磁性氧化铁基纳米结构的构筑及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米技术已渗透到传统自然科学的各个分支,从而已产生基于多学科融合的纳米科学与技术。纳米材料科学与技术的发展,在某种程度上以解决人类社会发展过程中出现的各种问题为其终极目标。
     磁性氧化铁基纳米材料因其具有良好的磁向导性、生物相容性、生物降解性、低毒行为以及大比表面积等优点,可应用于生物医药和环境污水处理,是一类先进功能材料。本文以无机金属盐为主要原料,采用静电纺丝法、柠檬酸-凝胶法和快速燃烧法成功制备了α-Fe2O3纳米管、磁性Ni0.5Zn0.5Fe2O4纳米颗粒、磁性Ni0.5Zn.5FezO4/SiO2纳米复合材料和Fe203纳米颗粒;采用TG、XRD、SEM、TEM、 BET、VSM和FTIR等分析手段对磁性纳米材料的结构和特性进行了表征;根据制备的各种磁性纳米材料的特点,研究了它们在生物医药和环境污水处理上的应用可行性,其主要结果总结如下:
     1.磁性氧化铁基纳米结构的构筑。(1)以聚乙烯毗咯烷酮(Polyvinylpyrrolidone,PVP)为络合剂,与硝酸铁、无水乙醇反应制得前驱体溶液,采用静电纺丝和煅烧过程成功制备了α-Fe2O3纳米管。发现前驱体溶液中水含量和煅烧升温速率为影响α-Fe2O3纳米管形成的主要因素,较低的含水量和较高的升温速率有利于α-Fe2O3纳米管的形成。当溶液含水量为17wt%,升温速率为5℃/min时,500℃下煅烧2h可制备出直径为400-700nm的α-Fe2O3纳米管,并探讨了α-Fe2O3纳米管的形成机制,实现了α-Fe2O3纳米管的可控制备。(2)采用柠檬酸-凝胶法和溶液快速燃烧法制备了磁性Ni0.5Zn0.5FezO4纳米粉体和磁性Ni0.5Zn0.5Fe2O4/SiO2纳米复合材料。结果表明,当无水乙醇量为15mL时,400℃下煅烧2h所得磁性Ni0.5Zn0.5Fe2O4纳米颗粒粒径为15nm,其饱和磁化强度达45Am2/kg,与柠檬酸-凝胶法制备的磁性Ni0.5Zn0.5Fe2O4纳米颗粒的饱和磁化强度基本一致。(3)采用快速燃烧法制备了Fe203纳米粉体,制备过程简单。
     2.磁性氧化铁基纳米材料负载核酸研究。(1)以正硅酸四乙酯和聚赖氨酸(Poly-L-lysine, PLL)为原料先后对Fe203纳米颗粒进行表面改性,首次在Fe203纳米颗粒上成功负载了小干扰RNA(Small interfering RNA, siRNA),顺利将siRNA转运到大鼠神经元细胞内并及时释放。通过Western blot实验、免疫荧光实验和胶质瘢痕观测实验证明了siRNA转运和释放过程中未表现出细胞毒性,对靶基因能产生有效沉默,实现了siRNA的有效负载和输送。(2)在成功制备了α-Fe2O3纳米管的基础上,首次考察了室温下α-Fe2O3纳米管吸附DNA过程。当DNA初始浓度为50μg/mL时,α-Fe2O3纳米管对DNA的平衡吸附量达4.191μg/g,且吸附平衡时间为90min:基于室温下α-Fe2O3纳米管吸附DNA的动力学和吸附等温线,发现准一级动力学模型和改进的Temkin吸附模型可以很好的描述室温下α-Fe2O3纳米管吸附DNA的动力学和吸附平衡过程,揭示了α-Fe2O3纳米管对DNA的吸附机制。
     3.磁性氧化铁基纳米颗粒负载蛋白质研究。(1)采用二氧化硅和1-乙基-(3-二甲基氨基丙基)碳酰二亚胺盐酸盐对磁性Ni0.5Zn0.5Fe2O4纳米颗粒进行表面改性,首次在磁性Ni0.5Zn0.5Fe2O4纳米颗粒表面成功固定了初始浓度为1mmol/L的青霉素酰化酶(Penicillin G acylase, PGA),并探讨了固定化酶和游离酶在不同pH和温度下的活性。经比较发现,固定化的青霉素酰化酶的活性受pH和温度的影响程度比游离酶大大降低,表现出良好的酸碱稳定性和热稳定性;固定于磁性纳米材料之上的青霉素酰化酶循环使用11次后,相对活性依然保持近70%,表现出良好的固定化酶循环利用率。(2)发现磁性Ni0.5Zn0.5Fe2O4/Si02纳米复合材料对牛血清白蛋白(Bovine serum albumin, BSA)具有很好的吸附能力。结果表明,Si02在纳米复合材料中含量从0增大至0.05时,400℃煅烧所得纳米复合材料的比表面积由49增加至57m2/g, BSA的平衡吸附量也由22mg/g增加到49mg/g,随着二氧化硅在纳米复合材料中的含量从0.05继续增大至0.2时,比表面积由57增大至120m2/g,但BSA的平衡吸附量却保持在49mg/g左右。说明在磁性Ni0.5Zn0.5Fe2O4纳米颗粒表面包覆一层Si02可以有效增大磁性纳米复合材料对BSA的吸附量,但Si02厚度的增大无助于BSA的吸附。
     4.磁性Ni0.5Zn0.5Fe2O4纳米颗粒对砷和甲基蓝的吸附研究。在采用快速燃烧法和柠檬酸-凝胶法成功制备了磁性Ni0.5Zn0.5Fe2O4纳米颗粒的基础上,考察了室温下磁性Ni0.5Zn0.5Fe2O4纳米颗粒对水溶液中浓度为50-300mg/L的甲基蓝以及3mg/L砷的吸附过程。发现磁性Ni0.5Zn0.5Fe2O4纳米颗粒对水溶液中砷的吸附具有高选择性,可实现吸附后溶液中砷零残余量的目标,完全可以达到世界卫生组织(World Health Organization, WHO)饮用水的标准。同时,基于实验数据的模拟计算发现,准二级动力学模型可以很好的描述磁性Ni0.5Zn0.5Fe2O4纳米颗粒室温下吸附甲基蓝和砷的动力学过程,磁性Ni0.5Zn0.5Fe2O4纳米颗粒吸附甲基蓝和砷的等温线符合Temkin模型和Redlich-Peterson模型,揭示了磁性Ni0.5Zn0.5Fe2O4纳米颗粒表面的多样性。根据模型机理,推断磁性Ni0.5Zn0.5Fe2O4纳米颗粒对砷和甲基蓝的吸附为单层和多层的混合吸附模式。
Nanotechnology has almost permeated into each branch of traditional natural science, and the nanoscience and nanotechnology has come into being the integration of multi-discipline. From the development view, the ultimate aim of the nanomaterial science and nanotechnology is to solve various problems occurring during the development of the human society.
     The magnetic iron oxide based nanomaterials have a good magnetic anisotropy, biocompatibility. biological degradation, low toxic behavior and large specific surface area, so they can be applied in the biomedicine and environmental sewage treatment, and are a kind of advanced functional materials. In this dissertation, the α-Fe2O3nanotubes, Fe2O3nanoparticles, magnetic Ni0.5Zn0.5Fe2O4nanoparticles and Ni0.5Zn0.5Fe2O4/SiO2nanocomposites were prepared by the electrospinning. citrate-gel, rapid combustion processes respectively with inorganic metal salts as the main raw materials, and they were characterized by the analysis methods of TG, XRD, SEM, TEM, BET, VSM and FTIR techniques. According to the characteristics of the as-prepared magnetic nanomaterials, the feasibility of their applications in the biomedicine and sewage treatment was studied, and the main results are as follows:
     1. Fabrication of magnetic iron oxide based nanostructures.(1) The α-Fe2O3nanotubes were prepared successfully by the sol-gel assisted electrospinning and subsequent heat treatment, with the precursor solution prepared from ferric nitrate, absolute ethyl alcohol and polyvinylpyrrolidone (PVP) as complexing agent. It is found that the water content in the precursor solution and the heating rate are the key factors affecting on the formation of the α-Fe2O3nanotubes, and the lower water content and larger heating rate are propitious to form the α-Fe2O3nanotubes. When the water content is about17wt%, heating rate is5"C/min and calcination temperature at500℃for2h, the α-Fe2O3nanotubes with diameters of400-700nm are obtained. The hollow formation mechanism of α-Fe2O3nanotubes is discussed, the controllable preparation of the α-Fe2O3nanotubes is realized.(2) Magnetic Ni0.5Zn0.5Fe2O4nanoparticles and Ni0.5Zn0.5Fe2O4/SiO2nanocomposites were synthesized by the facile citrate-gel process and the rapid combustion process, respectively. It is found that the grain size and the magnetism of Ni0.5Zn0.5Fe204nanoparticles calcined at400℃for2h with absolute ethyl alcohol of15mL were15nm and45Am2/kg, respectively, which is equivalent of Nio.5Zn0.5Fe2O4nanoparticles prepared by the facile citrate-gel process.(3) The Fe2O3nanoparticles were prepared via the rapid combustion process, and the preparation process is simple.
     2. The loading characteristics of nucleic acid molecules onto the magnetic iron oxide based nanostructures.(1) The surface of Fe2O3nanoparticles was modified by tetraethylorthosilicate and poly-l-lysine (PLL), and then the small interfering RNA (siRNA) was loaded onto them for the first time. The results show that the siRNA has been transferred successfully into primary rat neurons and then releases. The efficient silencing of the targeted gene with negligible cytotoxicity has been proved via the Western blot test, immunofluorescence experiments and the glial scar observations. The loading and transfer of siRNA into primary rat neurons have been achieved.(2) Based on the successful preparation of a-Fe2O3nanotubes, the adsorption of DNA onto a-Fe2O3nanotubes was determined at room temperature for the first time. The DNA adsorption onto the a-Fe2O3nanotubes can achieve a maximum value of4.19μg/g when the initial DNA concentration is50μg/mL, and the equilibrium time is90min. According to the adsorption kinetics and isotherms of DNA onto a-Fe2O3nanotubes, it is found that the pseudo-first-order kinetic model and the modified Temkin model can describe the DNA adsorption process and adsorption isotherm at room temperature, the adsorption mechanism of DNA onto a-Fe2O3nanotubes is generally revealed.
     3. The loading characteristics of proteins onto the magnetic iron oxide based nanostructures.(1) Tetraethylorthosilicate and l-Ethyl-3-(3-dimethyllaminopropyl) carbodiimide hydrochloride were used as the reagents to modify the surface of the magnetic Ni0.5Zno.5Fe2O4nanoparticles. The penicillin G acylase (PGA) was successfully immobilized on the surface-modified magnetic Ni0.5Zn0.5Fe2O4nanoparticles for the first time with the initial concentration of1mmol/L, and the activities of the immobilized enzyme and free enzyme under the various conditions were systematically examined. Compared to each other, it is found that the immobilized PGA is affected less by pH and temperature than the free PGA, and the immobilized PGA exhibits good chemical stability and thermal stability of enzyme catalyst. The relative activity of the immobilized PGA is about70%after11times cycling, which suggests a good recycling rate of the immobilization of PGA.(2) The Ni0.5Zn0.5Fe2O4/SiO2nanocomposites demonstrate a good adsorption capability of bovine serum albumin (BSA). The results show that with the increase of the silica content from0to0.05and the specific surface area from about49to57m2/g, the BSA adsorption capability of the Ni0.5Zn0.5Fe204/Si02nanocomposites calcined at400℃improves dramatically from22to49mg/g. However, with a further increase of the silica content from0.05to0.2, the specific surface area increase from about57to120m2/g, the BSA adsorption for the nanocomposites remains around49mg/g, which suggests that the silica coated onto the Ni0.5Zno.sFeiO4nanoparticles improve the BSA adsorption capability, but the thickness increase of the silica content is helpless to the adsorption capability.
     4. The adsorptions of arsenic and methyl blue onto the magnetic Ni0.5Zno.sFe2O4nanoparticles. Based on the successful preparation of Nio sZno5Fe2O4nanoparticles by the facile citrate-gel process and the rapid combustion process, the adsorption of arsenic and methyl blue onto the magnetic Ni0.5Zno.5Fe204nanoparticles were investigated for arsenic of3mg/L and methyl blue of50-300mg/L. It is found that the adsorption of arsenic onto the magnetic Ni0.5Zn0.5Fe2O4nanoparticles has a high selectivity, the remaining amount of arsenic in solution after the absorption can achieve zero, which can reach the standard for drinking water of the World Health Organization (WHO). Based on the simulation and calculation of the experiment data, it is found that the pseudo-second-order kinetic model is in a good agreement with the kinetics data for the adsorption of arsenic and methyl blue onto the magnetic Nio.sZn0.5Fe2O4nanoparticles, and the Temkin model and Redlich-Peterson model can be used to evaluate the adsorption isotherm of arsenic and methyl blue at room temperature, which suggests that the magnetic Nio.sZn0.5Fe204nanoparticles' surfaces are heterogeneous, and the adsorption of arsenic and methyl blue onto the magnetic Nio.5Zn0.sFe204nanoparticles can be a hybrid of monolayer and multilayer absorption mechanism.
引文
[1]马小艺,陈海斌.纳米材料在生物医学领域的应用与前景展望[J].中国医药导报,2006,3(32): 13-15.
    [2]方云,杨澄宇,陈明清,等.纳米技术与纳米材料(Ⅰ)——纳米技术与纳米材料简介[J].日用化学工业,2002,33(1):55-59.
    [3]朱世东,周根树,蔡锐,等.纳米材料国内外研究进展I——纳米材料的结构、特异效应与性能[J].热处理技术与装备,2010,31(3):1-5.
    [4]曾琦斐,谭荣喜,王贵华.纳米材料及其研究进展[J].湖南环境生物职业技术学院学报,2010,16(1): 1-4.
    [5]C.N.R. Rao and A.K. Cheetham. Science and technology of nano materials:current status and future prospects [J]. Journal of Materials Chemistry,2001,11 (12):2887-2894.
    [6]宋力晶.AAO模板法制备的一维磁性纳米管及纳米线阵列的结构与磁性[D].兰州大学硕士学位论文,2007.
    [7]王海波.尖晶石NixZn1-xFe2O4铁氧体纳米颗粒、块体和薄膜的制备与磁性研究[D].兰州大学博士学位论文,2008.
    [8]毛忠泉.磁性纳米颗粒系统的磁学性质及偶极相互作用研究[D].中山大学博士学位论文,2008.
    [9]X. Batlle and A. Labarta. Finite-size effects in fine particles:magnetic and transport properties [J]. Journal of Physics D,2002,35(6):R15-R42.
    [10]都有为.纳米磁性材料及其应用[J].材料导报,2001,16(7):6-8.
    [11]Z.Q. Qiu, Y.W. Du and H. Tang, et al. A Mossbauer study of fine iron particles [J]. Journal of Applied Physics,1988,63(8):4100-4104.
    [12]D. Jiles. Introduction to Magnetism and Magnetic Materials [M]. Chapman and Hall,1991, p.91.
    [13]J.B. Wang, Q.F. Liu and D.S. Xue, et al. Remanence properties and magnetization reversal mechanism of Fe nanowire arrays [J]. Chinese Physics Letters,2004,21(5):945-948.
    [14]G Herzer. Grain structure and magnetism of nanocrystalline ferromagnets [J]. IEEE Transactions on Magnetics,1989,25(5):3327-3329.
    [15]R. Alben, J.J. Becker and M.C. Chi. Random anisotropy in amorphous ferromagnets [J]. Journal of Applied Physics,1978,49(3):1853-1658.
    [16]D.J. Sellmyer, Y. Liu and D. Shindo. Handbook of Advanced Magnetic Materials, Vol.1, Advanced Magnetic Materials:Nanostructural Effects [M]. Beijing: Tsinghua University Press, 2005, p.354.
    [17]L.F. Cao, D. Xie and M.X. Guo, et al. Size and shape effects on curie temperature of ferromagnetic nanoparticles [J]. Transaction of Nonferrous Metals Society of China,2007, 17(6):1451-1455.
    [18]C.C. Yang and Q. Jiang. Size and interface effects on critical temperatures of ferromagnetic, ferroelectric and superconductive nanocrystals [J]. Acta Materials,2005,53(11):3305-3311.
    [19]R. Evans, U. Nowak and Dorfbaner, et al. The influence of shape and structure on the Curie temperature of Fe and Co nanoparticles [J]. Journal of Applied Physics,2006,99(8):08G703.
    [20]都有为,徐明祥,吴坚,等.镍超细微颗粒的磁性[J].物理学报,1992,41(1):149-154.
    [21]R.J. Zhang and R.F. Willis. Thickness-dependent curie temperature of ultrathin magnetic films [J]. Physics Review Letters,2001,86(12):2665-2668.
    [22]R.H. Kodama. Magnetic nanoparticles [J]. Journal of Magnetism and Magnetic Materials,1999, 200(1-3):359-372.
    [23]C.T. Jiang, R.J. Liu, X.Q. Shen, et al. Ni0.5Zn0.5Fe2O4 nanoparticles and their magnetic properties and adsorption of bovineserum albumin [J]. Powder Technology,2011,211(1): 90-94.
    [24]S.P. Gubin, Y.A. Koksharov and G.B. Khomutov, et al. Magnetic nanoparticles:preparation, structure and properties [J]. Russian Chemical Reviews,2005,74(6):489-520.
    [25]W. Gong, H. Li and Z.R. Zhao, et al. Ultrafine particles of Fe, Co, and Ni ferromagnetic metals [J]. Journal of Applied Physics,1991,69(8):5119-5121.
    [26]H. Wu, R. Zhang and X.X. Liu, et al. Electrospinning of Fe, Co, and Ni nanofibers:synthesis, assembly, and magnetic properties [J]. Chemistry of Materials,2007,19(14):3506-3511.
    [27]A. Mumtaz, K. Maaz and B. Janjua, et al. Exchange bias and vertical shift in CoFe2O4 nanoparticles [J]. Journal of Magnetism and Magnetic Materials,2007,313:266-272.
    [28]K. Maaz, W. Khalid and A. Mumtaz, et al. Magnetic characterization of Co1-xNixFe2O4 (0≤x≤ 1) nanoparticles prepared by co-precipitation route [J]. Physica E,2009,41(4):593-599.
    [29]C. Liu and Z.J. Zhang. Size-dependent superparamagnetic properties of Mn spinel ferrite nanoparticles synthesized from reverse micelles [J]. Chemistry of Materials,2001,13(6): 2092-2096.
    [30]R.H. Kodama, A.E. Berkowitz and J.E.J. McNiff, et al. Surface Spin Disorder in NiFe2O4 Nanoparticles [J]. Physics Review Letters,1996,77(2):394-397.
    [31]J.P. Chen, C.M. Sorensen and K.J. Klabunde, et al. Size-dependent magnetic properties of MnFe2O4 fine particles synthesized by coprecipitation [J]. Physical Review B,1996,54(13): 9288-9296.
    [32]K. Niira. Temperature Dependence of the Magnetization of Dysprosium Metal [J]. Physical Review,1960,117(1):129-133.
    [33]P.V. Hendriksen, S. Linderoth and P.A.Lindgard. Finite-size modifications of the magnetic properties of clusters [J]. Physical Review B,1993,48(10):7259-7273.
    [34]S. Linderoth, L. Balcells and A. Labarta, et al. Magnetization and Mossbauer studies of ultrafine Fe-C particles [J]. Journal of Magnetism and Magnetic Materials,1993,124(3): 269-276.
    [35]G.F. Goya, T.S. Berquo and F.C. Fonseca, et al. Static and dynamic magnetic properties of spherical magnetite nanoparticles [J]. Journal of Applied Physics,2003,94(5):3520-3528.
    [36]Y. Wang, C.M. Yang and W. Schmidt, et al. Weakly ferromagnetic ordered mesoporous Co3O4 synthesized by nanocasting from vinyl-functionalized cubic ia3d mesoporous silica [J]. Advanced Materials,2005,17(1):53-56.
    [37]C. Yao, Q. Zeng and G.F. Goya, et al. ZnFe2O4 nanocrystals: synthesis and magnetic properties [J]. Journal of Physical Chemistry C,2007,111 (33):12274-12278.
    [38]M.N. Baibich, J.M. Broto and A. Fert, et al. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices [J]. Physical Review Letters,1988,61(21):2472-2475.
    [39]J. Nosgu6s, J. Sort and V. Langlais, et al. Exchange bias in nanoparticles [J]. Physics Reports, 2005,422(3):65-117.
    [40]A. Lu, E.L. Salabas and F. SchOth. Magnetic nanoparticles:synthesis, protection, functionalization, and application [J]. Angewandte Chemie International Edition,2007,46(8): 1222-1244.
    [41]Q.A. Pankhurst, N.K..T. Thanh and S.K. Jones, et al. Progress in application of magnetic nanoparticles in biomedicine [J]. Journal of Physics D,2009,42(22):224001.
    [42]D.J. Sellmyer, Y. Liu and D. Shindo. Handbook of Advanced Magnetic Materials, Vol.4, Advanced Magnetic Materials:Properties and Application [M]. Beijing: Tsinghua University Press,2005.
    [43]Z.G. Wu and J.F. Gao. Synthesis of γ-Fe2O3 nanoparticles by homogeneous co-precipitation method [J]. Micro & Nano Letters,2012,7(6):533-535.
    [44]刘俊.沉淀氧化法制备纳米四氧化三铁[J].武汉工业学院学报,2009,28(2):42-44.
    [45]王全胜,刘颖,王建华,等.沉淀氧化法制备四氧化铁[J].北京理工大学报,1994,14(2):200-204.
    [46]董思宁.单相多铁性纳米材料的水热法合成及物性研究[D].中国科学技术大学博士学位论文,2012.
    [47]武志刚,高建峰.溶胶-凝胶法制备纳米材料的研究进展[J].精细化工,2010,27(1):21-25.
    [48]王世敏,许组勋,傅晶.纳米材料制备技术[M].北京:化学工业出版社,2002.
    [49]T. Hyeon, S.S. Lee and J. Park, et al. Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process [J]. Journal of the American Chemical Society,2001,123(51):12798-12801.
    [50]N. Huang, P. Yang and X. Cheng, et al. Blood compatibility of amorphous titanium oxide flms synthesized by ion beam enhanced deposition [J]. Biomaterials,1998,19(7-9):771-776.
    [51]C.B. Murray, S. Sun and W. Gaschler, et al. Olloidal synthesis of nanocrystals and their assembly into magnetic superlattices [J].1MB J Res & Dev,2004,45-47.
    [52]S.F. Yan, W. Ling and E. Zhou. Rapid synthesis of Mno.65Zno.35Fe2O4/SiO2 homogeneous nanocomposites by modified sol-gel auto-combustion method [J]. Journal of Crystal Growth, 2004,273(1-2):226-233.
    [53]V. Singh, T.K. Gundu Rao and J.J. Zhu. A rapid combusti on process for the preparation of MgSrAl10O17:Eu2+ phosphor and related luminescence and defect investigations [J]. Journal of Luminescence,2008,128(4):583-588.
    [54]H.Q. Guo, D.B. Li and D. Jiang, et al. Characterization and performance of V2O5-TiO2 catalysts prepared by rapid combustion method [J]. Catalysis Today,2010.158:439-445.
    [55]L.H. Ai and J. Jiang. Rapid synthesis of nanocrystalline Co3O4 by a microwave-assisted combustion method [J]. Powder Technology,2009,195(1):11-14.
    [56]Tom Mathews, R. Subasri and O.M. Sreedharan. A rapid combustion synthesis of MgO stabilized Sr- and Ba-h-alumina and their microwave sintering [J]. Solid State Ionics,2002, 148(1-2):135-143.
    [57]K. R. LEE, S. PARK and K.W.LEE. Rapid Ag recovery using photocatalytic ZnO nanopowders prepared by solution-combustion method [J]. Journal of Materials Science Letters,2003,22(1): 65-67.
    [58]C. Shivakumara, M.B. Bellakki and A.S. Prakash, et al. Rapid Synthesis of Ferromagnetic La1.xNaxMnO3 (0.00≤x≤0.25) by the Solution Combustion Method [J]. Journal of the American Ceramic Society,2007,90(12):3852-3858.
    [59]W.F. Chen, F.S. Li and J.Y. Yu et al. Rapid synthesis of mesoporous ceria-zirconia solid solutions via a novel salt-assisted combustion process [J]. Materials Research Bulletin,2006, 41(12):2318-2324.
    [60]S.K. Lathika Devi, K. Sudarsana Kumar and A. Balakrishnan. Rapid synthesis of pure and narrowly distributed Eu doped ZnO nanoparticles by solution combustion method [J]. Materials Letters,2011,65(1):35-37.
    [61]T. Ondarcuhu and C. Joachim. Drawing a single nanofibre over hundreds of microns [J]. Europhysics Letters,1998,42(2):215-220.
    [62]L. Feng, S. Li and H. Li, et al. Super-hydrophobic surface of aligned polyacrylonitrile nanofibers [J]. Angewandte Chemie-International Edition,2002,41(7):1221-1223.
    [63]C.R. Martin. Membrane-based synthesis of nanomaterials [J]. Chemistry of Materials,1996, 8(8):1739-1746.
    [64]P.X. Ma, R. Zhang. Synthetic nano-scale fibrous extracellular matrix [J]. Journal of Biomedical Materials Research,1999,46(1):60-72.
    [65]G.J. Liu, J.F. Ding and L.J. Qiao, et al. Polystyrene-block-poly (2-cinnamoylethyl methacrylate) nanofibers preparation, characterization, and liquid crystalline properties [J]. Chemistry:A European journal,1999,5(9):2740-2749.
    [66]I.J. Karl and P. Malcolm. Molecular spinnerets for polymeric fiber[C]. National Textile Center Annual Report,2000:M98-G08.
    [67]K. Kageyama, J. Tamazawa and T. Aida. Extrusion polymerization:catalyzed synthesis of crystalline linear polyethylene nanofibers within a mesoporous silica [J]. Science,1999, 285(5436):2113-2115.
    [68]J.M. Deitzel, J.D. Kleinmeyer and J.K. Hirvonen, et al. Controlled deposition of electrospun polyethylene oxide) fibers [J]. Polymer,2001,42(19):8163-8170.
    [69]H. Fong and D.H. Reneker. Structure formation in polymeric fibers [M]. Munich:Hanser,2001: 225-246.
    [70]T.P. Huelser, H. Wiggers and P. Ifeacho, et al. Morphology, structure and electrical properties of iron nanochains [J]. Nanotechnology,2006,17(13):3111-3115.
    [71]Y. Nie, H. He and Z. Zhao, et al. Preparation, surface modificationand microwave characterization of magnetic ironfibers [J]. Journal of Magnetism and Magnetic Materials,2006, 306(1):125-129.
    [72]刘威,钟伟,都有为.有序纳米结构体系的模板合成法[J].材料科学与工程学报,2007,25(3):476-480.
    [73]Y.L. Wang, M.X. Zhang and B.X. Li, et al. Hexagonal Nano-Pd Particles:Sonochemical Preparation by Soft-Template Method and Characterization [J]. Chinese Journal of Inorganic Chemistry,2011,27(10):1914-1918.
    [74]M.S. Tsai, M.J. Li and F.H Yen, et al. Synthesis of nano grade hollow silica sphere via a soft template method [J]. Journal of Nanoscience and Nanotechnology,2008,8(6):3097-3100.
    [75]B.T. Su, J.X. Sun and C.L. Hu, et al. Photocatalytic Performance of Fe3+-Doped TiO2 Hollow Nano-Fibers Prepared by Template Method [J]. Chinese Journal of Inorganic Chemistry,2009, 25(11):1988-1993.
    [76]H. Masuda and M. Satoh. Fabrication of gold nanodots using anodic porous alumina as an evaporation mask [J]. Japanese Journal of Applied Physic,1996,35(11):126-130.
    [77]高建卫,张振忠,刘静远,等.直流氢电弧蒸发法制备金属纳米Ni粉和Cu粉的研究[J].特种铸造及有色合金,2006,26(5):263-267.
    [78]戴峰泽,蔡兰.激光法制备纳米材料的进展[J].电加工与模具,2001,3:10-14.
    [79]马千里,董相廷,王进贤.纳米四氧化三铁的化学制备方法研究进展[J].化工进展,2012,31(3):562-573.
    [80]何剑江,赖明河,陈海宏,等.静电纺丝制备污水过滤材料的研究进展[J].合成纤维,2011,40(12):18-21.
    [81]X. Fang, D.H. Reneker. DNA fibers by electrospinning [J]. Journal of Macromolecular Science. Physics,1997,36(2): 169-173.
    [82]G.I. Taylor. Electrically driven jets [J]. Series A,1969,313:453-457.
    [83]薛华育.三元溶剂下SF/PVA纳米纤维制备及其结构性能研究[D].苏州大学,2007:1-7.
    [84]谢炜,龙春光,华熳煜,等.静电纺丝制备低维铁磁性金属纤维的研究进展[J].材料导报:综述篇,2010,24(12):39-42.
    [85]刘呈坤.静电纺丝技术的研究进展[J].合成纤维工业,2012,35(2):53-56.
    [86]黄博能,李从举.静电纺丝法制备磁性纳米纤维材料的研究进展[J].材料导报A:综述篇,201,26(3): 139-144.
    [87]Q.A. Pankhurst, N.T.K. Thanh and S.K. Jones, et al. Progress in applications of magnetic nanoparticles in biomedicine [J]. Journal of Physics D: Applied Physics,2009,42(22): 224001.
    [88]A.G. Roca, R.Costo and A.F. Rebolledo, et al. Progress in the preparation of magnetic nanoparticles for applications in biomedicine [J]. Journal of Physics D:Applied Physics,2009, 42(22):224002.
    [89]C.B. Catherine. Progress in functionalization of magnetic nanoparticles for applications in biomedicine [J]. Journal of Physics D: Applied Physics,2009,42(22):224003.
    [90]A.S. Lubbe, C. Bergemann and W. Huhnt, et al. Preclinical experiences with magnetic drug targeting tolerance and efficancy [J]. Cancer Research,1996,56(20):4694-4701.
    [91]K.H. Wu, W.C. Huang and G.P. Wang. Effect of pH on the magnetic and dielectric properties of SiO2/Ni-Zn ferrite nanocomposites [J]. Materials Research Bulletin,2005,40(10):1822-1831.
    [92]陈功,殷瑗.磁性纳米材料在生物医学领域的应用[J].中国医学装备,2006,3(8):243-245.
    [93]L.M. Lacava, V.A.P. Garcia and S. Kuckelhaus. Longterm retention of dextran-coated magnetite nanoparticles in the liver and spleen [J]. Journal of Magnetism and Magnetic Materials,2004, 272-276(3):2434-2435.
    [94]H. Cohen, R.J. Levy and J. GAO, et al. Sustained delivery and expression of DNA encapsulated in polymeric nanoparticles [J]. Gene Therapy,2000,7(22):1896-1905.
    [95]J.F. Engelhardt, X. Ye and B. Doranz, et al. Ablation of E2A in recombinant adenoviruses improves transgene persistence and decreases inflammatory response in mouse liver [J]. Proceedings of the National Academy of Sciences of the United States of America,1994, 91(13):6196-6200.
    [96]E.H. Chowdhury. Nuclear targeting of viral and non-viral DNA [J]. Expert Opinion on Drug Delivery,2009,6(7):697-703.
    [97]D.G. Anderson, W. Peng and A. Akinc, et al. A polymer library approach to suicide gene therapy for cancer [J]. Proceedings of the National Academy of Sciences of the United States of America,2004,101(45):16028-16033.
    [98]P. Chollet, M.C. Favrot and A. Hurbin, et al. Side-effects of a systemic injection of linear polyethylenimine-DNA complexes [J]. Journal of Medical Genetics,2002,4(1):84-91.
    [99]Z. Ma, J. Li and F. He, et al. Cationic lipids enhance siRNA-mediated interferon response in mice [J]. Biochemical and Biophysical Research Communications,2005,330(3):755-759.
    [100]S. Nie, Y. Xing and G.J. Kim, et al. Nanotechnology applications in cancer [J]. Annu Rev Biomed Eng.2007,9:257-288.
    [101]M. Mahmoudi, S. Sant and B. Wang, et al. Superparamagnetic iron oxide nanoparticles (SPIONs):Development, surface modification and applications in chemotherapy [J]. Advanced Drug Delivery Reviews,2011,63(1-2):24-46.
    [102]M.M. Lin, H.H. Kim and H. Kim, et al. Surface activation and targeting strategies of superparamagnetic iron oxide nanoparticles in cancer-oriented diagnosis and therapy [J]. Nanomedicine (London),2010,5(1):109-133.
    [103]C. Mah, T.J. Jr Fraites and I. Zolotukhin, et al. Improved method of recombinant AAV2 delivery for systemic targeted gene therapy [J]. Molecular Therapy,2002,6(1):106-112.
    [104]陈功,殷瑗.磁性纳米材料在生物医学领域的应用[J].中国医学装备,2006,3(8):243-245.
    [105]周洁.Fe304磁性纳米颗粒及其相关结构材料的调控制备[D].中国优秀硕士学位论文全文数据库,2005.
    [106]H.P.Y. Humphrey and A.K. Mark. Enzyme-magnetic nanoparticle hybrids:new effective catalysts for the production of high value chemicals [J]. Journal of Chemical Technology and Biotechnology,2012,87 (5):583-594.
    [107]M.N. Gupta, M. Kaloti and M. Kapoor, et al. Nanomaterials as matrices for enzyme immobilization [J]. Artificial Cells Blood Substitutes and Immobilization Biotechnology,2011, 39(2):98-109.
    [108]K. Ashtari, K. Khajeh and J. Fasihi, et al. Silica-encapsulated magnetic nanoparticles: Enzyme immobilization and cytotoxic study [J]. International Journal of Biological Macromolecules, 2012,50(4):1063-1069.
    [109]C.C. Yu, Y.Y. Kuo and CF Liang, et al. Site-specific immobilization of enzymes on magnetic nanoparticles and their use in organic synthesis [J]. Bioconjugate Chemistry,2012,23(4): 714-724.
    [110]F.S. Ligler and C.R. Taitt. optical Biosensors Present and Future[M]. Elsevier Science & Technology (Nethertlands),2002.
    [111]A. Jordan, P. Wust and H. Fahling, et al. Inductive heating of ferromagnetic particles and magnetic fluids-physical evaluation of their potential for hyperthermia [J]. International Journal of Hyperthermia,1993,9:51-68.
    [112]文颖慧.多醇法制备超顺磁性Fe304纳米微球和颗粒的研究[D].中国优秀硕士学位论文全文数据库,2009.
    [113]F. Boccuzzi, A. Chiorine and M. Mangoli, et al. Gold, silver and copper catalysts supported on TiO2 for pure hydrogen production [J]. Catalysis Today,2002,75(14):169-175.
    [114]D. Kirpotin, D.C.F. Chan and P.A. Jr Bunn. Magnetic microparticles [P]. US:5411730,1995.
    [115]T. Lammers, S. Aime and W.E. Hennink, et al. Theranostic Nanomedicine [J]. Accounts of Chemical Research,2011,44(10):1029-1038.
    [116]C.A.W. Andrew and Y.Y. Jackie. Nanomaterials for in situ cell delivery and tissue regeneration [J]. Advanced Drug Delivery Reviews,2010,62(7-8):731-740.
    [117]T. Nakamura, H. Akita and Y. Yamadaa, et al. Multifunctional Envelope-type Nanodevice for Use in Nanomedicine: Concept and Applications [J]. Accounts of Chemical Research,2012, 45(7):1113-1121.
    [118]S.G. Anirban. Nanomedicine approaches in vascular disease: a review [J]. Nanomedicine,2011, 7(6):763-79.
    [119]林冠发,王云芳,王晓玲.纳米材料及技术在生物医学领域中的应用[J].咸阳师范学院学报,2001,17(4):31-34.
    [120]龚明福,杨华,邹利光,等.包被材料对磁性纳米粒胶束MRI信号和弛豫效能的影响[J].第三军医大学学报,2013,35(1):5-9.
    [121]WHO. Progress on Drinking Water and Sanitation[R].2012 Update.
    [122]X.L. Qu, P.J.J. Alvarez and Q.L. Li. Applications of nanotechnology in water and wastewater treatment [J]. Water Research,2013,47(12):3931-3946.
    [123]R.D. Ambashta and M. Sillanpaa. Water purification using magnetic assistance: A review [J]. Journal of Hazardous Materials,2010,180(1-3):38-49.
    [124]房安富,刘建勇,相会强.纳米技术在水污染控制中的应用[J].现代化工,2006,10: 74-77.
    [125]相会强,智艳生,马承愚.纳米技术在水污染控制中的应用[J].云南大学学报(自然科学版),2005,27(3A):89-92.
    [126]施周,张彬,许光眉.纳米技术在空气及水污染控制中的应用[J].南华大学学报(理工版),2003,17(1):25-29.
    [127]高洋,徐明芳,李定坚,等.纳米技术处理石油污染的研究进展[J].生态科学,2004,22(4):77-79.
    [128]A.A. Atia, A.M. Donia and W.A. Al-Amrani. Adsorption/desorption behavior of acid orange 10 on magnetic silica modified with amine groups [J]. Chemical Engineering Journal,2009, 150(1):55-62.
    [129]M. Iram, C. Guo and Y.P. Guan, et al. Adsorption and magnetic removal of neutral red dye from aqueous solution using Fe3O4 hollow nanospheres [J]. Journal of Hazardous Materials, 2010,181(1-3):1039-1050.
    [130]V. Rocher, J.M. Siaugue and V. Cabuil, et al. Removal of organic dyes by magnetic alginate beads [J]. Water Research,2008,42(4-5):1290-1298.
    [131]W. Zhang, L.D. Zou and L.Z. Wang. Photocatalytic TiO2/adsorbent nanocomposites prepared via wet chemical impregnation for wastewater treatment: A review [J]. Applied Catalysis A: General,2009,371 (2009):1-9.
    [132]D. Beydoun and R. Amal. Implications of heat treatment on the properties of a magnetic iron oxide-titanium dioxide photocatalyst [J]. Materials Science and Engineering:B,2002,94(1): 71-81.
    [133]R. Jiang, Y.Q. Fu and H.Y. Zhu, et al. Removal of Methyl Orange from Aqueous Solutions by Magnetic Maghemite/Chitosan Nanocomposite Films:Adsorption Kinetics and Equilibrium [J]. Journal of Applied Polymer Science,2012,125(S2):E540-E549.
    [134]X.L. Hao, H. Liu and G.S. Zhang, et al. Magnetic field assisted adsorption of methyl blue onto organo-bentonite [J]. Applied Clay Science,2012,55:77-180.
    [135]L.L. Fan, C.N. Luo and X.J Li, et al. Fabrication of novel magnetic chitosan grafted with graphene oxide to enhance adsorption properties for methyl blue [J]. Journal of Hazardous Materials,2012,215-216:272-279.
    [136]付宏祥,吕功煊,李树本.Cr6+离子在TiO2表面光催化还原机理研究[J].化学物理学报,1999,12(1):112-116.
    [137]C.N.T. Samuel and M.C.L. Irene. Magnetic nanoparticles:Essential factors for sustainable environmental applications [J]. Water Research,2013,47(8):2613-2632.
    [138]D. Mohan and C.U. Pittman Jr. Arsenic removal from water/wastewater using adsorbents- A critical review [J]. Journal of Hazardous Materials,2007,142(1-2):1-53.
    [139]T.S.Y. Choong, T.G. Chuah and Y. Robiah, et al. Arsenic toxicity, health hazards and removal techniques from water: an overview [J]. Desalination,2007,217 (1-3):139-166.
    [140]M. Hua, S.J. Zhang and B.C. Pan, et al. Heavy metal removal from water/wastewater by nanosized metal oxides:A review [J]. Journal of Hazardous Materials,2012,211-212: 317-331.
    [141]J.H. Zhu, S.Y. Wei and M.J. Chen, et al. Magnetic nanocomposites for environmental remediation [J]. Advanced Powder Technology,2013,24(2):459-467.
    [142]S.R. Ji, C. Liu and B. Zhang, et al. Carbon nanotubes in cancer diagnosis and therapy [J]. Biochimicaet Biophysica Acta,2010,1806(1):29-35.
    [143]Y. Rosen and N.M. Elman. Carbon nanotubes in drug delivery: focus on infectious diseases Expert Opin Drug Deliv.2009,6(5):517..
    [144]A. Uthumporn, S. Oraphan and R. Thanyada, et al. How do carbon nanotubes serve as carriers for gemcitabine transport in a drug delivery system? Journal of Molecular Graphics and Modelling,2011,29(5):591-596.
    [145]J.P. Cheng, J.M. Mohammed and Y.P. Sun, et al. Poly(ethylene glycol)-conjugated multi-walled carbon nanotubes as an efficient drug carrier for overcoming multidrug resistance.Toxicology and Applied Pharmacology,2011,250(2): 184-193.
    [1]J. Wang, Q.W. Chen and C. Zeng, et al. Magnetic-Field-Induced Growth of Single-Crystalline Fe3O4 Nanowires [J]. Advanced Materials,2004,16(2):137-40.
    [2]W.M. Xuan, C.F. Zhu and Y. Cui, et al. Mesoporous metal-organic framework materials [J]. Chemical Society Reviews,2012,41(5):1677-1695.
    [3]K. Ariga, A. Vinu and Y. Yamauchi, et al. Nanoarchitectonics for Mesoporous Materials [J]. Bulletin of the Chemical Society of Japan,2012,85 (1):1-32.
    [4]L.H Guan, K. Suenaga and Z.J. Shi, et al. Atomic chains of iodine and their phase transition in confined nanospace [J]. Nano Letters,2007,7 (6):1532-1535.
    [5]J.S. Zhou, H.H. Song and X.H. Chen, et al. Diffusion of metal in a confined nanospace of carbon nanotubes induced by air oxidation [J]. Journal of the American Chemical Society,2010, 132(33):11402.
    [6]K. Ariga, Q. Mayer Ji and J.P. Hill, et al. Forming nanomaterials as layered functional structures toward materials nanoarchitectonics [J]. NPG Asia Materials,2012,4:e17-e27.
    [7]K. Ariga, T. Mori and J.P. Hill. Mechanical Control of Nanomaterials and Nanosystems [J]. Advanced Materials,2012,24(2):158-176.
    [8]C.B. Han, C. He and X.J. Li. Morphology control of gallium nitride grown on silicon nanoporous pillar array:From cone-strings to nanowires [J]. Journal of Crystal Growth,2012, 351(1):155-160.
    [9]Q. Zhang, H. Xu and W. Yan. Highly Ordered TiO2 Nanotube Arrays:Recent Advances in Fabrication and Environmental Applications-A Review[J]. Nanoscience and Nanotechnology Letters,2012,4(5):505-519.
    [10]S.A. Hodge, M.K. Bayazit and K.S. Coleman, et al. Unweaving the rainbow:a review of the relationship between single-walled carbon nanotube molecular structures and their chemical reactivity [J]. Chemical Society Reviews,2012,41:4409-4429.
    [11]C.J. Jia, L.D. Sun and Z.G Yan, et al. Single-Crystalline Iron Oxide Nanotubes [J]. Angewandte Chemie,2005,117(28):4402-4407.
    [12]S.J. Son, J. Reichel and B. He, et al. Magnetic Nanoubes for Magnetic-Field-Assisted Bioseperation, Biointeraction, and Drug Deliverly [J]. Journal of the American Chemical Society,2005,127(20):7316-7317.
    [13]D.T. Mitchell, S.B. Lee and L. Trofin, et al. Smart Nanotubes for Bioseparations and Biocatalysis [J]. Journal of the American Chemical Society,2002,124(40):11864-11865.
    [14]S.W. Cao and Y.J. Zhu. Hierarchically Nanostructured a-Fe2O3 Hollow Spheres: Preparation, Growth mechanism, Photocatalytic Property, and Application in Water Treatment [J]. The Journal of Physical Chemistry C,2008,112(16):6253-6257.
    [15]L. Liu, H.Z. Kou and W.L. Mo, et al. Surfactant-Assisted Synthesis of α-Fe2O3 Nanotubes and Nanorods with shape-Dependent Magnetic properties [J]. The Journal of Physical Chemistry B, 2006,110(31):15218-15233.
    [16]S.H. Zhan, D.R. Chen and X.L. Jiao, et al. Facile fabrication of long α-Fe2O3, α-Fe and γ-Fe2O3 hollow fibers using sol-gel combined co-electrospinning technology [J]. Journal of Colloid and Interface Science,2007,308(1):265-270.
    [17]D. Li and Y.N. Xia. Direct Fabrication of Composite and Ceramic Hollow Nanofibers by Electrospinning [J]. Nano Letters,2004,4(5):933-938.
    [18]F.Z. Mou, J.G Guan and Z.G Sun, et al. In situ generated dense shell-engaged Ostwald ripening: Afacile controlled-preparation for BaFe12O19 hierarchical hollow fiber arrays [J]. Journal of Solid State Chemistry,2010,183(3):736-743.
    [19]Y.W. Ju, J.H. Park and H.R. Jung, et al. Electrospun MnFe2O4 nanofibers: preparation and morphology [J]. Composites Science and Technology,2008,68(7-8):1704-1709.
    [20]D. Li, J.T. McCann and Y.N. Xia, et al. Electrospinning: A Simple and Versatile Technique for Producing Ceramic Nanofibers and Nanotubes [J]. Journal of the American Chemical Society, 2006,89(6):1861-1869.
    [21]J. Xiang, X.Q. Shen and F.Z. Song, et al. Fabrication and characterization of Fe-Ni alloy/nickel ferrite composite nanofibers by electrospinning and partial reduction [J]. Materials Research Bulletin,2011,46(2):258-261.
    [22]S. Elemen, EPA Kumbasar and S. Yapar. Modeling the adsorption of textile dye on organoclay using an artificial neural network [J]. Dyes Pigments,2012,95(1):102-111.
    [23]H.W. Yan, C.F. Blanford and B.T. Holland, et al. General synthesis of periodic macroporous solids by templated salt precipitation and chemical conversion [J]. Chemistry of Materials,2000, 12(4):1134-1141.
    [24]Q.H. Hu, Z.P. Xu and S.Z. Qiao, et al. A novel color removal adsorbent from heterocoagulation of cationic and anionic clays [J]. Journal of Colloid and Interface Science,2007,308(1): 191-199.
    [25]G.Z. Zhang, Z. Zhao and J. Liu, et al. Macroporous perovskite-type complex oxide catalysts of La1-xKxCo1-yFeyO3 for diesel soot combustion [J]. Journal of Rare Earths,2009,27(6):955-960.
    [26]L.Y. Zhu, G. Yu and W.W. Qin, et al. Preparation, morphology and specific surface area of CeO2-ZrO2 and CeO2-ZrO2-Al2O3 fine fibers via precursor sol-gel technique [J]. Journal of Alloys and Compounds,2010.492(1-2):456-460.
    [27]Z.X. Yue, J. Zhou and L.T. Li, et al. Sythesis of nanocrystalline NiCuZn ferrite powders by sol-gel auto-combustion method [J]. Journal of Magnetism and Magnetic Materials,2000, 208(1-2):55-60.
    [28]K.H. Wu, C.H. Yu and Y.C. Chang, et al. Effect of pH on the formation and combustion process of sol-gel auto-combustion derived NiZn ferrite/SiO2 composites [J]. Journal of Solid State Chemistry,2004,177(11):4119-4125.
    [29]K. Nakamoto. Infrared and Raman Spectra of Inorganic and Coordination Compounds [M]. Beijing: The Press Co of Chemical Industry,1986.
    [30]S. Qing and Z.J. Zhang. Shape Control and Associated Magnetic Properties of Spinel Cobalt Ferrite Nanocrystals [J]. Journal of the American Chemical Society,2004,126(9):6164-6168.
    [31]张伯军,华杰,刘梅,等.纳米复合材料Co0,5Ni0.5Fe2O4-SiO2的显微结构和磁性[J].硅酸盐学报,2008,36(3):292-295.
    [32]Y. Liu and T. Qin. Microstructure and magnetic characteristics of nanocrystalline Ni0.5Zn0.5 ferrite synthesized by a spraying-coprecipitation method [J]. Chinese Physics B,2007,16(12): 3837-3842.
    [33]E.C. Stoner and E.P. Wohlfarth. A mechanism of magnetic hysteresis in heterogeneous alloys [J]. IEEE Transactions on Magnetics,1991,27(4):3475-3518.
    [34]Q. Yang, Y.L. Liu and C.X. Yu, et al. Rapid combustion method for surface modification of strontium aluminate phosphors with high water resistance [J]. Applied Surface Science,2012, 258(18):6814-6818.
    [35]Q.A. Pankhurst, N.K.T. Thanh and S.K. Jones, et al. Progress in applications of magnetic nanoparticles in biomedicine [J]. Journal of Physics D-Applied Physics,2009,42(22):22401.
    [36]GS. Shahane, A. Kumar and M. Arora, et al. Synthesis and characterization of Ni-Zn ferrite nanoparticles [J]. Journal of Magnetism and magnetic materials,2010,322(8):1015-1019.
    [37]S. Kumar, V. Singh and S. Aggarwal, et al. Synthesis of nanocrystalline Nio.5Zno.5Fe2O4 ferrite and study of its magnetic behavior at different temperatures [J]. Materials Science and engineering B-Advanced Functional Solid-State Materials,2010,166(1):76-82.
    [38]B. Ghosh and S. Kumar. Magnetic enhancement in nano-sized Ni-Zn ferrite [J]. Hyperfine interactions,2011,183(1-3):163-169.
    [39]A. Sutka, K. A. Gross and G. Mezinskis, et al. The effect of heating conditions on the properties of nano- and microstructured Ni-Zn ferrite [J]. Physica scripta,2011,83(2):025601.
    [40]A. Kathiravan, R. Renganathan and S. Anandan. Interaction of colloidal AgTiO2 nanoparticles with bovine serum albumin [J]. Polyhedron,2009,28(1):157-161.
    [41]B. Ori, J. Myoseon and B. David, et al. Amorphous silica coatings on magnetic nanoparticles enhance stability and reduce toxicity to in vitro BEAS-2B cells [J]. Inhalation Toxicology,2011, 23(9):532-543.
    [42]Y.M. Yang, J.X. Aw and K. Chen, et al. Enzyme-Responsive Multifunctional Magnetic Nanoparticles for Tumor Intracellular Drug Delivery and Imaging [J]. Chemistry-An Asian Journal,2011,6(6):1381-1389.
    [43]O. Kaman, P. Veverka and Z. Jirak, et al. The magnetic and hyperthermia studies of bare and silica-coated La0.75Sr0.25MnO3 nanoparticles [J]. Journal of Nanoparticle research,2011,13(3): 1237-1252.
    [44]T. Kim, E. Momin and J. Choi, et al. Mesoporous Silica-Coated Hollow Manganese Oxide Nanoparticles as Positive T-l Contrast Agents for Labeling and MRI Tracking of Adipose-Derived Mesenchyrnal Stem Cells [J]. Journal of the American Chemical Society,2011,133(9): 2955-2961.
    [45]L.H. Shi, D.B. Li and B. Hou, et al. Organic Modification of SiO2 and Its Influence on the Properties of Co-Based Catalysts for Fischer-Tropsch Synthesis [J]. Chinese Journal of Catalysis,2007,28(11):999-1002.
    [46]K.H. Wu, Y.M. Shin and C.C. Yang, et al. Preparation and characterization of bamboo charcoal/Ni0.5Zn0.5Fe2O4 composite with core-shell structure [J]. Materials Letters,2006, 60(21-22):2707-2710.
    [47]W. Ponhan and S. Maensiri. Fabrication and magnetic properties of electrospun copper ferrite (CuFe2O4) nanofibers [J]. Solid State Sciences,2009,11 (2):479-484.
    [48]Y.W. Ju, J.H. Park and H.R. Jung. Fabrication and characterization of cobalt ferrite (CoFe204) nanofibers by electrospinning [J]. Materials Science and Engineering:B,2008,147(1):7-12.
    [49]K.H. Wu, W.C. Huang and C.C. Yang, et al. Sol-gel auto-combustion synthesis of Ni0.5Zn0.5Fe2O4/(SiO2)x (x=10,20,30 wt%) nanocomposites and their characterizations [J]. Materials Research Bulletin,2005,40(2):239-248.
    [50]K. Katsuya, S. Makoto and T. Masaki, et al. Preparation and catalytic evaluation of cytochrome c immobilized on mesoporous silica materials [J]. Journal of The Ceramic Society of Japan, 2010,118(1378):410-416.
    [51]M. Ma, Y. Zhang and X.B. Li, et al. Synthesis and characterization of titania-coated Mn-Zn ferrite nanoparticles [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003,224(1-3):207-212.
    [52]C. Caizer. Structural and magnetic properties of nanocrystalline Zno.65Ni0.35Fe2O4 powder obtained from heteropolynuclear complex combination [J]. Materials Science & Engineering B Solid State Materials for Advanced Technology,2003,100 (1):63-68.
    [1]S. Guo and K.J. Kemphues. A gene required for establishing polarity in C. elegans embryos, encodes a putative ser/thr kinase that is asymmetrically distributed [J]. Cell,1995,81(4): 611-620.
    [2]G.D. Kenny, N. Kamaly and T.L. Kalber, et al. Novel multifunctional nanoparticle mediates siRNA tumour delivery, visualization and therapeutic tumour reduction in vivo [J]. Journal of Controlled Release,2011,149(2):111-116.
    [3]J.F. Guo, L. Bourre and D.M. Soden, et al. Caitriona O'Driscoll, Can non-viral technologies knockdown the barriers to siRNA delivery and achieve the next generation of cancer therapeutics? [J]. Biotechnology Advances,2011,29(4):402-417.
    [4]Z.W. Liang, B.F. Guo and Y. Li, et al. Plasmid-based Stat3 siRNA delivered by hydroxyapatite nanoparticles suppresses mouse prostate tumour growth in vivo [J]. Asian Journal of Andrology, 2011,13(3),481-486.
    [5]D. Ciolczyk-Wierzbicka, D. Gil and P. Laidler. The Inhibition of Cell Proliferation Using Silencing of N-Cadherin Gene by siRNA Process in Human Melanoma Cell Lines [J]. Current Medicinal Chemistry,2012,19(1):145-151.
    [6]Y.G. Lan, H.J. Lu and K. Zhao, et al. In vitro Inhibition of Porcine Hemagglutinating Encephalomyelitis Virus Replication with siRNAs Targeting the Spike Glycoprotein and Replicase Polyprotein Genes [J]. Intervirology,2012,55(1):53-61.
    [7]Z. Ahmed, R.G Dent and E.L. Suggate, et al. Disinhibition of neurotrophin-induced dorsal root ganglion cell neurite outgrowth on CNS myelin by siRNA-mediated knockdown of NgR, p75NTR and Rho-A.Mol. Cell [J]. Neurosci,2005,28(3):509-523.
    [8]T.Z. Wang, J. Wang and C. Yin, et al. Down-regulation of Nogo receptor promotes functional recovery by enhancing axonal connectivity after experimental stroke in rats [J]. Brain Research, 2010,1360(11):147-158.
    [9]T. Toyooka, H. Nawashiro and N. Shinomiya, et al. Down-Regulation of Glial Fibrillary Acidic Proteinand Vimentin by RNA Interference Improves Acute Urinary Dysfunction Associated with Spinal Cord Injury in Rats [J]. Journal of Neurotrauma,2011,28(4):607-618.
    [10]A. Kumar, P.K. Jena and S. Behera, et al. Multifunctional magnetic nanoparticles for targeted delivery [J]. Nanomedine,2010,6(1):64-69.
    [11]K. Ariga, A. Vinu and Y. Yamauchi, et al. Nanoarchitectonics for mesoporous materials [J]. Bulletin of the Chemical Society of Japan,2012,85(1):1-32.
    [12]W.X. Mai and H. Meng. Mesoporous silica nanoparticles:A multifunctional nano therapeutic system [J]. Integrative Biology,2013,1(5):19-28.
    [13]J.M. Schnorr and T.M. Swager. Emerging Applications of Carbon Nanotubes [J]. Chemistry of Materials,2012,23(3):646-657.
    [14]Q. Zhang, H. Xu and W. Yan. Highly Ordered TiO2 Nanotube Arrays:Recent Advances in Fabrication and Environmental Applications-A Review [J]. Nanoscience and Nanotechnology Letters,2012,4(5):505-519.
    [15]K. Ariga, Q.M. Ji and J.P. Hill, et al. Forming nanomaterials as layered functional structures toward materials nanoarchitectonics [J]. NPG Asia Materials,2012,4:e17.
    [16]S.J. Guo, S.J. Dong, Graphene nanosheet:synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications [J]. Chemical Society Reviews,2011,40(5):2644-2672.
    [17]A.K. Gupta and M.R. Gupta. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications [J]. Biomaterials,2005,26(18):3995-4021.
    [18]Q.A. Pankhurst, J. Connolly and S.K. Jones, et al. Applications of magnetic nanoparticles in biomedicine [J]. Journal of Physics D:Applied Physics,2003,36(13):R167-R181.
    [19]S.C. McBain, H.H. Yiu and J. Dobson. Magnetic nanoparticles for gene and drug delivery [J]. Int J Nanomedicine,2008,3(2):169-180.
    [20]E. Stride, C. Porter and A.G. Prieto, et al. Enhancement of microbubble mediated gene delivery by simultaneous exposure to ultrasonic and magnetic fields [J]. Ultrasound in Medicine and Biology,2009,35(5):861-868.
    [21]R. Ensenauer, D. Hartl and J. Vockley, et al. Efficient and gentle siRNA delivery by magnetofection [J]. Biotechnic & Histochemistry,2011,86(4): 226-231.
    [22]W.L. Zhou, P. Gao and L. Shao, et al. Drug-loaded, magnetic, hollow silica nanocomposites for nanomedicine [J]. Nanomedicine: Nanotechnology Biologyand Medicine,2005,1(3):233-237.
    [23]P.A. Nakhaei, T. Sohrab and S. Marzieh, et al. Synthesis with Fe/Cu/La/SiO2 Nano-Structured Catalyst [J]. Journal of Nanoscience and Nanotechnology,2009,1(9):4425-4429.
    [24]H.I. Hsiang and F.S. Yen. Effects of mechanical treatment on phase transformation and sintering of nano-sized y-Fe2O3 powder [J]. Ceramics International,2003,29(1):1-6.
    [25]Y. Zhao, J. Chu and S.H. Li, et al. Preparation of Pt-Fe2O3 nano-electrode array on gold nano-wires and its application to the catalytic degradation of methyl orange [J]. Chemical Engineering Journal,2011,170(2-3):440-444.
    [26]S. Patil, D. Jirak and F. Saudek, et al. Positive contrast visualization of SPIO-labeled pancreatic islets using echodephased steady-state free precession [J]. European Society of Radiology,2011, (21):214-220.
    [27]G. Hu and B. He. Magnetoacoustic imaging of magnetic iron oxide nanoparticles embedded in biological tissues with microsecond magnetic stimulation [J]. Applied Physics Letters,2012, 100(1):13704-137043.
    [28]S. Ramaswamy, P.A. Schornack and A.G. Smelko, et al. Superparamagnetic iron oxide (SPIO) labeling efficiency and subsequent MRI tracking of native cell populations pertinent to pulmonary heart valve tissue engineering studies [J]. NMR in Biomedicine,2012,25(3): 410-417.
    [29]D.L.J. Thorek, J. Czupryna and A.K. Chen, et al.10-Molecular Imaging of Cancer with Superparamagnetic Iron-Oxide Nanoparticles, Cancer Imaging, Lung and Breast Carcinamas [J]. Carcinogenesis,2008,315 (1-2):85-95.
    [30]S.D. Chickera, C. Willert and C. Mallet, et al. Cellular MRI as a suitable, sensitive non-invasive modality for correlating in vivo migratory efficiencies of different dendritic cell populations with subsequent immunological outcomes [J]. International Immunology,2012,24(1):29-41.
    [31]B.M. Addicott, M. Willman and J. Rodriguez, et al. Contrast Media Mol I.6,7 (2011). Mesenchymal stem cell labeling and in vitro MR characterization at 1.5 T of new SPIO contrast agent: Molday ION Rhodamine-BTM [J]. Contrast Media and Molecular Imaging,2011,6(1): 7-18.
    [32]C.X. Fan, W.H. Gao and Z.X. Chen, et al. Tumor selectivity of stealth multi-functionalized superparamagnetic iron oxide nanoparticles [J]. International Journal of Pharmaceutics,2011, 404(1-2):180-190.
    [33]F.H. Wang, D.K. Kim and T. Yoshitake, et al. Diffusion and clearance of superparamagnetic iron oxide nanoparticles infused into the rat striatumstudied by MRI and histochemical techniques [J]. Nanotechnology,2011,22(1):015103.
    [34]T. Buerli, C. Pellegrino and K. Baer, et al. Efficient transfection of DNA or shRNA vectors into neurons using magnetofection [J]. Nature Protocols,2007,2(12):3090-3101.
    [35]S. Nations, M. Wages and J.E. Cafias, et al. Acute effects of Fe2O3, TiO2, ZnO and CuO nanomaterials on Xenopus laevis [J]. Chemosphere,2011,83 (8):1053-1061.
    [36]M.T. Zhu, B. Wang and Y. Wang, et al. Endothelial dysfunction and inflammation induced by iron oxide nanoparticle exposure: Risk factors for early atherosclerosis [J]. Toxicology Letters, 2011,203(2):162-171.
    [37]C.Y. Yang, J.K. Hsiao and M.F. Tai, et al. Direct Labeling of hMSC with SPIO: the Long-Term Influence on Toxicity, Chondrogenic Differentiation Capacity, and Intracellular Distribution [J]. Molecular Imaging and Biology,2011,13(3):443-451.
    [38]S.B. Lovern and R. Klaper. Daphnia magna mortality when exposed to titanium dioxide and fullerene (C60) nanoparticles [J]. Environmental Toxicology and Chemistry,2006,25 (4): 1132-1137.
    [39]H. Onoda, K. Ito and M. Tanabe, et al. Naofumi Matsunaga Nondiffuse fatty infiltration of the liver: Does the uptake of iron-oxide increase or decrease at SPIO-enhanced MR imaging? [J]. European Journal of Radiology,2011,79(2):e113-e116.
    [40]Y.K. Kim, H.L. Jiang and Y.Choi, et al. Polymeric nanoparticles of chitosan derivatives as DNA and siRNA carriers [J]. Advances in Polymer Science,2011,243:1-22.
    [41]M. Hanzlikova, M. Ruponen and E. Galli, et al. Mechanisms of polyethylenimine-mediated DNA delivery:free carrier helps to overcome the barrier of cell-surface glycosaminoglycans [J]. Journal of Gene Medicine,2011; 13:402-409.
    [42]W.X. Mai and H. Meng. Mesoporous silica nanoparticles:A multifunctional nano therapeutic system [J]. Integrative Biology,2013,5(1):19-28.
    [43]S.J. Son, J. Reichel and B. He, et al. Magnetic nanotubes for magnetic-field-assisted bioseperation, biointeraction, and drug deliverly [J]. Journal of the American Chemical Society, 2005,127(20):7316-7317.
    [44]D.T. Mitchell, S.B. Lee and L. Trofin, et al. Smart nanotubes for bioseparations and biocatalysis [J]. Journal of the American Chemical Society,2002,124(40):11864-11865.
    [45]S.W. Cao and Y.J. Zhu. Hierarchically nanostructured a-Fe2O3 hollow spheres:preparation, growth mechanism, photocatalytic property, and application in water treatment [J]. The Journal of Physical Chemistry C,2008,112(16):6253-6257.
    [46]L. Liu, H.Z. Kou and W.L. Mo, et al. Surfactant-assisted synthesis of a-Fe2O3 nanotubes and nanorods with shape-dependent magnetic properties [J]. The Journal of Physical Chemistry B, 2006,110(31):15218-15233.
    [47]C.J. Jia, L.D. Sun and Z.G. Yan, et al. Single-crystalline iron oxide nanotubes [J]. Angewandte Chemie,2005,117(28):4402-4407.
    [48]S.H. Zhan, D.R. Chen and X.L. Jiao, et al. Facile fabrication of long a-Fe2O3, α-Fe and γ-Fe2O3 hollow fibers using sol-gel combined co-electrospinning technology [J]. Journal of Colloid and Interface Science,2007,308(1):265-270.
    [49]D. Li and Y.N. Xia. Direct fabrication of composite and ceramic hollow nanofibers by electrospinning [J]. Nano Letter,2004,4(5):933-938.
    [50]F.Z. Mou, J.G. Guan and Z.G. Sun, et al. In situ generated dense shell-engaged ostwald ripening: afacile controlled-preparation for BaFe12O19 hierarchical hollow fiber arrays [J]. Journal of Solid State Chemistry,2010,183(3):736-743.
    [51]X. Chen, K.M. Unruh and C.Y. Ni, et al. Fabrication, formation mechanism, and magnetic properties of metal oxide nanotubes via electrospinning and thermal treatment [J]. The Journal of Physical Chemistry C,2011,115(2):373-378.
    [52]Y.W. Ju, J.H. Park and H.R. Jung, et al. Electrospun MnFe2O4 nanofibers:preparation and morphology [J]. Composites Science and Technology,2008,68(7-8):1704-1709.
    [53]T. Kopac, K. Bozgeyik and J. Yener. Effect of pH and temperature on the adsorption of bovine Serum albumin onto titanium dioxide [J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects,2008,322(1-3):19-28.
    [54]K. Rezwan, L.P. Meier and L.J. Gauckler. Lysozyme and bovine serum albumin adsorption on uncoated silica and AlOOH-coated silica particles:the influence of positively and negatively charged oxide surface coatings [J]. Biomaterials,2005,26(21):4351-4357.
    [55]R. Seitz, R. Brings and Geiger R. Protein adsorption on solid-liquid interfaces monitored by laser-ellipsometry [J]. Applied Surface Science,2005,252(1):154-157.
    [1]李晔.酶的固定化及其应用[J].分子催化,2008,22(1):86-96.
    [2]秦胜利,于建生.酶固定化技术研究进展[J].河南化工,2011,28(3):24-26.
    [3]牛亚楠,侯红萍.固定化酶载体的研究进展[J].酿酒科技,2011,32(9):97-99.
    [4]S. Bernardino, N. Estrela and V. Ochoa-Mendes, et al. Optimization in the immobilization of penicillin G acylase by entrapment in xerogel particles with magnetic properties [J]. Journal of Sol-gel Science and Technology,2011,58(2):545-556.
    [5]J.Q. Zhao, Y.J. Wang and GS. Luo, et al. Immobilization of penicillin G acylase on macro-mesoporous silica spheres [J]. Bioresource Technology,2011,102 (2):529-535.
    [6]C.I. Chen, Y.M. Ko and C.J. Shieh, et al. Direct penicillin G acylase immobilization by using the self-prepared immobilized metal affinity membrane [J]. Journal of Membrane Science,2011, 380 (1-2):34-40.
    [7]H.C. Zhou, W. Li and Q.H. Shou, et al. Immobilization of Penicillin G Acylase on Magnetic Nanoparticles Modified by Ionic Liquids [J]. Chinese Journal of Chemical Engineering,2012, 20(1):146-151.
    [8]M. S. Mohy Eldin, H. A. El Enshasy and M. E. Hassan, et al. Covalent immobilization of penicillin G acylase onto amine-functionalized PVC membranes for 6-APA production from penicillin hydrolysis process. II. Enzyme immobilization and characterization [J]. Journal of Applied Polymer science,2012,125(5):3820-3828.
    [9]A.S.M. Chong and X.S. Zhao. Design of large-pore mesoporous materials for immobilization of penicillin G acylase biocatalyst [J]. Catalysis Today,2004,93 (95):293-299.
    [10]W. Wang, L. Deng and Z.H. Peng, et al. Study of the epoxydized magnetic hydroxyl particles as a carrier for immobilizing penicillin G acylase [J]. Enzyme and Microbial Technology,2007,40 (2):255-261.
    [11]H. Sun, X.Y. Bao and X.S. Zhao. Immobilization of Penicillin G Acylase on Oxirane-Modified Mesoporous Silicas [J]. Langmuir 2009,25(3):1807-1812.
    [12]B.F. Shi, Y.Q. Wang and J.W Ren, et al. Superparamagnetic aminopropyl-functionalized silica core-shell microspheres as magnetically separable carriers for immobilization of penicillin G acylase [J]. Journal of Molecular Catalysis B:Enzymatic,2010,63 (1-2):50-56.
    [13]X.G. Luo and L.N. Zhang. Immobilization of Penicillin G Acylase in Epoxy-Activated Magnetic Cellulose Microspheres for Improvement of Biocatalytic Stability and Activities [J]. Biomacromolecules,2010,11(11):2896-2903.
    [14]S.M.S.A. Bernardino, J.F.M. Gallegos and A. Santhagunam, et al. Immobilization of penicillin G acylase by entrapment in a sol-gel matrix with magnetic properties [J]. Journal of Biotechnology,2007,131(2):S97.
    [15]P.X. Wang, X.Y. Gong and E.Z. Su, et al. A facile pretreatment method for efficient immobilization of penicillin G acylase [J]. Biochemical Engineering Journal,2011,56(1-2): 17-22.
    [16]J.Q. Zhao, Y.J. Wang and GS. Luo, et al. Covalent immobilization of penicillin G acylase on aminopropyl-functionalized mesostructured cellular foams [J]. Bioresource Technology,2010, 101(19):7211-7217.
    [17]R. Seitz, R. Brings and Geiger R. Protein adsorption on solid-liquid interfaces monitored by laser-ellipsometry [J]. Applied Surface Science,2005,252(1):154-157.
    [18]G.P. Lopez, S.P. Silvetti and S.E. Urreta, et al. Structure and magnetic properties of NiZn ferrite/SiO2 nanocomposites synthesized by ball milling [J]. Journal of Alloys and Compounds, 2010,505(2):808-813.
    [19]M. Gharagozlou. Study on the influence of annealing temperature and ferrite content on the structural and magnetic properties of x(NiFe2O4)/(100-x)SiO2 [J]. Journal of Alloys and Compounds,2010,495(1):217-223.
    [20]S. Laurent, S. Dutz and U.O. Hafeli, et al. Magnetic fluid hyperthermia: Focus on superparamagnetic iron oxide nanoparticles [J]. Advances in Colloid and Interface Science, 2011,166(1-2)8-23.
    [21]H.X. Peng, G.X. Liu and X.T. Dong, et al. Preparation and characteristics of Fe3O4@YVO4: Eu3+bifunctional magnetic-luminescent nanocomposites [J]. Journal of Alloys and Compounds, 2011,509(24):6930-6934.
    [22]X.P. Shen, J.L. Wu and S. Bai, et al. One-pot solvothermal syntheses and magnetic properties of graphene-based magnetic nanocomposites [J]. Journal of Alloys and Compounds,2010,506(1): 136-140.
    [23]M. Chorny, I. Fishbein and S. Forbes, et al. Magnetic nanoparticles for targeted vascular delivery [J]. Iubmb life.2011,63(8):613-620.
    [24]A.J. Cole, V.C. Yang and A.E. David. Cancer theranostics:the rise of targeted magnetic nanoparticles [J]. Trends in Biotechnology,2011,29(7):323-332.
    [25]D. Sponarova, D. Horak and M. Trchova, et al. The Use of Oligoperoxide-Coated Magnetic Nanoparticles to Label Stem Cells [J]. Journal of Biomedical nanotechnology,2011,7(3): 384-394.
    [26]S.M.C. Berman, P. Walczak and J.W.M. Bulte. Tracking stem cells using magnetic nanoparticles [J]. Wiley Interdisciplinary Reviews:Nanomedicine and Nanobiotechnology, 2011,3(4):343-355.
    [27]J.H. Lee, J.T. Jang and J.S. Choi, et al. Exchange-coupled magnetic nanoparticles for efficient heat induction [J]. Nature Nanotechnology,2011,6(7):418-422.
    [28]R. Banerjee, Y. Katsenovich and L. Lagos, et al. Nanomedicine: Magnetic Nanoparticles and their Biomedical Applications [J]. Current Medicinal Chemistry,2010,17(27):3120-3141.
    [29]M.X. Gao, C.H. Deng and X.M. Zhang. Magnetic nanoparticles-based digestion and enrichment methods in proteomics analysis [J]. Expert Review of Proteomics,2011,8(3): 379-390.
    [30]S. Kralj, M. Drofenik and D. Makovec. Controlled surface functionalization of silica-coated magnetic nanoparticles with terminal amino and carboxyl groups [J]. Journal of Nanoparticle Research,2011,13(7):2829-2841.
    [31]F. Herranz, E. Almarza and I. Rodriguez, et al. The application of nanoparticles in gene therapy and magnetic resonance imaging [J]. Microscopy Research and Technique,2011,74(7): 577-591.
    [32]E.K. Lim, Y.M. Huh and J. Yang, et al. pH-Triggered Drug-Releasing Magnetic Nanoparticles for Cancer Therapy Guided by Molecular Imaging by MRI [J]. Advanced Materials,2011, 23(21):2436-2442.
    [33]S.H. Yuk, K.S. Oh and S.H. Cho, et al. Glycol Chitosan/Heparin Immobilized Iron Oxide Nanoparticles with a Tumor-Targeting Characteristic for Magnetic Resonance Imaging [J]. Biomacromolecules,2011,12(6): 2335-2343.
    [34]C.R. Shen, S.T. Wu and Z.T. Tsai, et al. Characterization of quaternized chitosan-stabilized iron oxide nanoparticles as a novel potential magnetic resonance imaging contrast agent for cell tracking [J]. Polymer International,2011,60(6):945-950.
    [35]X.L. Zhao, Y.Q. Cai and F.C. Wu, et al. Determination of perfluorinated compounds in environmental water samples by high-performance liquid chromatography-electrospray tandem mass spectrometry using surfactant-coated Fe3O4 magnetic nanoparticles as adsorbents [J]. Microchemical Journal,2011,98(2):207-214.
    [36]J.K. Park, J. Jung and P. Subramaniam, et al. Graphite-Coated Magnetic Nanoparticles as Multimodal Imaging Probes and Cooperative Therapeutic Agents for Tumor Cells [J]. Small, 2011,7(12):1647-1652.
    [37]F. Galeotti, F. Bertini and G. Scavia, et al. A controlled approach to iron oxide nanoparticles functionalization for magnetic polymer brushes [J]. Journal of Colloid and Interface Science, 2011,360(2):540-547.
    [38]Y.J. Zhang, Y.T. Yang and Y. Liu, et al. A novel approach to the synthesis of CoPt magnetic nanoparticles [J]. Journal of Physics D:Applied Physics,2011,44(29):295003.
    [39]E. Girgis, M.M.S. Wahsh and A.G.M. Othman, et al. Synthesis, magnetic and optical properties of core/shell Co1-xZnxFe2O4/SiO2 nanoparticles [J]. Nanoscale Research Letters,2011,6:460.
    [40]H.F. Liang and Z.C.Wang. Adsorption of bovine serum albumin on functionalized silica-coated magnetic MnFe2O4 nanoparticles [J]. Materials Chemistry and Physics,2010,124(2-3): 964-969.
    [41]C.V. Vidal, A.O. Juan and A.L. Munoz. Adsorption of bovine serum albumin on CoCrMo surface:Effect of temperature and protein concentration [J]. Colloids and Surfaces B: Biointerfaces,2010,80(1):1-11.
    [42]A. Kathiravan, R. Renganathan and S. Anandan, et al. Interaction of colloidal AgTiO2 nanoparticles with bovine serum albumin [J]. Polyhedron,2009,28(1):157-161.
    [43]B. Ori, J. Myoseon and B. David, et al. Amorphous silica coatings on magnetic nanoparticles enhance stability and reduce toxicity to in vitro BEAS-2B cells [J]. Inhalation Toxicology,2011, 23(9):532-543.
    [44]Y.M. Yang, J.X. Aw and K. Chen, et al. Enzyme-Responsive Multifunctional Magnetic Nanoparticles for Tumor Intracellular Drug Delivery and Imaging [J]. Chemistry - An Asian Journal,6(2011) 1381-1389.
    [45]C.T. Jiang, R.J. Liu and X.Q. Shen, et al. Ni0.5Zn0.5Fe2O4 nanoparticles and their magnetic properties and adsorption of bovine serum albumin [J]. Powder Technology,2011,211(1): 90-94.
    [46]B.F. Pan, F. Gao, and H.C. Gu. Dendrimer modified magnetite nanoparticles for protein immobilization [J]. Journal of Colloid and Interface Science,2005,284(1):1-6.
    [47]侯荣.钴铁氧体磁性空心球的可控制备及应用研究[D].北京化工大学,2009.
    [48]L.Y. Zhu, G. Yu and W.W. Qin, et al. Preparation, morphology and specific surface area of CeO2-ZrO2 and CeO2-ZrO2-Al2O3 fine fibers via precursor sol-gel technique [J]. Journal of alloys and compounds,2010,492(1-2):456-460.
    [49]H.D. Wang, C. H. Niu and Q.Q. Yang, et al. Study on protein conformation and adsorption behaviors in nanodiamond particle-protein complexes [J]. Nanotechnology.2011,22(14):1-11.
    [50]J.F. Shen, M. Shi and B. Yan, et al. Covalent attaching protein to graphene oxide via diimide-activated amidation [J]. Colloids and Surfaces B:Biointerfaces,2010,81(2):434-438.
    [51]S.J. McClellan and E.I. Franses. Effect of concentration and denaturation on adsorption and surface tension of bovine serum albumin [J]. Colloids and Surfaces B:Biointerfaces,2003, 28(1):63-75.
    [1]M.A. Malana, R.B. Qureshi and M.N. Ashiq. Adsorption studies of arsenic on nano aluminium doped manganese copper ferrite polymer (MA, VA, AA) composite: Kinetics and mechanism [J]. Chemical Engineering Journal,2011,172(2-3):721-727.
    [2]R.Z. Chen, C. Zhi and H. Yang, et al. Arsenic adsorption on Fe3O4 nanoparticle-coated boron nitride nanotubes [J]. Journal of Colloid and Interface Science,2011,359(1):261-268.
    [3]Q.C. Liu, B. Li and J. Gong, et al. Preparation and luminescent properties of one-dimensional [Ru(Bphen)zdppz]Cl2/PVP composite fibers by electrospinning [J]. Journal of Alloys and Compounds,2008,466(1-2):314-318.
    [4]S.R. Samadder. Impact of Arsenic Pollution in Drinking Water on Life Expectancy:A GIS Study [J]. KSCE Journal of Civil Engineering,2010,14(5):681-691.
    [5]D.E. Giles, M. Mohapatra and T.B. Issa, et al. Iron and aluminium based adsorption strategies for removing arsenic from water [J]. Journal of Environmental Management,2011,92(12): 3011-3022.
    [6]D.L. Guerra, A.C. Batista and P.C. C. costa, et al. Adsorption of arsenic ions on Brazilian sepiolite:Effect of contact time, pH, concentration, and calorimetric investigation [J]. Journal of Colloid and Interface Science,2010,346(1):178-187.
    [7]T. Stanic, A. Dakovic and A. Zivanovic, et al. Adsorption of arsenic by iron (Ⅲ)-modified natural zeolitic tuff [J]. Environmental Chemistry Letters,2009,7(2):161-166.
    [8]A. Maiti, H. Sharma and J.K. Basu, et al. Modeling of arsenic adsorption kinetics of synthetic and contaminated groundwater on natural laterite [J]. Journal of Hazardous Materials,2009, 172(2-3):928-934.
    [9]Y. Mamindy-Pajany, C. Hurel and N. Marmier, et al. Arsenic adsorption onto hematite and goethite [J]. Comptes Rendus Chimie,2009,12(8):876-881.
    [10]Y.L. Tang, J.M. Wang and N.Y. Gao. Characteristics and model studies for fluoride and arsenic adsorption on goethite [J]. Journal of Environmental Sciences-China,2010,22(11):1689-1694.
    [11]F. Partey, D. Norman and S. Ndur, et al. Arsenic sorption onto laterite iron concretions: Temperature effect [J]. Journal of Colloid and Interface Science,2008,321(2):493-500.
    [12]M. Salim and Y. Munekage. Removal of Arsenic From Aqueous Solution Using Silica Ceramic: Adsorption Kinetics and Equilibrium Studies [J]. International Journal of Environmental Research,2009,3(1):13-22.
    [13]O. Kaoru, O. Tatsuya and B. Yoshinari. Adsorption of arsenic using high surface area magnetites [J]. Environmental Geochemistry and Health,2010,32(4):283-286.
    [14]C.S. Rahman and E.K. Yanful. Arsenic removal from aqueous solutions by adsorption on magnetite nanoparticles [J]. Water and Environment Journal,2011,25(3):429-437.
    [15]W.C. Yang, A.T. Kan and W. Chen, et al. pH-dependent effect of zinc on arsenic adsorption to magnetite nanoparticles [J]. Water Research,2010,44(19):5693-5701.
    [16]Kim YH, Kim CM and Choi IH, et al. Arsenic removal using mesoporous alumina prepared via a templating method [J]. Environmental Science & Technology,2004,38(3):924-931.
    [17]N. Deedar, A. Irfan and A.Q. Ishtiaq. Evaluation of the adsorption potential of titanium dioxide nanoparticles for arsenic removal [J]. Journal of Environmental Sciences-China,2009,21(3): 402-408.
    [18]C.A. Martinson and K.J. Reddy. Adsorption of arsenic(Ⅲ) and arsenic(V) by cupric oxide nanoparticles [J]. Journal of Colloid and Interface Science,2009,336(2):406-411.
    [19]H.J. Shipley, S. Yean and A.T. Kan, et al. Adsorption of arsenic to magnetite nanoparticles: effect of particle concentration, pH, ionic strength and temperature [J]. Environmental Toxicology and Chemistry,2009,28(3):509-515.
    [20]W.S. Tang, Q. Li and C.F. Li, et al. Ultrafine α-Fe2O3 nanoparticles grown in confinement of in situ self-formed "cage" and their superior adsorption performance on arsenic( Ⅲ) [J]. Journal of Nanoparticle Research,2011,13(6):2641-2651.
    [21]H.J. Shipley, S. Yean and A.T. Kan, et al. A sorption kinetics model for arsenic adsorption to magnetite nanoparticles [J]. Environmental Science and Pollution Research,2010,17(5): 1053-1062.
    [22]G.Q. Liu, N.R. Liu and H.F. Zhang, et al. The adsorption of arsenic on magnetic iron oxide in aqueous solutions [J]. Desalination and Water Treatment-Science and Engineering,2010, 21(1-3):96-101.
    [23]H.Y. Niu, J.M. Wang and Y.L. Shi, et al. Adsorption behavior of arsenic onto protonated titanate nanotubes prepared via hydrothermal method [J]. Microporous and Mesoporous Materials, 2009,122(1-3):28-35.
    [24]M.J. Carmo, M.G. Adeodato and A.M. Moreira, et al. Kinetic and Thermodynamic Study on the Liquid Phase Adsorption by Starchy Materials in the Alcohol-Water System [J]. Adsorption, 2004,10(3):211-218.
    [25]I.A.W. Tan, A.L. Ahmad and B.H. Hameed. Adsorption isotherms, kinetics, thermodynamics and desorption studies of 2,4,6-trichlorophenol on oil palm empty fruit bunch-based activated carbon [J]. Journal of Hazardous Materials,2009,164(2-3):473-482.
    [26]N. Caliskan, A.R. Kul and S. Alkan, et al. Adsorption of Zinc(Ⅱ) on diatomite and manganese-oxide-modified diatomite: A kinetic and equilibrium study [J]. Journal of Hazardous Materials,2011,193(10):27-36.
    [27]S. Jafari, S. Azizian and B. Jaleh. Adsorption kinetics of methyl violet onto TiO2 nanoparticles with different phases [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2011,384(1-3):618-623.
    [28]Y.H. Wu, S.X. Feng and B. Li, et al. The characteristics of Escherichia coli adsorption of arsenic(Ⅲ) from aqueous solution [J]. World Journal of Microbiology and Biotechnology,2010, 26(2):249-256.
    [29]K.G. Bhattacharyya and A. Sharma. Kinetics and thermodynamics of methylene blue adsorption on Neem (Azadirachta indica) leaf powder [J]. Dyes Pigments,2005,65(1):51-59.
    [30]W.J. Weber and J.C. Morris. Kinetics of adsorption on carbon from solution [J]. Journal of the Sanitary Engineering Division,1963,89(2):31-59.
    [31]H. Al-Johani and M.A. Salam. Kinetics and thermodynamic study of aniline adsorption by multi-walled carbon nanotubes from aqueous solution [J]. Journal of Colloid and Interface Science 2011,360(2):760-767.
    [32]R.Z. Chen, C. Zhi and H. Yang, et al. Arsenic adsorption on Fe3O4 nanoparticle-coated boron nitride nanotubes [J]. Journal of Colloid and Interface Science,2011,359(1):261-268.
    [33]H. Aydin and G. Baysal. Adsorption of acid dyes in aqueous solutions by shells of bittim (pistacia khinjuk stocks) [J]. Desalination,2006,196(1-3):248-259.
    [34]T.W. Weber and R.K. Chakkravorti. Pore and solid diffusion models for fixed-bed adsorbers [J]. AlChE Journal,1974,20(2):228-238.
    [35]G.V. Kumar, P. Ramalingam and M.J. Kim, et al. Removal of acid dye (violet 54) and adsorption kinetics model of using musa spp. waste: A low-cost natural sorbent material [J]. Korean Journal of Chemical Engineering,2010,27(5):1469-1475.
    [36]S. Sudheer Khan, P. Srivatsan and N. Vaishnavi, et al. Interaction of silver nanoparticles (SNPs) with bacterial extracellular proteins (ECPs) and its adsorption isotherms and kinetics [J]. Journal of Hazardous Materials,2011,192(1):299-306.
    [37]R.I. Yousef, B. EI-Eswed and A.H. Al-Muhtaseb. Adsorption characteristics of natural zeolites as solid adsorbents for phenol removal from aqueous solutions:Kinetics, mechanism, and thermodynamics studies [J]. Chemical Engineering Journal,2011,171(3):1143-1149.
    [38]A.M.M. Vargas, A.L. Cazetta and M.H. Kunita, et al. Adsorption of methylene blue on activated carbon produced from flamboyant pods (Delonix regia):Study of adsorption isotherms and kinetic models [J]. Chemical Engineering Journal,2011,168(2):722-730.
    [39]Q. Li, Y.H. Zhao and L. Wang, et al. Adsorption characteristics of methylene blue onto the N-succinyl-chitosan-g-polyacrylamide attapulgite composite [J]. Korean Journal of Chemical Engineering,2011,28(8):1658-1664.
    [40]A.M.M. Vargas, A.L. Cazetta and M.H. Kunita, et al. Adsorption of methylene blue on activated carbon produced from flamboyant pods (Delonix regia) [J]. Chemical Engineering Journal, 2011,168(2):722-730.
    [41]P. Luo, B. Zhang and Y.F. Zhao, et al. Removal of methylene blue from aqueous solutions by adsorption onto chemically activated halloysite nanotubes [J]. Korean Journal of Chemical Engineering,2011,28(3):800-807.
    [42]G. Ghanizadeh and G. Asgari. Adsorption kinetics and isotherm of methylene blue and its removal from aqueous solution using bone charcoal [J]. Reaction Kinetics, Mechanisms and Catalysis,2011,102(1):127-142.
    [43]X.L. Han, W. Wang and X.J. Ma. Adsorption characteristics of methylene blue onto low cost biomass material lotus leaf [J]. Chemical Engineering Journal,2011,171(1):1-8.
    [44]M. Benadjemia, L. Milliere and L. Reinert, et al. Preparation, characterization and Methylene Blue adsorption of phosphoric acid activated carbons from globe artichoke leaves [J]. Fuel Process. Technol.92(2011)1203-1212.
    [45]N. Nasuha and B.H. Hameed. Adsorption of methylene blue from aqueous solution onto NaOH-modified rejected tea [J]. Chemical Engineering Journal,2011, 166(2):783-786.
    [46]H. Deng, J.J. Lu and G.X. Li, et al. Adsorption of methylene blue on adsorbent materials produced from cotton stalk [J]. Chemical Engineering Journal,2011,172(1):326-334.
    [47]S. Dawood and T.K. Sen. Equilibrium, Kinetics and Mechanism of Removal of Methylene Blue from Aqueous Solution by Adsorption onto Pine Cone Biomass of Pinus radiate [J]. Water Resesrch,2012,46(6):1933-1946.
    [48]T.H. Liu, Y.H. Li and Q.J. Du, et al. Adsorption of methylene blue from aqueous solution by grapheme [J]. Colloids and Surfaces B:Biointerfaces,2012,90:197-203.
    [49]W.J. Zhang, C.J. Zhou and W.C. Zhou. Fast and Considerable Adsorption of Methylene Blue Dye onto Graphene Oxide [J]. Bulletin of Environmental Contamination and Toxicology,2011, 87(1):86-90.
    [50]J.Y. Song, W.H. Zou and Y.Y. Bian, et al. Adsorption characteristics of methylene blue by peanut husk in batch and column modes [J]. Desalination,2011,265(1):119-125.
    [51]V.M. Vucurovic, R.N. Razmovski and M.N. Tekic. Methylene blue (cationic dye) adsorption onto sugar beet pulp Equilibrium isotherm and kinetic studies [J]. Journal of the Taiwan Institute of Chemical Engineers,2012,43(1):108-111.
    [52]GK. Zhang, G.F. Liu and Y.D. Guo. Adsorption of Methylene Blue from Aqueous Solution onto Hydrochloric Acid-modified Rectorite [J]. Journal of Wuhan University of Technology (Materials Science Edition),2011,26(5):817-822.
    [53]M.J. Ahmed and S.K. Dhedan. Equilibrium isotherms and kinetics modeling of methylene blue adsorption on agricultural wastes-based activated carbons [J]. Fluid Phase Equilibria,2012,317: 9-14.
    [54]Q.A. Pankhurst, N.K.T. Thanh and S.K. Jones. Progress in applications of magnetic nanoparticles in biomedicine [J]. Journal of Physics D:Applied Physics,2009,42(22):22401
    [55]N. Banerjee and S.B. Krupanidhi. Anomalous magnetic behavior of La0.6Sr0.4Mn03 nano-tubes constituted with 3-12 nm particles [J]. Applied Physics A,2013,111(2):605-612.
    [56]A.A. Atia, A.M. Donia and W.A. Al-Amrani. Adsorption/desorption behavior of acid orange 10 on magnetic silica modified with amine groups [J]. Chemical Engineering Journal,2009,150(1): 55-62.
    [57]M. Iram, C. Guo and Y.P. Guan, et al. Adsorption and magnetic removal of neutral red dye from aqueous solution using Fe3O4 hollow nanospheres [J]. Journal of Hazardous Materials,2010, 181(1-3):1039-1050.
    [58]R. Jiang, Y.Q. Fu and H.Y. Zhu, et al. Removal of Methyl Orange from Aqueous Solutions by Magnetic Maghemite/Chitosan Nanocomposite Films: Adsorption Kinetics and Equilibrium [J]. Journal of Applied Polymer Science,2012,125(S2): E540-E549.
    [59]X.L. Hao, H. Liu and G.S. Zhang, et al. Magnetic field assisted adsorption of methyl blue onto organo-bentonite [J]. Applied Clay Science,2012,55:77-180.
    [60]L.L. Fan, C.N. Luo and X.J Li, et al. Fabrication of novel magnetic chitosan grafted with graphene oxide to enhance adsorption properties for methyl blue [J]. Journal of Hazardous Materials,2012,215-216:272-279.
    [61]B. Ghosh and S. Kumar. Magnetic enhancement in nano-sized Ni-Zn ferrite [J]. Hyperfine Interactions,2011,183(1-3):163-169.
    [62]A. Sutka, K.A. Gross and G. Mezinskis, et al. The effect of heating conditions on the properties of nano-and microstructured Ni-Zn ferrite [J]. Physica scripta,2011,83(2):025601.
    [63]G. Pozo L6pez, S.P. Silvetti and S.E. Urreta, et al. Structure and magnetic properties of NiZn ferrite/SiO2 nanocomposites synthesized by ball milling [J]. Journal of Alloys and Compounds, 2010,505(2):808-813.
    [64]V.N. Krivoruchko, A.I. Marchenko and A.A. Prokhorov. Superparamagnetic resonance of single-domain nanoparticles of LaSrMnO3 [J]. Low Temperature Physics,2007,33(5): 433-438.
    [65]I.A.W. Tan, A.L. Ahmad and B.H. Hameed. Biosorption isotherms, kinetics, thermodynamics and desorption studies of 2,4,6-trichlorophenol on oil palm empty fruit bunch-based activated carbon [J]. Journal of Hazardous Materials,2009,164(2):473-482.
    [66]H. Aydin and G. Baysal. Adsorption of acid dyes in aqueous solutions by shells of bittim (pistacia khinjuk stocks) [J]. Desalination,2006,196(1-3):248-259.
    [67]J. Ma, Y.Z. Jia and Y. Jing, et al. Kinetics and thermodynamics of methylene blue adsorption by cobalt-hectorite composite [J]. Dyes Pigments,2012,93(1-3):1441-1446.
    [68]L.A. Cazetta, A.M.M. Vargas and E.M. Nogami, et al. NaOH-activated carbon of high surface area produced from coconut shell:Kinetics and equilibrium studies from the methylene blue adsorption [J]. Chemical Engineering Journal,2011,174(1):117-125.
    [69]M. Auta and B.H. Hameed. Optimized waste tea activated carbon for adsorption of Methylene Blue and Acid Blue 29 dyes using response surface methodology [J]. Chemical Engineering Journal,2011,175(15):233-243.
    [70]K.Y. Foo and B.H. Hameed. Preparation of activated carbon from date stones by microwave induced chemical activation:Application for methylene blue adsorption [J]. Chemical Engineering Journal,2011,170(1):338-341.
    [71]H. Chen, J. Zhao and A.G. Zhong, et al. Removal capacity and adsorption mechanism of heat-treated palygorskite clay for methylene blue [J]. Chemical Engineering Journal,2011, 174(1):143-150.
    [72]L.X. Wang, J.C. Li and Y.Q. Wang, et al. Adsorption capability for Congo red on nanocrystalline MFe2O4 (M=Mn, Fe, Co, Ni) spinel ferrites [J]. Chemical Engineering Journal, 2012,181-182:72-79
    [73]L.L. Fan, C.N. Luo and X.J. Li, et al. Fabrication of novel magnetic chitosan grafted with graphene oxide to enhance adsorption properties for methyl blue [J]. Journal of Hazardous Materials,2012,215-216:272-279
    [74]R.I. Yousef, B. EI-Eswed and A.H. Al-Muhtaseb. Adsorption characteristics of natural zeolites as solid adsorbents for phenol removal from aqueous solutions:Kinetics, mechanism, and thermodynamics studies [J]. Chemical Engineering Journal,2011,171(3):1143-1149

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700