自确认多功能传感器的关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自确认多功能传感器是一种不但能同时检测多个被测量,而且可在线确认自身工作状态的新型传感器,主要功能是:可对传感器故障进行检测和隔离,并用最佳估计值代替错误输出值实现数据恢复;可在线输出确认不确定度(Validated Uncertainty,VU)来指示确认测量值的准确度范围;可对多功能传感器健康评估。本课题得到国家自然科学基金资助,旨在研究各种状态自确认方法,解决自确认多功能传感器的若干关键技术问题。论文的主要研究内容如下:
     为验证研究的自确认多功能传感器关键技术的可行性,设计一种自确认多功能传感器实验系统,对多功能传感器进行标定和测试,在分析各敏感单元的失效机理及故障模式基础上,设计故障仿真和故障叠加电路来模拟产生各种真实故障,进而论证多故障时各种状态自确认方法的有效性。
     针对自确认多功能传感器的多故障检测及数据恢复问题,研究一种基于主元分析—小波相关向量机的数据自确认方法,将传统的单一故障扩展到多个故障。利用主元分析方法分析多敏感单元间的内在关系,研究测试样本在残差空间内投影量的变化次数与多故障检测的关系,以及该模型的故障检测能力。通过比较相关向量机(Relevance Vector Machine,RVM)在径向基、MexicanHat及Morlet小波等不同类型核函数下的预测性能,选取基于小波平移不变核函数的小波相关向量机预测器(Wavelet RVM,WRVM)来提高建模速度和抗噪性能,并利用WRVM模型进行多故障的在线隔离及其数据恢复,与神经网络方法相比,该方法在小样本条件下显著提高了数据恢复的精度和实时性。
     针对自确认多功能传感器的信号重构及其VU的在线评定问题,研究一种基于多变量相关向量机(Multivariate RVM,MVRVM)和确认的随机模糊变量(Validated Random Fuzzy Variables,VRFV)的确认测量值及其VU计算方法。在多功能传感器信号重构中的小样本和非线性条件下,MVRVM方法具有泛化性能好、稀疏性强和单模型多输出等优点,为此利用该方法进行多个被测物理量的确认测量值计算,与复合式RVM相比,提高了状态自确认效率。为进一步获取确认测量值的不确定度,在分析联合的数学变量VRFV的α cuts与不确定度的关系基础上,研究不同类型的故障对确认测量值的差异性影响,并针对传感器正常工作和故障两种情况,提出一种基于VRFV的VU评定方法。实验结果表明,该方法适用于自确认多功能传感器的在线VU评定,并利用传统的GUM方法对其有效性进行论证。
     针对自确认多功能传感器的健康评估问题,提出一种定量的基于健康可信度的健康评估方法。该方法将传统自确认传感器对单敏感单元测量值状态的评价,进一步扩展到对多功能传感器健康状况的综合评估,并分析多个敏感单元的相关性对传感器健康水平的影响。从局部的单敏感单元和整体的多功能传感器两个层面,本文重点分析和研究健康可信度的概念及其方法论原理,以量化形式直观表示其健康水平。实验结果表明,该方法能够如实反映不同健康水平的多功能传感器性能变化。
The self-validating multifunctional sensor is a novel sensor, which can detectmultiple measurands as well as validate its own status. Its main functions are asfollows: detect and isolate multiple faults of sensors; replace the incorrectmeasurements by an optional estimated value to implement the data recovery underfaults; indicate the accurate range of the validated mearurements value by means ofon-line validated uncertainty (VU); evaluate the health levels of the multifunctionalsensors. Our research is supported by National Natural Science Foundation of China,and it centers on the status self-validation approaches to solve several key issues ofself-validating multifunctional sensors. Major work has been done as follows:
     To verify the feasibility of the status self-validation methods, a self-validatingmultifunctional sensor experimental system is designed. The faults mechanism andmodes of all the sensitive units are analyzed; the faults simulation and additioncircuits are designed to produce and simulate real failures. The status self-validationfunctions are then tested and demonstrated under multiple faults.
     Aiming at the on-line multi-fault detection and recovery of self-validatingmultifunctional sensors, the principal component analysis (PCA) coupled withwavelet relevance vector machine (WRVM) strategy is studied to implement thedata validation, which has been expanded from traditional single fault to multipleones. The inner relationship among sensitive units is analyzed deeply by using PCAtheory, and then multi-faults detection issue as well as the PCA-based faultsdetection ability is stuied by means of monitoring the projection changes of testsamples in residual space. Compared with the predictive performance of relevancevector machine (RVM) under different kernel types such as radical basis function,Mexican Hat, and Morlet wavelet, the Mexican Hat-based WRVM predictor isselected to improve the generalization ability, training speed and performance ofsuppressing noise. The WRVM is emplyed to implement on-line multiple faultsisolation and recovery. Compared with neural network methods, WRVM canachieve higher accuracy and fewer burdens, and it is suitable for data recoveryunder small sample.
     Aiming at the signal reconstruction and on-line VU estimation of self-validating multifunctional sensors, the multivariate RVM (MVRVM) and validatedrandom fuzzy variables (VRFV) are propsoed to compute the valiated measurmentvalues and VU respectively. Under the small sample and non-linear problem ofmultifunctional sensor reconstruction, the status self-validation efficiency is stuied by using the MVRVM-based reconstruction mode, which has the goodgeneralization ability and can output multiple values with one model simultaneously.Compared with the compound multi-RVM model, MVRVM-based reconstructiontechnology has a30%reduction in computation burden. To solve the on-lineuncertainty estimation, the relationship between α cutsof the proposed VRFVand measurement uncertainty is deeply analyzed and the negative effects fromdifferent faults types are also studied. The VRFV-based VU estimation methodsunder both fault-free and faults situation are studied. The fuzzy logic rules are quitesimple; therefore, the computation burden among VRFVs is low enough to allow anonline estimation of the uncertainty. The experiment results have verified thatVRFV is very suitable for on-line VU estimation and the validity has been provenby the traditional GUM method under normal situation.
     Aiming at the novel health evaluation function of self-validatingmultifunctional sensors, the health reliability degree (HRD) is proposed to describethe health level in a quantitative way. The measurement value status estimation ofsingle sensitive unit in traditional self-validating technology has been expanded tothe comprehensive health estimation of multifunctional sensor, in which therelationship among multiple sensitive units is deeply analyzed. From views of singlesensitive unit and overall multifunctional sensor, the HRD concept and methodologyare emphasized to express the health level in a more direct way. Experimentalresults show that HRD is quite suitable for the quantitative health evaluation, and ithas a rapid response to the health changes of multifunctional sensor on differenthealth levels.
引文
[1] Tsang K M, Chan W L. Data Validation of Intelligent Sensor Using PredictiveFilters and Fuzzy Logic[J]. Sensors and Actuators A: Physical.2010,159(2):149-156.
    [2] Henry M P, Clarke D W. The Self-validating Sensor: Rationale, Definitionsand Examples[J]. Control Engineering Practice.1993,1(4):585-610.
    [3] Yang J C, Clarke D W. A Self-validating Thermocouple[J]. IEEE Transactionson Control Systems Technology.1997,5(2):239-253.
    [4] Henry M P, Clarke D W, Archer N, et al. A Self-validating Digital CoriolisMass-flow Meter: An Overview[J]. Control Engineering Practice.2000,8(5):487-506.
    [5] Henry M P. Recent Developments in Self-validating (SEVA) Sensors[J].Sensor Review.2001,21(1):16-22.
    [6] Feng Z G, Wang Q, Shida K. A Review of Self-validating SensorTechnology[J]. Sensor Review.2007,27(1):48-56.
    [7] Feng Z G, Wang Q, Shida K. Design and Implementation of a Self-validatingPressure Sensor[J]. IEEE Sensors Journal.2009,9(3):207-218.
    [8] Zhang J Q, Yan Y. A Wavelet-based Approach to Abrupt Fault Detection andDiagnosis of Sensors[J]. IEEE Transactions on Instrumentation andMeasurement.2001,50(5):1389-1396.
    [9] Liu Y, Huang D, Li Y, et al. Development of a Novel Self-validating SoftSensor[J]. Korean Journal of Chemical Engineering,2012,29(9):1135-1143.
    [10] Kimoto A, Shida K. A New Multifunctional Sensor Using PiezoelectricCeramic Transducers for Simultaneous Measurements of Propagation Timeand Electrical Conductance[J]. IEEE Transactions on Instrumentation andMeasurement.2008,57(11):2542-2547.
    [11]王祁,赵以宝,谢声斌.多功能传感器[J].传感器技术.1999,18(1):54-56.
    [12] Wang X, Wei G, Sun J W. B-spline Approximation Using an EKF for SignalReconstruction of Nonlinear Multifunctional Sensors[J]. IEEE Transactions onInstrumentation and Measurement.2011,60(6):1952-1958.
    [13]孙建波,秦明,黄庆安.温度、风速、风向和气压集成传感器[P].中国发明专利.专利号:CN200510038840.8.
    [14]徐敬波,赵玉龙,蒋庄德等.一种集成三轴加速度,压力,温度的硅微传感器[J].仪器仪表学报.2007,28(8):1393-1398.
    [15]王祁,赵树延,宋凯.多功能自确认传感器[J].传感技术学报.2011,24(4):527-531.
    [16]王祁,赵树延,宋凯等.多参数自确认传感器及其状态自确认方法[P].中国发明专利.专利号:ZL200810137401.6.
    [17] Clarke D W, Fraher P M A. Model-based Validation of a DOx Sensor[J].Control Engineering Practice.1996,4(9):1313-1320.
    [18] Liu R, Fuent M, Henry M P, et al. A Neural Network to Correct Mass FlowErrors Caused by Two-phase Flow in a Digital Coriolis Mass Flowmeter[J].Flow Measurement and Instrumentation.2001,12(1):53-63.
    [19] Henry M P, Tombs M, Duta M, et al. Two-phase Flow Metering of Heavy OilUsing a Coriolis Mass Flow Meter: A Case Study[J]. Flow Measurement andInstrumentation.2006,17(6):399-413.
    [20] Clarke D W, Ghaoud T. Validation of Vortex Flowmeters[J]. Computing andControl Engineering Journal.2002,13(5):237-241.
    [21] Mahmoud W H, Abdelrahman M, Haggard R L. Field Programmable GateArrays Implementation of Automated Sensor Self-validation System forCupola Furnaces[J]. Computers and Industrial Engineering.2004,46(3):553-569.
    [22] Perotti J M, Mata C T, Santiago J B, et al. Self-validating Thermocouple[P].US Patents. NO: US7841771.
    [23] Palmé T, Fast M, Thern M. Gas Turbine Sensor Validation ThroughClassification with Artificial Neural Networks[J]. Applied Energy.2011,88(11):3898-3904.
    [24]高羽.自确认传感器理论及应用研究[D].复旦大学博士学位论文.2008:9-11.
    [25]何世烈.基于虚拟仪器的自确认浊度传感系统研究[D].广东工业大学硕士学位论文.2008:1-9.
    [26]李鑫,陈梅,陈薇.自确认测速度仪的设计[J].微计算机信息.2009,25(4):122-124.
    [27]冯志刚.自确认压力传感器的研究[D].哈尔滨工业大学博士学位论文.2009:19-33.
    [28] BS-7986. Specification for Data Quality for Industrial Measurement andControl Systems.
    [29]赵树延,张文斌,王祁.一种多参数自确认传感器故障诊断方法[J].仪表技术与传感器.2009,1(S1):37-40.
    [30]赵树延,于金涛,王翥等.基于RVM的多功能自确认水质检测传感器[J].仪器仪表学报.2011,32(8):1690-1696.
    [31]翁桂荣,叶萍.基于RBF的传感器在线故障诊断和信号恢复[J].传感器技术.2003,22(10):50-53.
    [32] Frolik J, Abdelrahman M, Kandasamy P. A Confidence-based Approach to theSelf-validation, Fusion and Reconstruction of Quasi-redundant Sensor Data[J].IEEE Transactions on Instrumentation and Measurement.2001,50(6):1761-1769.
    [33] Frolik J, Abdelrahman M. Synthesis of Quasi-redundant Sensor Data: aProbabilistic Approach[C]. Proceedings of the2000IEEE American ControlConference.2000,4:2917-2921.
    [34] Henry M P, Wood G. Sensor Validation: Principles and Standards[J]. ProcessInstrumentation.2005,3(2):39-53.
    [35] Duta M, Henry M P. The Fusion of Redundant SEVA Measurements[J]. IEEETransactions on Control Systems Technology.2005,13(2):173-184.
    [36] Doymaz F, Romagnoli J A, Palazoglu A. A Strategy for Detection and Isolationof Sensor Failures and Process Upsets[J]. Chemometrics and IntelligentLaboratory Systems.2001,55(1):109-123.
    [37] Yin Y, Tian X. Classification of Chinese Drinks by a Gas Sensors Array andCombination of the PCA with Wilks Distribution[J]. Sensors and Actuators B:Chemical.2007,124(2):393-397.
    [38] Li Y, Xie Z, Zhou D H. Fault Detection and Isolation based on Abnormal Sub-regions Using the Improved PCA[J]. Journal of Chemical Engineering ofJapan.2004,37(4):514-522.
    [39] Padilla M, Perera A, Montoliu I, et al. Fault Detection, Identification, andReconstruction of Faulty Chemical Gas Sensors under Drift Conditions UsingPrincipal Component Analysis and Multiscale-PCA[C]. Proceedings of the2010IEEE International Joint Conference on Neural Networks.2010:1-7.
    [40]陈娇,王永泓,翁史烈.广义回归神经网络在燃气轮机排气温度传感器故障检测中的应用[J].中国电机工程学报.2009,29(32):92-95.
    [41]司风琪,李欢欢,徐治皋.基于鲁棒输入训练神经网络的非线性多传感器故障诊断方法及其应用[J].东南大学学报.2011,41(3):574-578.
    [42] Cho H C, Knowles J, Fadali M, et al. Fault Detection and Isolation ofInduction Motors Using Recurrent Neural Networks and Dynamic BayesianModeling[J]. IEEE Transactions on Control Systems Technology.2010,18(2):430-437.
    [43] Caccavale F, Digiulio P, Iamarino M, et al. A Neural Network Approach forOn-line Fault Detection of Nitrogen Sensors in Alternated Active SludgeTreatment Plants[J]. Water Science and Technology.2010,62(12):2760-2768.
    [44] Li S, Yan J. Application of Wavelet Analysis in Fault Diagnosis for Sensor[J].Computer Measurement and Control.2011,19(4):772-775.
    [45] Qin S J, Yue H, Dunia R. Self-validating Inferential Sensors with Applicationto Air Emission Monitoring[J]. Industrial and Engineering Chemistry Research.1997,36(5):1675-1685.
    [46]刘宜平,沈毅,刘志言.一种基于模糊神经网络的故障分类器及其在多传感器故障诊断中的应用[J].传感技术学报.2000,13(1):38-43.
    [47] Zhang J Q, Yan Y. A Self-validating Differential-pressure Flow Sensor UsingWavelet Transforms[C]. Proceedings of the2001IEEE Instrumentation andMeasurement Technology Conference.2001,2:1227-1230.
    [48]钮永胜,赵新民.传感器故障在线诊断和信号恢复的两级神经网络方法[J].北京理工大学学报.1999,19(3):365-369.
    [49]冯志刚,信太克规,王祁.基于最小二乘支持向量机预测器的传感器故障检测与数据恢复[J].仪器仪表学报.2007,28(2):193-197.
    [50] Huang G J, Liu G X, Chen G X, et al. Self-recovery Method based on Auto-associative Neural Network for Intelligent Sensors[C]. Proceedings of20108th World Congress on Intelligent Control and Automation.2010:6918-6922.
    [51] Syllaios I L, Balsara P T, Eliezer O E. A Generalized Signal ReconstructionMethod for Designing Interpolation Filters[C]. Proceedings of the2006IEEEInternational Symposium on Circuits and Systems.2006:5768-5771.
    [52]王昕.多功能传感器信号重构若干关键技术研究[D].哈尔滨工业大学博士学位论文.2012:10-13.
    [53]孙金玮,刘昕,孙圣和.基于总体最小二乘的多功能传感器信号重构方法研究[J].电子学报.2004,(3):391-394.
    [54]魏国,刘剑,孙金玮等.基于LS-SVM的非线性多功能传感器信号重构方法研究[D].自动化学报.2008,34(8):869-875.
    [55]刘丹.多功能传感器信号重构方法及实验研究[D].哈尔滨工业大学博士学位论文.2008:91-105.
    [56]刘昕.多功能传感器信号重构方法研究及其应用[D].哈尔滨工业大学博士学位论文.2009:26-45.
    [57] Liu X, Sun J W, Wei G, et al. Nonlinear Multifunctional Sensor SignalReconstruction based on Local Least Squares Support Vector Machines[C].Proceedings of the2008International Conference on Signal Processing.2008:303-306.
    [58]魏国,刘昕,孙金玮等.基于支持向量回归的三元溶液浓度重构算法研究[J].电子学报.2008,36(4):695-700.
    [59] Futane N, Chowdhury S R, Chowdhury C R, et al. ANN based CMOS ASICDesign for Improved Temperature-drift Compensation of Piezoresistive Micro-machined High Resolution Pressure Sensor[J]. Microelectronics Reliability.2010,50(2):282-291.
    [60]王中宇,刘智敏,夏新涛等.测量误差与不确定度评定[M].科学出版社.2008:15-35.
    [61] GUM-ISO. Guide to the Expression of Uncertainty in Measurement.1995.
    [62] Weise K, Woger W. A Bayesian Theory of Measurement Uncertainty[J].Measurement Science and Technology.1993,4(1):1-13.
    [63] Liang J, Chin K, Dang C, et al. A New Method for Measuring Uncertainty andFuzziness in Rough Set Theory[J]. International Journal of General Systems.2002,31(4):331-342.
    [64] Nuccio S, Spataro C, Tine G. Virtual Instruments: Uncertainty Evaluation inthe Presence of Unknown Electromagnetic Interferences[C]. Proceedings ofthe2008International Workshop on Advanced Methods for UncertaintyEstimation in Measurement.2008:56-61.
    [65] Cataliotti A, Cosentino V, Nuccio S. A Virtual Instrument for the Measurementof IEEE Std.1459-2000Power Quantities[J]. IEEE Transactions onInstrumentation and Measurement.2008,57(1):85-94.
    [66]王中宇,葛乐矣,杨文平等.一种小样本虚拟仪器测量不确定度评定新方法[J].计量学报.2008,29(4):387-392.
    [67] Qin P, Shen Y, Wang Z. Grey Evaluation of Non-statistical Uncertainty inMultidimensional Precision Measurement[J]. The International Journal ofAdvanced Manufacturing Technology.2006,31(5):539-545.
    [68] Ofsthun S. Integrated Vehicle Health Management for Aerospace Platforms[J].IEEE Instrumentation and Measurement Magazine.2002,5(3):21-24.
    [69] Benedettini O, Baines T S, Lightfoot H, et al. State of the Art in IntegratedVehicle Health Management[J]. Journal of Aerospace Engineering.2009,223(2):157-170.
    [70]龙兵,孙振明,姜兴渭.航天器集成健康管理系统研究[J].航天控制.2003,21(2):56-61.
    [71]高占宝,李行善,梁旭等.工程系统健康描述及基于GFRF方法的健康监测[J].北京航空航天大学学报.2006,32(9):1026-1030.
    [72] Vachtsevanos G J, Lewis F L, Roemer M, et al. Intelligent Fault Diagnosis andPrognosis for Engineering Systems[M]. John Wiley.2007:13-55.
    [73] Tuchband BA. Implementation of Prognostics and Health Management forElectronic Systems[D]. Dissertations of University of Maryland.2007:1-25.
    [74] Vichare N M, Pecht M G. Prognostics and Health Management ofElectronics[J]. IEEE Transactions on Components and PackagingTechnologies.2006,29(1):222-229.
    [75] Jaw L C. Neural Networks for Model-based Prognostics[C]. Proceedings of the1999IEEE Aerospace Conference.1999,3:21-28.
    [76] Byington C S, Watson M, Edwards D. Data-driven Neural NetworkMethodology to Remaining Life Predictions for Aircraft Actuator Components[C]. Proceedings of the2004IEEE Aerospace Conference.2004,6:3581-3589.
    [77] Khawaja T, Vachtsevanos G, Wu B. Reasoning about Uncertainty in Prognosis:A Confidence Prediction Neural Network Approach[C]. Proceedings of the2005Annual Meeting of the North American on Fuzzy Information ProcessingSociety.2005:7-12.
    [78] Callan R, Larder B, Sandiford J. An Integrated Approach to the Developmentof an Intelligent Prognostic Health Management System[C]. Proceedings ofthe2006IEEE Aerospace Conference.2006:1-14.
    [79] Brown D W, Kalgren P W, Byington C S, et al. Electronic Prognostics: A CaseStudy Using Global Positioning System[J]. Microelectronics Reliability.2007,47(12):1874-1881.
    [80]李录平,邹新元,晋风华等.基于融合信息熵的大型旋转机械振动状态的评价方法[J].动力工程.2004,24(2):153-158.
    [81]冯志刚,王祁.基于模糊数据融合的液氢供应系统健康评价方法[J].吉林大学学报.2006,36(5):751-756.
    [82]宾光富,李学军,楚万文.基于模糊层次分析法的设备状态系统量化评价新方法[J].系统工程理论与实践.2010,30(4):744-750.
    [83]曹正洪,沈继红.基于模糊集理论的传感器健康度评价方法[J].电机与控制学报.2010,14(5):79-83.
    [84] http://www.ni.com/.
    [85]宋凯.金属氧化物半导体气体传感器气体检测关键问题研究[D].哈尔滨工业大学博士学位论文.2011:14-29.
    [86] General Information for TGS Sensors. Figaro Gas Sensor Company: Osaka,Japan,2000.
    [87] http://www.winsensor.com.
    [88]丁晖.金属氧化物半导体气体传感器在气体分析应用中的关键问题的研究[D].西安交通大学博士学位论文.2004:19-25.
    [89] Gardner J W, Bartlett P N. Electronic Noses: Principles and Applications[M].Oxford University Press.1999:140-179.
    [90]王其军.瓦斯监测系统故障智能诊断技术研究[D].山东科技大学博士学位论文.2007:21-25.
    [91] Harkat M F, Djelel S, Doghmane N, et al. Sensor Fault Detection, Isolationand Reconstruction Using Nonlinear Principal Component Analysis[J].International Journal of Automation and Computing.2007,4(2):149-155.
    [92] Kerschen G, Deboe P, Golinval J C, et al. Sensor Validation Using PrincipalComponent Analysis[J]. Smart Materials and Structures.2004,14(1):36-41.
    [93]王祁.传感器信息处理及应用[M].科学出版社.2012:107-114
    [94] Campa G, Fravolini M L, Napolitano M, et al. Neural Networks-based SensorValidation for the Flight Control System of a B777Research Model[C].Proceedings of the2002American Control Conference.2002,1:412-417.
    [95]丁晖,刘君华.基于径向基函数神经网络预测器的多传感器故障在线检测和信号恢复的研究[J].模式识别与人工智能.2000,13(4):429-433.
    [96] Dai M Q, Cai W, Zhao S D. A Method of Fault Detection and Diagnosis forElectromagnetic Direction Valve based on Artificial Neural Network[J].Advanced Materials Research,2012,476(2):2384-2388.
    [97] Tipping M E. Sparse Bayesian Learning and the Relevance Vector Machine[J].The Journal of Machine Learning Research.2001,1(1):211-244.
    [98] Chiang L H, Russell E, Braatz R D. Fault Detection and Diagnosis inIndustrial Systems[M]. Springer Verlag.2001:60-71.
    [99]周东华,叶银忠.现代故障诊断与容错控制[M].清华大学出版社.2000:24-30.
    [100] Zumoffen D, Basualdo M. From Large Chemical Plant Data to Fault DiagnosisIntegrated to Decentralized Fault Tolerant Control: Pulp Mill ProcessApplication[J]. Industrial and Engineering Chemistry Research.2008,47(4):1201-1220.
    [101] Jackson J E. Multivariate Quality Control[J]. Communications in StatisticsTheory and Methods.1985,14(11):2657-2688.
    [102]徐涛,王祁. PCA在火箭发动机试车台传感器故障诊断中的应用[J].南京理工大学学报.2007,30(6):669-672.
    [103] Zhang Y, Qin Y, Xing Z, et al. Roller Bearing Safety Region Estimation andState Identification based on LMD-PCA-LSSVM[J]. Measurement.2013,46(3):1315-1324.
    [104]王海清,宋执环,王慧. PCA过程监测方法的故障检测行为分析[J].化工学报.2002,53(3):297-301.
    [105]黄孝彬,牛征,牛玉广等.利用主元方法进行传感器故障检测的行为分析[J].传感技术学报.2003,16(4):419-423.
    [106] Hopkins R W, Miller P, Swanson R E, et al. Method of Controlling aManufacturing Process Using Multivariate Analysis[P].2005US Patents. NO:US5442562.
    [107]周东华,胡艳艳.动态系统的故障诊断技术[J].自动化学报.2009,35(6):748-758.
    [108]李刚,邢书宝,薛惠锋.基于RBF核的SVM及RVM模式分析性能比较[J].计算机应用研究.2009,26(5):1782-1784.
    [109]邓乃扬,田英杰.数据挖掘中的新方法—支持向量机[M].科学出版社.2004:68-85.
    [110] Ni J, Zhang C, Yang S X. An Adaptive Approach based on KPCA and SVM forReal Time Fault Diagnosis of HVCBs[J]. IEEE Transactions on PowerDelivery.2011,26(3):1960-1971.
    [111] Rocco S CM, Zio E. A Support Vector Machine Integrated System for theClassification of Operation Anomalies in Nuclear Components and Systems[J].Reliability Engineering and System Safety.2007,92(5):593-600.
    [112]刘东,葛运建.基于SVM预测器的传感器故障诊断与信号恢复研究[J].传感技术学报.2005,18(2):247-249.
    [113] Feng Z G, Wang Q, Shida K. Sensor Fault Detection and Data Recovery basedon LS-SVM Predictor[J]. Chinese Journal of Scientific Instrument.2007,28(2):193-197.
    [114] Bishop C M. Pattern Recognition and Machine Learning[M]. Springer.2006:345-353.
    [115] Caesarendra W, Widodo A, Yang B S. Application of Relevance VectorMachine and Logistic Regression for Machine Degradation Assessment[J].Mechanical Systems and Signal Processing.2010,24(4):1161-1171.
    [116] Liu X, Yuan S, Li L. Prediction of Temperature Time Series Based on WaveletTransform and Support Vector Machine[J]. Journal of Computers.2012,7(8):1911-1918.
    [117] Zhang L, Zhou W, Jiao L. Wavelet Support Vector Machine[J]. IEEETransactions on Systems, Man, and Cybernetics, Part B: Cybernetics.2004,34(1):34-39.
    [118] Tzikas D G, Likas A C, Galatsanos N P. Sparse Bayesian Modeling withAdaptive Kernel Learning[J]. IEEE Transactions on Neural Networks.2009,20(6):926-937.
    [119] Yuan J, Wang K, Yu T, et al. Integrating Relevance Vector Machines andGenetic Algorithms for Optimization of Seed Separating Process[J].Engineering Applications of Artificial Intelligence.2007,20(7):970-979.
    [120] Caesarendra W, Widodo A, Pham H, et al. Machine Degradation Prognosticbased on RVM and ARMA/GARCH Model for Bearing Fault SimulatedData[C]. Proceedings of the2010Prognostics and Health ManagementConference.2012:1-6.
    [121] Li G, Xing S B, Xue H. Improved Chain-block Algorithm to RVM on LargeScale Problems[C]. Proceedings of the2009IEEE International Conference onManagement of e-Commerce and e-Government.2009:205-208.
    [122] Thayananthan A, Navaratnam R, Stenger B, et al. Multivariate RelevanceVector Machines for Tracking[C]. Proceedings of the2006EuropeanConference on Computer Vision.2006,3953:124-138.
    [123] Thayananthan A, Navaratnam R, Stenger B, et al. Pose Estimation andTracking Using Multivariate Regression[J]. Pattern Recognition Letters.2008,29(9):1302-1310.
    [124] Dasilvahack P, Tencaten C S. Measurement Uncertainty: Literature Reviewand Research Trends[J]. IEEE Transactions on Instrumentation andMeasurement.2012,61(8):2116-2124.
    [125]朱坚民,王中宇,夏新涛等.测量不确定度评定的研究进展与展望[J].洛阳工学院学报,2000,21(2):21-24.
    [126] Salicone S, Tinarelli R. An Experimental Comparison in the UncertaintyEstimation Affecting Wavelet based Signal Analysis by means of the IEC-ISOGuide and Random Fuzzy Approaches[J]. IEEE Transactions onInstrumentation and Measurement.2006,55(3):691-699.
    [127] Mauris G. A Review of Relationships Between Possibility and ProbabilityRepresentations of Uncertainty in Measurement[J]. IEEE Transactions onInstrumentation and Measurement.2013,62(3):622-632.
    [128] Ferrero A, Salicone S. An Innovative Approach to the Determination ofUncertainty in Measurements based on Fuzzy Variables[J]. IEEE Transactionson Instrumentation and Measurement.2003,52(4):1174-1181.
    [129] Ferrero A, Salicone S. The Random Fuzzy Variables: A New Approach to theExpression of Uncertainty in Mmeasurement[J]. IEEE Transactions onInstrumentation and Measurement.2004,53(5):1370-1377.
    [130] Ferrero A, Gamba R, Salicone S. A Method based on Random Fuzzy Variablesfor Online Estimation of the Measurement Uncertainty of DSP-basedInstruments[J]. IEEE Transactions on Instrumentation and Measurement,2004,53(5):1362-1369.
    [131] Ferrero A, Salicone S. Fully Comprehensive Mathematical Approach to theExpression of Uncertainty in Measurement[J]. IEEE Transactions onInstrumentation and Measurement,2006,55(3):706-712.
    [132] Ferrero A, Salicone S. The Construction of Random Fuzzy Variables from theAvailable Relevant Metrological Information[J]. IEEE Transactions onInstrumentation and Measurement.2008,57(12):365-374.
    [133] Ferrero A, Salicone S. Uncertainty: Only One Mathematical Approach to ItsEvaluation and Expression[J]. IEEE Transactions on Instrumentation andMeasurement.2012,61(8):2167-2178.
    [134] Tipping ME, Faul AC. Fast Marginal Likelihood Maximisation for SparseBayesian Models[C]. Proceedings of the Ninth International Workshop onArtificial Intelligence and Statistics.2003:3-6.
    [135] Lei Z. A Multivariate Relevance Vector Machine based Algorithm for On-lineFault Prognostic Application with Multiple Fault Features[C]. Proceedings ofthe2012Fifth International Conference on Intelligent ComputationTechnology and Automation.2012:26-32.
    [136] Lei Z. Fault Prognostic Algorithm based on Multivariate Relevance VectorMachine and Time Series Iterative Prediction[J]. Procedia Engineering.2012,29:678-686.
    [137] Rua Torres A F. Bayesian Data-driven Models for Irrigation WaterManagement [D]. Dissertations of Utah State University.2011:15-18.
    [138] Tripathi S, Govindaraju R S. On Selection of Kernel Parametes in RelevanceVector Machines for Hydrologic Applications[J]. Stochastic EnvironmentalResearch and Risk Assessment.2007,21(6):747-764.
    [139] Thayananthan A. Template-based Pose Estimation and Tracking of3D HandMotion[D]. Dissertation of Cambridge University.2005:103-124.
    [140] Salicone S. Measurement Uncertainty: An Approach via the MathematicalTheory of Evidence[M]. Springer Verlag.2007:67-71.
    [141] Salicone S. The Theory of Evidence: A New Promising Approach to theEvaluation and Expression of Measurement Uncertainty[J]. IEEEInstrumentation and Measurement Magazine.2013,16(1):18-23.
    [142] Braudaway D W. Uncertainty Specification for Data Acquisition (DAQ)Devices[J]. IEEE Transactions on Instrumentation and Measurement.2006,55(1):74-78.
    [143] Nuccio S, Spataro C. Approaches to Evaluate the Virtual InstrumentationMeasurement Uncertainties[J]. IEEE Transactions on Instrumentation andMeasurement.2002,51(6):1347-1352.
    [144] Mauris G, Lasserre V, Foulloy L. A Fuzzy Approach for the Expression ofUncertainty in Measurement[J]. Measurement.2001,29(3):165-177.
    [145] Mauris G. Expression of Measurement Uncertainty in a Very LimitedKnowledge Context: A Possibility Theory based Approach[J]. IEEETransactions on Instrumentation and Measurement.2007,56(3):731-735.
    [146] Flage R, Baraldi P, Zio E, et al. Probability and Possibility basedRepresentations of Uncertainty in Fault Tree Analysis[J]. Risk Analysis.2013,33(1):121-133.
    [147] Feng Z G, Wang Q. Research on Health Evaluation System of Liquid-propellant Rocket Engine Ground Testing Bed based on Fuzzy Ttheory[J].Acta Astronautica.2007,61(10):840-853.
    [148] Elouedi Z, Mellouli K, Smets P. Assessing Sensor Reliability for MultisensorData Fusion within the Transferable Belief Model[J]. IEEE Transactions onSystems, Man, and Cybernetics, Part B: Cybernetics.2004,34(1):782-787.
    [149] Dolev E. Introduction to the Special Section on Prognostics and HealthManagement[J]. IEEE Transactions on Reliability.2009,58(2):262-263.
    [150] Büyük zkan G, if i G, Güleryüz S. Strategic Analysis of Healthcare ServiceQuality Using Fuzzy AHP Methodology[J]. Expert Systems with Applications.2011,38(8):9407-9424.
    [151] Pedrycz W, Song M. Analytic Hierarchy Process (AHP) in Group DecisionMaking and its Optimization with an Allocation of Information Granularity[J].IEEE Transactions on Fuzzy Systems.2011,19(3):527-539.
    [152] Yi X, Zhu X. Application of Entropy Weight Coefficient Method to theEvaluation of the Profitability of Listed Firms[C]. Proceedings of the2010International Conference on Computer Application and System Modeling.2010,5:108-110.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700