et al. Evaluation of tumor angiogenesis with contrast-enhanced dynamic magnetic resonance mammography. Breast J 2003; 9(5):403-408.
    43. Szabo BK, Aspelin P, Kristoffersen Wiberg M, et al. Invasive breast cancer: correlation of dynamic MR features with prognostic factors. Eur Radiol,2003, 13(11):2425-2435.
    44. Su MY, Cheung YC, Fruehauf JP, et al. Correlation of dynamic contrast enhancement MRI parameters with microvessel density and VEGF for assessment of angiogenesis in breast cancer. J Magn Reson Imaging,2003,18(4):467-477.
    45.沈嫱,宋光辉,沈建红,等.超声造影与乳腺癌肿瘤微血管密度测定的相关性.中国医学影像技术,2009,25(3):441-444.
    46. Buadu LD, Murakami J, Murayama S, et al. Breast lesions:correlation of contrast medium enhancement patterns on MR images with histopathologic findings and tumor angiogenesis. Radiology,1996,200(3):639-649.
    1. Schwartz G. Neoadjuvant induction chemotherapy. Minerva Ginecol 2005,57(3): 327-348.
    2. Rajan R, Esteva FJ, Symmans WF. Pathologic changes in breast cancer following neoadjuvant chemotherapy implications for the assessment of response. Clin Breast Cancer,2004,5(3):235-238.
    3. Feldman L, Hortobagy G, Buzdar A, et al. Pathological assessment of response to induction chemotherapy in breast cancer. Cancer Res,1986,46(5):2578-2581.
    4. Partridge SC, Gibbs JE, Lu Y, et al. Accuracy of MR imaging for revealing residual breast cancer in patients who have undergone neoadjuvant chemotherapy. AJR,2002,179(5):1193-1199.
    5. Chagpar AB, Middleton LP, Sahin A A, et al. Accuracy of Physical examination, Ultrasonography, and Mammography in predicting residual pathologic tumor size in patients treated with neoadjuvant chemotherapy. Ann Surg,2006,243(2): 257-264.
    6. Rosen EL, Blackwell KL, Baker JA, et al. Accuracy of MRI in the detection of residual breast cancer after neoadjuvant chemotherapy. AJR Am J Roentgenol. 2003,181(5):1275-1282.
    7. Kumar A, Singh S, Pradhan S, et al. Dopple ultrasound scring to predict chemotherapeutic response in advanced breast cancer. World J Surg Oncol,2007, 5:99.
    8. Balu-Maestro C, Chapellier C, Bleuse A, et al. Imaging in evaluation of response to neoadjuvant breast cancer treatment benefits in MRI. Breast Cancer Res Treat 2002,72(2):145-152.
    9. Stuhrmann M, Schwarz T, Schietzel M. Breast cancer recurrence versus scar. Ultrasonographic differentiation using Levovist as the contrast medium. Ultraschall Med 2001,22(1):2-6.
    10. Balleyguier C, Opolon P, Mathieu MC, et al. New potential and applications of contrast-enhanced ultrasound of the breast:Own investigations and review of the literature. European Journal of Radiology 2009,69(1):14-23.
    11. Adler DD, Carson PL, Rubin JM, et al. Dopple ultrasound color flow imaging in the study of breast cancer:preliminary findings, Ultrasound MedBiol,1990, 16(6):553-559.
    12. Eisenhauer EA, Therasse P, Bogaerts J, et al. New response evaluation criteria in solid tumours:revised RECIST guideline (version 1.1). Eur J Cancer,2009,45(2): 228-247.
    13. Partridge SC, Gibbs JE, Lu Y, et al. MRI measurements of breast tumor volume predict response to neoadjuvant chemotherapy and recurrence-free survival. AJR 2005,184(6):1774-1781.
    14. Chen AM, Meric BF, Hunt K.K, et al. Breast conservation after neoadjuvant chemotherapy. Cancer 2005,103(4):689-695.
    15. Cheung YC, Chen SC, Su MY, et al. Monitoring the size and response of locally advanced breast cancers to neoadjuvant chemotherapy (weekly paclitaxel and epirubicin) with serial enhanced MRI. Breast Cancer Res Treat 2003, 78(1):51-58.
    16. Kong HL, Crystal RG. Gene therapy strategies for tumor antiangiogenesis. J Natl Cancer Inst,1998,90(4):273-286.
    17. Nesbit M. Abrogation of tumor vasculature using gene therapy. Cancer Metastasis Rev,2000; 19(1-2):45-49.
    18. Ricci P, Cantisani V, Cantisani L, et al. Benign and malignant breast lesion: efficacy of real time contrast enhanced ultrasound vs magnetic resonance imaging. Ultra schall Med,2007,28(1):57-62.
    19. Fischer DR, Baltzer P, Malich A, et al. IS the blooming sign a promisingadditional tool to determine malignancy in MR mammography. Eur Radiol,2004,14(3):394-401.
    20. Zhao H, Xu R, Ouyang Q, et al. Contrast-enhanced ultrasound is helpful in the differentiation of malignant and benign breast lesions. Eur J Radio,2010, 73(2):288-293.
    21. Liu H, Jiang YX, Liu JB, et al. Contrast-enhanced breast ultrasonography imaging features with histopathologic correlation. Ultrasound Med 2009, 28(7):911-920.
    22. Cassano E, Rizzo S, Bozzini A, et al. Contrast enhanced ultrasound of breast cancer. Cancer Imaging 2006,31(6):4-6.
    23. Colleoni M, Viale G, Zahrieh D, et al. Chemotherapy is more effective in patients with breast cancer not expressing steroid hormone receptors:a study of preoperative treatment. Clin Cancer Res.2004,10(19):6622-6628.
    24傅西林.组织病理学诊断.新编中国常见恶性肿瘤诊治规范乳腺癌分册.北京:北京医科大学中国协和医科大学联合出版社,1999:35.
    25. Moll UM, Chumas J. Morphologic effects of neoadjuvanty chemotherapy in locally advanced breast cancer. Pathol Res Pract,1997,193(3):187-196.
    26.左文述.现代乳腺肿瘤学.济南:山东科学技术出版社,2006:1094-1095.
    27. Hayes C, Padhani AR, Leach MO.Assessing changes in tumor vascular function using dynamic contrast-enhanced magnetic resonance imaging. NMR Biomed 2002,15(2):154-163.
    28. Padhani AR, Hayes C, Assersohn L, et al. Prediction of clinicopathologic response of breast cancer to primary chemotherapy at contrast-enhanced MR imaging:initial clinical results. Radiology 2006,239(2):361-374.
    29. Martincich L, Montemurro F, De Rosa G, et al. Monitoring response to primary chemotherapy in breast cancer using dynamic contrast-enhanced magnetic resonance imaging. Breast Cancer Res Treat,2004,83(1):67-76
    30. Loo CE, Teertstra HJ, Rodenhuis S, et al. Dynamic contrast-enhanced MRI for prediction of breast cancer response to neoadjuvant chemotherapy: initial results. AJR 2008,191(5):1331-1338.
    31. Greis C. Technology overview:SonoVue (Bracco, Milan). EurRadiol,2004, 14(Suppl.8):4-10.
    32. Chen XS, Nie XQ, Chen CM, et al. Weekly paclitaxel plus carboplatin is an effective nonanthracycline-containing regimen as neoadjuvant chemotherapy for breast cancer. Ann Oncol,2010,21(5):967-969.
    1. Jemal A, Siegel R, Xu J, et al. Cancer statistic. CA Cancer J Clin,2010,60(5): 277-300.
    2. Ahmad Z, Khurshid A, Qureshi A, et al. Breast carcinoma grading, estimation of tumor size, axillary lymph node status, staging and nottingham prognostic index scoring on mastectomy specimens. Indian JPathol Microbiol,2009,52(4):477-481.
    3. Sehgal CM, Weinstein SP, Arger PH, et al.A review of breast ultrasound. J Mammary Gland Biol Neoplasia,2006,11(2):113-123.
    4. Balleyquier C, Oplon P, M athieum MC, et al. New potential and applications of contrast-enhanced ultrasound of breast:own investigations and review of literature. Eur J Radio,2009,69(1):14-23.
    5. Zhao H, Xu R, Ouyang Q, et al. Contrast-enhanced ultrasound is helpful in the differentiation of malignant and benign breast lesions. Eur J Radio,2010, 73(2):288-293.
    6. Kettenbach J, Hellbich TH, Huber S, et al. Computer assisted quantitative assessment of power Doppler US:effects of microbubble contrast agent in the differentiation of breast tumors. Eur J Radiol,2005,53(2):238-244.
    7. Stuhrmann M, Aronius R, Schietzel M, et al. Tumor vascularity of breast lesions: potentials and limits of contrast enhanced Doppler sonography. Am J Roentgenal, 2000,175(6):1585-1589.
    8. Kedar RP, Cosgrove D, Mccready VR, et al. Microbubble contrast agent for color Doppler US effect on breast masses work in progress. Radiology,1996,198(3): 679-686.
    9. Jing Du, Feng-hua Li, Hua Fang, et al. Microvascular architecture of breast lesions:evaluation with contrast-enhanced ultrasonographic microflow imaging. J Ultrasound Med,2008,27(6):833-842.
    10.王琳,杜晶,方华,等.超声造影增强模式及QontraXt三维伪彩色定量分析 对乳腺病灶的定性诊断效能研究.中国超声医学杂志,2011,27(8):688-692.
    11. Liu H, Jiang YX, Liu JB, et al. Contrast-enhanced breast ultrasonography: imaging features with histopathologic correlation. J Ultrasound Med 2009; 28(7):911-920.
    12. Jiang YX, Liu H, Liu JB, et al. Breast tumor size assessment:comparison of conventional ultrasound and contrast-enhanced ultrasound. Ultrasound Med Biol, 2007,33(2):1873-1881.
    13. Madjar H, Prompeler H J, Del Faven C, et al.A new Doppler signal enhancing agent for flow assessment in breast lesions. Eur J Ultrasound,2000,12(2): 123-130.
    14. Zdemir A, Kilic K, Ozdemir H, et al. Contrast enhanced power Doppler sonography in breast lesions:effect on differential diagnosis after mammography and grayscle sonography. J Ultrasound Med,2004,23(2):183-195.
    15.王小燕,康利克,蓝春勇,等.超声造影鉴别诊断乳腺肿瘤.中国医学影像技术,2010,26(10):1904-1907.
    16.关少卿,罗葆明,智慧,等.超声造影时间强度曲线分析在乳腺良恶性肿瘤鉴别诊断中的应用.岭南现代临床外科,2006,6(3):181-182.
    17.张渊,江泉,陈剑,’等.超声造影时间强度曲线分析在乳腺肿瘤诊断中的应用.上海医学影像,2008,17(1):15-17.
    18.肖炜,郭庆禄,罗葆明,等.超声造影结合时间-强度曲线在乳腺肿瘤鉴别诊断中的应用.影像诊断与介入放射学,2007,16(5):211-214.
    19. Eisenbrey JR, Dave JK. Merton DA, et al. Parametric imaging using subharmonic signals from ultrasound contrast agents in patients with breast lesions. Ultrasound Med,2011,30(1):85-92.
    20.朱鹰,魏玺,李秀英.乳腺病变超声造影增强模式及时间-强度曲线分析.中华超声影像学杂志,2010,19(11):1010-1011.
    21.李颖嘉,文戈,杨莉,等.乳腺良恶性肿瘤微血管构筑的异质性及其血流动力学的功能变化.中华肿瘤杂志,2009,31(1):24-27.
    22. Huber S, Helbich T, Kettenbach J, et al. Effects of a microbubble contrast agent on breast tumors:computer assisted quantitative assessment with color Doppler US:early experience. Radiology,1998,208(2):485-489.
    23. Broumas AR, Pollar d RE, Bloch SH, et al. Contrast-enhanced computed tomography and ultrasound for the evaluation of tumor blood flow. Invest Radiol, 2005,40(3):134-147.
    24. Ricci P, Canisani V, Ballesio L, et al. Benign and malignant breast lesions: efficacy of real time contrast-enhanced ultrasound vs. magnetic resonance imaging. Ultraschall Med,2007,28(1):57-62.
    25. Sorelli PG, Cosgrove DO, Svensson WE, et al.Can Contrast-Enhanced Sonography Distinguish Benign From Malignant Breast Masses? Clin Ultrasound,2010,38(4):177-181.
    26. Cassano E, Rizzo S, Bozzini A, et al. Contrast enhanced ultrasound of breast cancer. Cancer imaging,2006,6:4-6.
    27. Forsberg F, Piccoli CW, Merton DA, et al. Breast lesions:imaging with contrast-enhanced subharmonic US —initial experiencel. Radiology,2007, 244(3):718-726.
    28.杜文华,王晖,刘力嘉,等.实时超声造影在乳腺肿瘤鉴别诊断中的临床意义.临床超声医学杂志,2010,12(7):453-455.
    29. Saracco A, Aspelin P, Leifland K, et al. Bolus compared with continuous infusion of mi crobubble contrast agent using real time contrast harmonic imaging ultrasound in breast tumors. Acta Radiol,2009,50(8):854-859.
    30. Rizzatto G, Martegani A, Chersevani R, et al.Importance of staging of breast cancer and role of contrast ultrasound. Eur Radiol,2001 11(Suppl 3):E47-51.
    31.刘赫,姜玉新,刘吉斌等.超声造影增强形式对乳腺病变的诊断价值.中华超声影像学杂志,2009,18(5):414-417.
    32. Huber S, Vesely M, Zuna I, et al. Fibroadenomas:computer assisted quantitative evaluation of contrast enhanced power Doppler features and correlation with histopathology. Ultrasound Med Bio 1,2001,27(1):325-330.
    33. Goldberg BB, Merton DA, Liu JB, et al. Contrast enhanced sonographic imaging of lymphatic channels and sentionel lymph nodes. J Ultrasound Med,2005,24 (7):953-965.
    34.米成嵘,何雁,王文.经皮下注射超声造影剂在乳腺肿块前哨淋巴结检测中的应用价值.中华超声影像学杂志,2010,19(11):970-973.
    35. Omoto K, Matsunaga H, Take N, et al. Sentionel node detection method using contrast enhanced ultrasonography with Sonazoid in breast cancer:preliminary clinical study. Ultrasound Med Biol,2009,35 (8):1249-1256.
    36王丰,张悦,肖芳,等.超声预测乳腺癌腋窝淋巴结转移的多因素分析.中华临床医师杂志(电子版),2011,5(8):2201-2206.
    37. Rubaltelli L, Khadivi Y, Tregnaghi A, et al.Evaluation of lymph node perfusion using continuous mode harmonic ultrasonography with a second genegration contrast agent. Ultrasound Med,2004,23(6):829-836.
    38.钟丽瑶,周平,李瑞珍,等.经皮下注射超声造影剂在乳腺癌前哨淋巴结诊断中的价值.中华超声影像学杂志,2007,6(9):770-772.
    39. Ouyang Q, Chen L, Zhao H, et al. Detecting metastasis of lymph nodes and predicting aggressiveness in patients with breast carcinomas. J Ultrasound Med. 2010,29(3):343-352.
    40.林清萍,欧阳秋芳,赵红佳,等.超声造影对乳腺癌腋窝淋巴结转移的诊断价值.中华乳腺病杂志(电子版),2009,3(2):154-162
    41.李静怡,韩锋,郑玮,等.经静脉与经皮超声造影鉴别诊断兔腋窝淋巴结良恶性.中国医学影像技术,2011,27(6):1111-1115.
    42. Baz E, Madjar H, Reuss C, et al.The role of enhanced Dopple ultrasound in differention of benign vs. malignant scar lesion after breast surgery for malignancy. Ultrasund Obster Gynecol,2000,15(5):377-382.
    43. Yang WT, Metreweli C, Lam PK, et al. Benign and malignant breast masses and axillary nodes evaluation with the echoenhanced color power Doppler US. Radiology,2001,22(3):795-802.
    44. Winehouse J, Douck M, Hlz K, et al. Contrast enhanced colour Doppler ultrasonography in suspected breast cancer recurrence. Br J Surg,1999,86(9): 1198-1201.
    45. Laforga JB, Aranda FI. Angiogenic index:a new method for assessing microvascularity in breast carcinoma with possible prognostic implications. Breast J,2000,6(2):103-107.
    46. Cavallaro U, Christofori G. Molecular mechanisms of tumor angiogenesis and tumor progression. J N eurooncol,2000,50(1-2):63-70.
    47.沈嫱,宋光辉,沈建红,等.超声造影与乳腺癌肿瘤微血管密度测定的相关性.中国医学影像技术,2009,25(3):441-444.
    48. Jing Du, Feng-Hua Li, Hua Fang, et al.Correlation of real-time gray scalecontrast-enhanced ultrasonography with microvessle density and vascular endothelial growth factor expression for assessment of angiogenesis in breast lesions. J Ultrasound Med,2008,27(6):821-831.
    49. Kim SW, Park SS. Correlation between color power Doppler sonographic measur ement of breast tumor vasculature and immunohistochemical analysis of microvessel density for the quantitation of angiogenesis. J Ultrasound Med,2002, 21(11):227-235.
    50. Kim SW, Par k SS, Ahn SJ, et al. Identification of angiogenesis in primary breast carcinoma according to the image analysis. Breast Cancer Research and Treatment,2002,74(2):121-129.
    51. Yang WT, Tse CM. Correlation between color power Doppler sonographic meaturement of breast tumor vasculature and immunohistochemical analysis of microvessel density for the quantitation of angiogenesis. J Ultrasound Med,2002, 21(11):227-235.
    52.张翠明,王泽,聂宏娟,等.乳腺肿瘤超声造影与微血管密度相关性的研究.实用医技杂志,2009,16(1):5-7.
    53. Wan CF, Du J, Fang H, et al. Enhancement patterns and parameters of breast cancers at contrast-enhanced US:correlation with prognostic factors.Radiology. 2012,262(2):450-459.
    54.李洋,黄俊辉.乳腺癌微血管生成及nm23表达的临床意义.中国普通外科杂志,2011,20(11):1268-1270.
    55. Schwartz G. Neoadjuvant induction chemotherapy. Minerva Ginecol 2005, 57(3):327-348.
    56. Warren RM, Bobrow LG, Earl HM, et al. Can breast MRI help in the management of women with breast cancer treated by neoadjuvant chemotherapy? Br J Cancer 2004,90(7):1349-1360.
    57. Hata T, Takahashi H, Watanabe K, et al. Magnetic resonance imaging for preoperative evaluation of breast cancer:a comparative study with mammography and ultrasonography. J Am Coll Surg 2004,198(2):190-197.
    58. Partridge SC, Gibbs JE, Lu Y, et al.Accuracy of MR imaging for revealing residual breast cancer in patients who have undergone neoadjuvant chemotherapy. AJR,2002,179(5):1193-1199.
    59. Rosen EL, Blackwell KL, Baker JA, et al.Accuracy of MRI in the detection of residual breast cancer after neoadjuvant chemotherapy. AJR Am J Roentgenol. 2003,181(5):1275-1282.
    60. Kumar A, Singh S, Pradhan S, et al. Dopple ultrasound scring to predict chemotherapeutic response in advanced breast cancer. World J Surg Oncol,2007, 5:99.
    61. Balu-Maestro C, Chapellier C, Bleuse A, et al. Imaging in evaluation of response to neoadjuvant breast cancer treatment benefits in MRI. Breast Cancer Res Treat, 2002,72(2):145-152.
    62. Chagpar AB, Middleton LP, Sahin AA, et al. Accuracy of Physical examination, Ultrasonography, and Mammography in predicting residual pathologic tumor size in patients treated with neoadjuvant chemotherapy. Ann Surg,2006,243(2): 257-264.
    63. Broillet A, Hantson J, Ruegg C, et al. Assessment of microvascular perfusion changes in a rat breast tumor model using SonoVue to monitor the effects of different anti-angiogenic therapies. Acad Radiol 2005,12(Supp.l):S28-33.
    64. Vallone P, D'Angelo R, Filice S, et al. Color-Doppler using contrast medium in evaluating the response to neoadjuvant treatment in patients with locally advanced breast carcinoma. Anticancer Res,2005,25(1B):595-599.
    65.赵丽,周晓东,于铭,等.超声及超声造影技术对乳腺癌新辅助化疗的疗效评价。中国超声医学杂志,2010,26(8):702-704.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700