CF_4射频等离子体硅橡胶表面疏水疏油改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用射频容性耦合、感性耦合CF_4等离子体对硅橡胶试样进行表面改性。等离子体改性前后硅橡胶试样表面形貌、化学官能团和疏水疏油性分别由原子力显微镜(AFM)、衰减全反射- Fourier变换红外光谱(ATR-FTIR)、X射线光电子能谱(XPS)和静态接触角表征。
     当CF_4气体流量为20 sccm,经200 W射频容性耦合与200 W射频感性耦合等离子体处理5 min后,硅橡胶试样表面均方根粗糙度(R_q)由原始试样的42.460 nm分别增至134.425 nm和46.613 nm。说明在对硅橡胶试样处理过程中,由于载有试样的高频电极较高自偏压的存在,CF_4等离子体中阳离子经加速后轰击试样表面,增强了对硅橡胶试样表面的溅射、刻蚀作用,射频容性耦合CF_4等离子体在改变试样的微观形貌方面明显强于感性耦合等离子体处理工艺。
     通过衰减全反射-Fourier变换红外光谱(ATR-FTIR)分析可知:经容性耦合CF_4射频等离子体200 W直接处理20 min后,硅橡胶试样表面官能团Si-O-Si、-CH_3(存在于Si-CH_3)以及C-H(存在于-CH_3)与Si-(CH_3)_2的含量强度比,由原始试样的0.914、0.414、0.081,分别减至0.796、0.131、0.029;加Ar容性耦合等离子体100 W预处理5 min后,再经容性耦合CF_4射频等离子体200 W处理20 min,则分别为0.795,0.226,0.060。利用去卷积法分析X射线光电子能谱(XPS)得到:感性耦合CF_4射频等离子体处理后,硅橡胶试样表面出现碳氟官能团(C-F_2、C-CF_n和CF-CF_n)和硅氟结构(一[-SiFCH)3-O-SiFCH_3-]_n-、-[SiF_2-O-SiF_2-]_n-和-[-SiFCH_3-O-SiF_2-]_n-),并且随处理时间的增加,F-Si含量出现从小于到逐渐超过F-C含量的变化,引入的F元素含量最高可达20.05%(对应处理时间为10min);而容性耦合CF_4射频等离子体处理后,试样表面出现的硅氟结构与感性耦合处理后相似,但只发现一种碳氟官能团(C-CF_n),而且F-Si的含量一直大于F-C的含量,引入的F元素含量最高也只有14.01%(对应处理时间为20 min)。以上数据说明容性耦合CF_4等离子体处理过程中,CF_4等离子体中的阳离子通过高频自偏电场的加速后,对试样表面的轰击、溅射或刻蚀作用大大加强,在试样表面通过断键作用产生活性基点并形成硅氟结构的作用和对碳氟官能团的剥离作用强于感性耦合CF_4等离子体工艺。
     比较两种不同耦合方式CF_4射频等离子体改性硅橡胶试样,射频容性耦合等离子体改性硅橡胶试样表面双疏性能明显优于射频感性耦合工艺:在容性耦合CF_4等离子体200 W直接处理5 min的工艺条件下,得到最佳表面疏水疏油性能,对应静态接触角测量值从原始未改性试样的100.7°、61.6°分别提高到150.2°、123.6°。
     总之,虽然两种不同耦合方式CF_4射频等离子体处理工艺有所区别,但都是通过增加表面含氟非极性官能团含量和表面粗糙度两个因素,降低硅橡胶表面能,提高试样表面与水和油的静态接触角的大小(即表面双疏性能)。射频容性耦合CF_4等离子体对硅橡胶双疏改性效果优于射频感性耦合工艺,主要是由于载有试样的高频电极较高自偏压的存在,CF_4等离子体中阳离子经加速后轰击试样表面,增强了对硅橡胶试样表面的溅射、刻蚀和断键作用,同时满足了增加表面含氟非极性官能团含量和表面粗糙度两个提高表面双疏性能的因素,并且证实增加表面粗糙度对双疏性能的提高程度强于含氟官能团引入的贡献。
Silicone rubber(SIR) samples are modified by CF_4 radio frequency(RF) capacitively coupled plasma(CCP) and inductively coupled plasma(ICP), respectively.Surface morphology,functional groups,and hydrophobic and oleophobic properties of the CF_4 plasma modified SIR samples are characterized by using atomic force microscopy(AFM),attenuated total reflectance Fourier transform infrared(ATR-FTIR) spectroscopy,X-ray photoelectron spectroscopy(XPS) and static contact angle(SCA) measurement.
     Surface root-mean-square(RMS) roughness(R_q) of the SIR samples, which were modified by CF_4 RE CCP and ICP at power of 200 W and gas flux of 20 sccm for treatment of 5 min,respectively,increases from 42.460 nm for original surface to 134.425 and 46.613 nm.It is concluded that the amendment in surface morphology by CF_4 CCP process is better than that by CF_4 ICP process because the positive ions of CF_4 CCP have more kinetic energy than CF4 ICP to ablate or etch the SIR samples' surfaces owing to the higher self-bias existing in the sample holder.
     The peak ratios of Si-O-Si/Si-(CH_3)_2,-CH_3/Si-(CH_3)_2,and C-H/Si-(CH_3)_2 in ATR-FTIR spectra of SIR samples modified by CF_4 CCP at RE power of 200 W for 20 min treatment decrease from 0.914,0.414,and 0.081 for original surface to 0.796,0.131,and 0.029,respectively;And if the samples are treated by Ar CCP at RE power of 100 W for 5 min treatment before the same treatment of CF_4 CCP,those peak ratios decrease to 0.795,0.226,and 0.060. XPS were analyzed by deconvolution method and some conclusions are listed as follows:there are fluorocarbon groups such as C-F_2,C-CF_n,and CF-CF_n, and fluosilicic structures such as -[-SiFCH_3-O-SiFCH_3-]_n-,-[-SiF_2-O-SiF_2-]_n-, and -[-SiFCH_3-O- SiF_2-]_n- on the surfaces of SIR samples modified by CF_4 ICP,and the percentage concentration of F-Si increases and gradually preponderates over that of F-C with the increase of treatment time,moreover, the maximum of F content reaches 20.05%at the treatment time of 10 min. Compared CF_4 CCP process with CF_4 ICP process,although there are similar fluosilicic structures on the surfaces of SIR sample modified by the two types of processes,there is only one type of fluorocarbon groups----C-CF_n discovered on the modified surfaces.In addition,the percentage concentration of F-Si is always exceeding in that of F-C,and the maximum of F content is only 14.01%at 20 min treatment.According to the data above,it is concluded that the treatment process of CF_4 CCP overruns that of CF_4 ICP in the ablation of fluorocarbon groups and formation of fluosilicic structures.
     CF_4 CCP treatment process predominates over CF_4 ICP treatment process in improving the hydrophobic and oleophobic properties of SIR surfaces.The static contact angle for H_2O and CH_2I_2 were improved from 100.7°and 61.6°for original sample to 150.2°and 123.6°under the condition of optimal technological parameter which is CF_4 CCP at RF power of 200 W for 5 min treatment.
     In conclusion,although there are differences in treatment process between the two types of CF_4 coupled plasmas,the decrease of surface energy and increase of the static contact angle for H_2O and CH_2I_2 are both decided by increasing the fluoric groups and surface roughness according to the two types of processes.The main reason,for which the modified effects of hydrophobic and oleophobic properties of CF_4 RF CCP are better than that of CF_4 RF ICP, lies in self-bias existing in the sample holder so that the positive ions of CF_4 plasma can be accelerated and acquire higher kinetic energy to bombard,to ablate,and to etch the samples' surfaces,meanwhile,meet the need to increase the fluoric groups and surface roughness which influence the hydrophobic and oleophobic properties of SIR samples.Moreover,it is proved that the degree of hydrophobic and oleophobic properties improved through the increase of surface roughness is better than that through the introduction of fluoric groups.
引文
[1]Tretinnikov N O,Ikada Y.Hydrogen Bonding and Wettability of Surface-Grafted Organophosphate Polymer[J].Macromolecules,1997,30(4):1086-1090.
    [2]Thunemann F A.Complexes of Polyethyleneimine with Perfluorinated Carboxylic Acids:Wettability of Lamellar Structured Mesophases[J].Langmuir,2000,16(2):824-828.
    [3]Yoo D,Shiratori S S.Controlling Bilayer Composition and Surface Wettability of Sequentially Adsorbed Multilayers of Weak Polyelectrolytes[J].Macromolecules,1998,31(13):4309-4318.
    [4]Rieutord F,Salmeron M.Wetting Properties at the Submicrometer Scale:A Scanning Polarization Force Microscopy Study[J].The Journal of Physical Chemistry B,1998,102(20):3941-3944。
    [5]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001.142-143.
    [6]Shull R K,Karis E T.Dewetting Dynamics for Large Equilibrium Contact Angels[J].Langmuir,1994,10:334.
    [7]Thunemann F A,Schnoller U,Nuyken O,et al.Diazosulfonate Polymer Complexes:Structure and Wettability[J].Macromolecules,2000,33(15):5665-5671.
    [8]Guillaume de Crevoisier,Pascale Fabre,Jean-Marc Corpart et al.Switchable Tackiness and Wettability of a Liquid Crystalline Polymer[J].Science,1999,285(20):1246-1249.
    [9]Rossier J S,Bercier P,Schwarz A,et al.Topography,Crystallinity and Wettability of Photoablated PET Surfaces[J].Langmuir,1999,15(15):5173-5178.
    [10]Hui M H,Blunt M J.Effects of Wettability on Three-Phase Flow in Porous Media[J].The Journal of Physical Chemistry B,2000,104(16):3833-3845.
    [11]Fukushima H,Seki S,Nishikawa T.Microstructure,Wettability,and Thermal Stability of Semifluorinated Self-Assembled Monolayers(SAMs) on Gold[J].The Journal of Physical Chemistry B,2000,104(31):7417-7423.
    [12] Tada H, Nagayama H. Chemical Vapor Surface Modification of Porous Glass with Fluoroalkyl-Functionalized Silanes II. Resistance to Water [J]. Langmuir, 1995, 11:136-142.
    [13] Junhua W, C. Mate M. Contact Angle Measurements of Lubricated Silicon Wafers and Hydrogenated Carbon Overcoats [J]. Langmuir, 1998, 14(17): 4929-4934.
    [14] Abbott N L, Folkers J P, Whitesides G M. Manipulation of The Wettability of Surfaces on The 0.1- to 1-Micrometer Scale Through Micromachining and Molecular self-assembly [J]. Science, 1992, 257(5075), 1380-1382.
    [15] Abbott N L, Whitesides G M. Potential-Dependent Wetting of Aqueous Solutions on Self-Assembled Monolayers Formed from 15-(Ferrocenylcarbonyl) Pentadecanethiol on Gold [J]. Langmuir, 1994, 10, 1493-1497.
    [16] Verheijen H J J, Prins M W J. Reversible Electro wetting and Trapping of Charge:Model and Experiments [J]. Langmuir, 1999, 15(20): 6616-6620.
    [17] Sasaki H, Shouji M. Control of Hydrophobic Character of Super-water-repellent Surface by UV Irradiation [J]. Chemistry Letters, 1998, 27(4): 293-294.
    [18] Schneemilch M, Welters W J J, Hayes R A, et al. Electrically Induced Changes in Dynamic Wettability [J]. Langmuir, 2000, 16(6): 2924-2927.
    [19] Vallet M, Berge B, Vovelle L. Electrowetting of Water and Aqueous Solutions on Poly(ethylene terephthalate) Insulating Films [J]. Polymer, 1996, 37(12): 2465-2470.
    [20] Maman M, Wettability of Magnetically Susceptible Surfaces [J]. Langmuir, 1999,15(1): 259-265.
    [21] Yakushiji T, Sakai K, Kikuchi A. Graft Architectural Effects on Thermoresponsive Wettability Changes of Poly(N-isopropylacrylamide)-Modified Surfaces [J].Langmuir, 1998, 14(16): 4657-4662.
    [22] Sun R D, Nakajima A, Fujishima A. Photoinduced Surface Wettability Conversion of ZnO and TiO_2 Thin Films [J]. The Journal of Physical Chemistry B, 2001, 105(10):1984-1990.
    [23] Abbott S, Ralston J, Reynolds G. Reversible Wettability of Photoresponsive Pyrimidine-Coated Surfaces [J]. Langmuir, 1999, 15(26): 8923-8928.
    [24] Gorman C B, Biebuyck H A, Whitesides G M. Control of the Shape of Liquid Lenses on a Modified Gold Surface Using an Applied Electrical Potential across a Self-Assembled Monolayer [J]. Langmuir, 1995, 11: 2242-2246.
    [25] Gould P. Smart Clean Surfaces [J]. Materialstoday, 2003, 11: 44-48.
    [26] Watanabe K, Yanuar and Udagawa H. Drag reduction of Newtonian fluid in a circular pipe with a highly water repellent wall [J]. Journal of Fluid Mechanics, 1999, 381:225-238.
    [27] Myers D, Surfactant Science and Technology. 2nd ed. Yew York: VCH, 1999, 47,220.
    [28] Gennes P G D. Wetting: statics and dynamics [J]. Reviews of Modern Physics, 1985,57(3): 927-963.
    [29] Hazlett R D. Fractal applications: Wettability and Contact Angle [J]. Journal of Colloid and Interface Science, 1990, 137: 527-533
    [30] Sakai H, Fujii T. The Dependence of The Apparent Contact Angles on Gravity [J].Journal of Colloid and Interface Science, 1990, 210: 152-156
    [31] Kijlstra J, Reihs K, Klamt A. Roughness and Topology of Ultra-Hydrophobic Surfaces [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002,206(1-3): 521-529.
    [32] Yoshimitsu Z, Nakajima A, Watanabe T, et al. Effects of Surface Structure on The Hydrophobicity and Sliding Behavior of Water Droplets [J]. Langmuir, 2002, 18(15):5818-5822.
    [33] Nishino T, Meguro M, Nakamae K, Matsushita M, et al. The lowest surface free energy based on -CF_3 alignment, Langmuir [J]. 1999, 15: 4321-4323.
    [34] Patankar N A. On the modeling of hydrophobic contact angles on rough surfaces [J].Langmuir, 2003, 19: 1249-1253.
    [35] He B, Patankar N A, Lee J. Multiple equilibrium droplet shapes and design criterion for rough hydrophobic surfaces [J]. Langmuir, 2003,19: 4999-5003.
    [36] Patankar N A. Mimicking the lotus effect: influence of double roughness structures and slender pillars [J]. Langmuir, 2004, 20: 8209-8213.
    [37]Patankar N A.Transition between superhydrophobic states on rough surfaces[J].Langmuir,2004,20:7097-7102.
    [38]He B,Lee J,Patankar N A.Contact angle hysteresis on rough hydrophobic surfaces[J].Colloids and Surfaces A,2004,248:101-104.
    [39]Chen Y,He B,Lee J,et al.Anisotropy in the wetting of rough surfaces[J].Journal of Colloid Interface Science,2005,281:458-464.
    [40]Lafuma A,Qu(?)r(?) D.Superhydrophobic states[J].Nature Materials,2003,2:457-460.
    [41]Qu(?)r(?) D.Rough ideas on wetting[J].Physica A,2002,313:32-46.
    [42]Okumura K,Chevy F,Richard D,et al.Water spring:a model for bouncing drops[J].Europhysics Letters,2003,62(2):237-243.
    [43]Qu(?)r(?) D,Lafutna A,Bico J.Slippy and sticky microtextured solids[J].Nanotechnology,2003,14:1109-1112.
    [44]Bico J,Thiele U,Qu(?)r(?) D.Wetting of textured surfaces[J].Colloids and Surfaces A,2002,206:41-46.
    [45]Bico J.Tordeux C,Qu(?)r(?) D.Rough wetting[J].Europhysics Letters,2001,55(2):214-220.
    [46]Richard D,Qu(?)r(?) D.Viscous drops rolling on a titled non-wettable solid[J].Europhysics Letters,1999,48(3):286-291.
    [47]Bico J,Marzolin C,Qu(?)r(?) D.Pearl drops[J].Europhysics Letters,1999,47(2):220-226.
    [48]Aussillous P,Qu(?)r(?) D.Liquid marbles[J].Nature,2001,411:924-927.
    [49]Ishino C,Okumura K,Qu(?)r(?) D.Wetting transitions on rough surfaces[J].Europhysics Letters,2004,68(3):419-425.
    [50]Richard D,Clanet C,Qu(?)r(?) D.Contact time of a bouncing drop[J].Nature,2002,417:811.
    [51]Gennes P G D.Wetting:statics and dynamics[J].Rev.Mod.Phys,1985,57(3):927-963.
    [52]Oner D,McCarthy T J.Ultrahydrophobic surfaces:Effects of topography length scales on wettability[J].Langmuir,2000,16:7777-7782.
    [53]Chen W,Fadeev A Y,Hsieh M C,et al.Ultrahydrophobic and ultralyophobic surfaces:some comments and examples[J].Langmuir,1999,15:3395-3399.
    [54]Johnson R E,Dettre R H.Contact angle hysteresis.In:Contact angle,wettability,and adhesion[J].Advances in Chemistry Series,1964,43:112-135.
    [55]Kijlstra J,Reihs K,Klamt A.Roughness and topology of ultra-hydrophobic surfaces [J].Colloids and Surfaces A:Physic.chem.Eng.Aspects,2002,206(1-3):521-529.
    [56]Kulinich S A,Farzaneh M.Hydrophobic Properties of Surfaces Coated with Fluoroalkylsiloxane and Alkylsiloxane Monolayers[J].Surface Science,2004,573:379-390.
    [57]赵振国.接触角及其在表面化学研究中的应用[J].化学研究与应用,2000,12(4):370-374.
    [58]金美华.超疏水性纳米界面材料的制备及研究:[博士学位论文].长春:吉林大学,2004.
    [59]Nakajima A,Hashimoto K,Watanabe T.Recent Studies on Super-Hydrophobic Films [J].Monatshefte fur Chemic Chemical Monthly,2001,132:31-41.
    [60]Youngblood J P,McCarthy T J.Ultrahydrophobic Polymer Surfaces Prepared by Simultaneous Ablation of Polypropylene and Sputtering of Poly(tetrafluoroethylene)Using Radio Frequency Plasma[J].Macromolecules,1999,32(20):6800-6806.
    [61]Bikerman J J.Sliding of drops from surfaces of different roughnesses[J].Journal of Colloid Science,1950,5(4):349-359
    [62]Schwartz L W,Eley R R.Simulation of Droplet Motion on Low-Energy and Heterogeneous Surfaces[J].Journal of Colloid and Interface Science,1998,202(1):173-188.
    [63]Drelich J,Miller J D,Good R J.The Effect of Drop(Bubble) Size on Advancing and Receding Contact Angles for Heterogeneous and Rough Solid Surfaces as Observed with Sessile-Drop and Captive-Bubble Techniques[J].Journal of Colloid and Interface Science,1996,179(1):37-50.
    [64] Murase H, Nanishi K, Kogure H, et al. Interactions between heterogeneous surfaces of polymers and water [J]. Journal of Applied Polymer Science, 1994, 54(13):2051-2062.
    [65] Murase H, Fujibayashi T. Characterization of molecular interfaces in hydrophobic systems [J]. Progress in Organic Coatings, 1997, 31(1-2): 97-104.
    [66] Miwa M, Nakajima A, Fujishima A. Effects of the Surface Roughness on Sliding Angles of Water Droplets on hydrophobic Surfaces [J]. Langmuir, 2000, 16(13):5754-5760.
    [67] Feng L, Li S, Li Y, et al. Super-hydrophobic surfaces: from natural to artificial [J].Advanced Materials, 2002, 14(24): 1857-1860.
    [68] Kako T, Nakajima A, Irie H, et al. Adhesion and sliding of wet snow on a super-hydrophobic surface with hydrophilic channels [J]. Journal of Materials Science 2004, 39: 547-555.
    [69] Furstner R, Barthlott W, Neinhuis C, et al. Wetting and self-cleaning properties of artificial superhydrophobic surfaces [J]. Langmuir, 2005, 21(3): 956-961.
    [70] Blossey R. Self-cleaning surfaces- virtual realities [J]. Nature Materials, 2003, 2:301-306.
    [71] Watanabe K, Udagawa Y, Ugadawa H. Drag reduction of Newtonian fluid in a circular pipe with a highly water-repellent wall [J]. Journal of Fluid Mechanics, 1999, 381:225-238.
    [72] Fukuda K, Tokunaga J, Nobunaga T, et al. Frictional drag reduction with air lubricant over a super-water-repellent surface [J]. Journal of Marine Science and Technology,2000,5:123-130.
    [73] Watanabe K, Udagawa H. Drag reduction of non-Newtonian fluids in a circular pipe with a highly water-repellent wall [J]. Aiche Journal, 2001, 47(2): 256-262.
    [74] Gogte S, Vorobieff P, Truesdell R, et al. Effective slip on textured superhydrophobic surfaces [J]. Physics of Fluids, 2005, 17: 051701.
    [75] Parker A R, Lawrence C R. Water capture by a desert beetle [J]. Nature, 2001, 414:33-34.
    [76] Kim J, Kim C J. Nanostructured surfaces for dramatic reduction of flow resistance in droplet-based microfluidics, Proceedings of the IEEE Conference on MEMS, Las Vegas, NV, 2002, pp: 479-482.
    [77] Ou J, Perot B, Rothstein J. P. Laminar drag reduction in microchannels using ultrahydrophobics [J]. Physics of Fluids, 2004, 16: 4635-4643.
    [78] Ou J, Rothstein J P. Direct velocity measurements of the flow past drag-reducing ultrahydrophobic surfaces [J]. Physics of Fluids, 2005, 17: 103606.
    [79] Gao X, Jiang L. Water-repellent legs of water striders [J]. Nature, 2004, 432: 36.
    [80] Sun T, Tan H, Han D, et al. No platelet can adhere—largely improved blood compatibility on nanostructured superhydrophobic surfaces [J].Small, 2005, 1(10):959-963.
    [81] Morra M, Occhiello E, Garbassi F. Contact angle hysteresis in oxygen plasma treated poly(tetrafluoroethylene) [J]. Langmuir, 1989, 5(3): 873-876.
    [82] Vandencasteele N, Fairbrother H, Reniers F. Selected effect of the ions and the neutrals in the plasma treatment of PTFE surfaces: an OES-AFM-contact angle and XPS study [J]. Plasma Processes and Polymers, 2005, 2(6): 493-500.
    [83] Ogawa K, Soga M, Takada Y, et al. Development of a transparent and ultrahydrophobic glass plate [J]. Japanese Journal Applied Physics, Part 2, 1993, 32:L614-615.
    [84] Youngblood J P, McCarthy T J. Ultrahydrophobic polymer surfaces prepared by simultaneous ablation of polypropylene and sputtering of poly(tetrafluoroethylene) using radio frequency plasma [J]. Macromolecules, 1999, 32: 6800-6806.
    [85] Oner D and McCarthy T J. Ultrahydrophobic Surfaces. Effects of Topography Length Scales on Wettability [J]. Langmuir, 2000, 16: 7777-7782.
    [86] Jin M, Feng X, Xi J, et al. Super-Hydrophobic PDMS Surface with Ultra-Low Adhesive Force [J]. Macromolecular Rapid Communications, 2005, 26: 1805-1809.
    [87] Baldacchini T, Carey J E, Zhou M, et al. Superhydrophobic Surfaces Prepared by Microstructuring of Silicon Using a Femtosecond Laser [J]. Langmuir, 2006, 22:4917-4919.
    [88]Khorasani MT,Mirzadeh H,Kermani Z.Wettability of porous polydimethylsiloxane surface:morphology study[J].Applied Surface.Science,2005,242:339-345.
    [89]Khorasani MT,Mirzadeh H,Sammes P.G.Laser induced surface modification of polydimethylsiloxane as a super-hydrophobic material,Radiation Physics.Chemistry,1996,47(6):881-888.
    [90]Bremus-Kobberling E,Gillner A.Laser structuring and modification of surfaces for chemical and medical micro components,Proceed.SPIE,2003,5063:217-222.
    [91]Song X,Zhai J,Wang Y,et al.Fabrication of superhydrophobic surfaces by self-assembly and their water-adhesion properties,Journal of Physical Chemistry B,2005,109(9):4048-4052.
    [92]管自生,张强.激光刻蚀硅表面的形貌及其对浸润性的影响[J].化学学报.2005,63(10):880-884.
    [93]Sun T,Wang G,Feng L,et al.Reversible switching between superhydrophilicity and superhydrophobicity[J].Angewandte Chemic International Edition,2004,43:357-360.
    [94]Kim S H,Kim J H,Kang B K,et al.Superhydrophobic CFx Coating via In-Line Atmospheric RF Plasma of He-CF_4-H_2[J].Langmuir,2005,21:12213-12217.
    [95]Feng L,Li S,Li H,et al.Super-Hydrophobic Surface of Aligned Polyacrylonitrile Nanofibers[J].Angewandte Chemie International Edition,2002,41(7):1221-1223.
    [96]Feng L,Yang Z L,Zhai J,et al.Superhydrophobicity of Nanostructured Carbon Films in a Wide Range of pH Values[J].Angewandte Chemic International Edition,2003,42:4217-4220.
    [97]Feng L,Song Y L,Zhai J,et al.Creation of a Superhydrophobic Surface from an Amphiphilic Polymer[J].Angewandte Chemic International Edition,2003,42:800-802.
    [98]Lee W,Jin M K,Yoo W C,et al.Nanostructuring of a Polymeric Substrate with Well-Defined Nanometer-Scale Topography and Tailored Surface Wettability[J].Langmuir,2004,20:7665-7669.
    [99] Tadanaga K, Katata N, Minami T. Super-water-repellent A1_2O_3 coating films with high transparency [J]. Journal of the American Ceramic Society, 1997, 80:1040-1042.
    [100] Tadanaga K, Katata N, Minami T. Formation process of super-water-repellent Al_2O_3 coating films with high transparency by the sol-gel method [J]. Journal of the American Ceramic Society, 1997, 80: 3213-3216.
    [101] Tadanaga K, Katata N, Minami T. Preparation of super-water-repellent alumina coating film with high transparency on poly(ethylene terephthalate) by the sol-gel method [J]. Chemistry Letters, 2000: 864-865.
    [102] Tadanaga K, Kitamuro K, Matsuda A, et al. Formation of superhydrophobic alumina coating films with high transparency on polymer substrates by the sol-gel method [J]. Journal of Sol-Gel Science and Technology, 2003, 26: 705-708.
    [103] Nakajima A, Fujishima A, Hashimoto K, et al. Preparation of transparent superhydrophobic boehmite and silica films by sublimation of aluminum acetylacetonate [J]. Advanced Materials, 1999, 11(16): 1365-1368.
    [104] Nakajima A, Hashimoto K, Watanabe T, et al. Transparent superhydrophobic thin films with self-cleaning properties [J]. Langmuir, 2000, 16: 7044-7047.
    [105] Nakajima A, Abe K, Hashimoto K, et al. Preparation of hard super-hydrophobic films with visible light transmission [J]. Thin Solid Filins, 2000, 376: 140-143.
    [106] Nakajima A, Saiki C, Hashimoto K, et al. Processing of roughened silica film by coagulated colloidal silica for super-hydrophobic coating [J]. Journal of Materials Science Letters, 2001, 20: 1975-1977.
    [107] Kubo W, Tatsuma T. Conversion of a solid surface from super-hydrophobic to super-hydrophilic by photocatalytic remote oxidation and photocatalytic lithography [J]. Applied Surface Science, 2005, 243: 125-128.
    [108] Pilotek S, Schmidit H K. Wettability of microstructured hydrophobic sol-gel coatings [J]. Journal of Sol-Gel Science and Technology, 2003, 26: 789-792.
    [109] Hikita M, Tanaka K, Nakamura T, et al. Super-liquid-repellent surfaces prepared by colloidal silica nanoparticles covered with fluoroalkyl groups, Langmuir, 2005, 21:7299-7302.
    [110] Xu Y, Wu D, Sun Y H, et al. Superhydrophobic antireflective silica films: fractal surfaces and laser-induced damage thresholds [J]. Applied Optics, 2005, 44(4):527-533.
    [111] Satoh K, Nakazumi H, Morita M. Preparation of super-water-repellent fluorinated inorganic-organic coating films on nylon 66 by the sol-gel method using microphase separation [J]. Journal of Sol-Gel Science and Technology, 2003, 27:327-332.
    [112] Han J T, Lee D H, Ryu C Y, et al. Fabrication of superhydrophobic surface from a supramolecular organosilane with quadruple hydrogen bonding [J]. Journal of the American Chemical Society, 2004, 126: 4796-4797.
    [113] Shirtcliffe N J. McHale G, Newton M I, et al. Intrinsically superhydrophobic organosilica sol-gel foams [J]. Langmuir, 2003,19: 5626-5631.
    [114] Rao A V, Kulkarni M M, Amalnerkar D P, et al. Superhydrophobic silica aerogels based on methyltrimethoxysilane precursor [J]. Journal of Non-Crystalline Solids,2003,330: 187-195.
    [115] Roig A, Molins E., Rodriguez E, et al. Superhydrophobic silica aerogels by fluorination at the gel stage [J]. Chemical Communication, 2004: 2316-2317.
    [116] Genzer J and Efimenko K. Creating Long-Lived Superhydrophobic Polymer Surfaces Through Mechanically Assembled Monolayers [J]. Science , 2000,290: 2130-2133.
    [117] Zhang J, Li J, Han Y. Superhydrophobic PTFE surfaces by extension [J].Macromolecular Rapid Commonication, 2004, 25: 1105-1108.
    [118] Bartell F E, Shepard J W. Surface roughness as related to hysteresis of contact angle.I. The system paraffin-water-air [J]. Journal of Physical Chemistry, 1953, 57(2):211-215.
    [119] Zhang X, Shi F, Yu X, et al. Polyelectrolyte Multilayer as Matrix for Electrochemical Deposition of Gold Clusters: Toward Super-Hydrophobic Surface [J]. Journal of American Chemical Society, 2004, 126: 3064-3065.
    [120] Zhao N, Shi F, Wang Z Q, et al. Combining Layer-by-Layer Assembly with Electrodeposition of Silver Aggregates for Fabricating Superhydrophobic Surfaces [J].Langmuir, 2005, 21: 4713-4716.
    [121] Shi F, Song Y Y, Niu J, et al. Facile Method to Fabricate a Large-Scale Superhydrophobic Surface by Galvanic Cell Reaction [J]. Chemistry of Materials,2006,18:1365-1368.
    [122] Yu X, Wang Z, Jiang Y, et al. Reversible pH-responsive surface: from superhydrophobicity to superhydrophilicity [J]. Advanced Materials, 2005, 17:1289-1293.
    [123] Jiang Y, Wang Z, Yu X, et al. Self-assembled monolayers of dendron thiols for electrodeposition of gold nanostructures: toward fabrication of superhydrophobic/superhydrophilic surfaces and pH-responsive surfaces [J].Langmuir, 2005, 21(5): 1986-1990.
    [124] Li M, Zhai J, Liu H, et al. Electrochemical deposition of conductive superhydrophobic zinc oxide thin films [J]. Journal of Physical Chemistry B, 2003,107: 9954-9957.
    [125] Zhang X T, Sato O, Fujishima A. Water Ultrarepellency Induced by Nanocolumnar ZnO Surface [J]. Langmuir, 2004, 20: 6065-6067.
    [126] Shirtcliffe N J, McHale G, Newton M I, et al. Wetting and wetting transitions on copper-based hydrophobic surfaces [J]. Langmuir, 2005, 21(3): 937-943.
    [127] Wang S, Feng L, Liu H, Sun T, et al. Manipulation of surface wettability between superhydrophobicity and superhydrophilicity on copper films [J]. ChemPhysChem,2005, 6: 1475-1478.
    [128] Niemitz M, Koβmehl G. Wettability of poly(2,2'-bithienyl-5,5'-diyl) layers [J].Angewandte Macromolecular Chemistry 1991, 185: 147-154.
    [129] Yan H, Kurogi K, Mayama H, et al. Environmentally stable super water-repellent poly(alkylpyrrole) films [J]. Angewandte Chemie International Edition, 2005, 44(22):3453-3456.
    [130] Kunugi Y, Nonaku T, Chong Y B, et al. Electro-organic reactions on organic electrodes [J]. Journal of Electroanalytical Chemistry, 1993, 353: 209-215.
    [131] Tsujii K, Yamamoto T, Onda T, et al. Super oil-repellent surfaces [J]. Angewandte Chemie International Edition English,1997, 36(9): 1011-1012.
    [132] Shibuichi S, Yamamoto T, Onda T, et al. Super water- and oil-repellent surfaces resulting from fractal structure [J]. Journal of Colloid and Interface Science, 1998,208: 287-294.
    [133] Thieme M, Frenzel R, Schmidt S, et al. Generation of ultrahydrophobic properties of aluminium - a fast step to self-cleaning transparently coated metal surfaces [J]. Advanced Engineering Materials, 2001, 3(9): 691-695.
    [134] Jiang L, Zhao Y, Zhai J. A lotus-leaf-like superhydrophobic surface: a porous microsphere/nanofiber composite film prepared by electrohydrodynamics [J]. Angewandte Chemie International Edition [J]. 2004, 43: 4338-4341.
    [135] Acatay K, Simsek E, Ow-Yang C, et al. Tunable, superhydrophobically stable polymeric surfaces by electrospinning [J]. Angewandte Chemie International Edition,2004,43:5210-5213.
    [136] Ma M, Hill R M, Lowery J L, et al. Electrospun poly(styrene-block-dimethylsiloxane)block copolymer fibers exhibiting superhydrophobicity [J]. Langmuir, 2005, 21(12):5549-5554.
    [137] Ma M, Mao Y, Gupta M, et al. Superhydrophobic Fabrics Produced by Electrospinning and Chemical Vapor Deposition [J]. Macromolecules, 2005 , 38:9742-9748.
    [138] Singh A, Steely L, Allcock H R. Poly[bis(2,2,2-trifluoroethoxy)phosphazene] Superhydrophobic Nanofibers [J]. Langmuir, 2005 , 21 : 11604-11607.
    [139] Zhu M F, Zuo W W, Yu H, et al. Superhydrophobic surface directly created by electrospinning based on hydrophilic material [J]. Journal of Materials Science, 2006,41:3793-3797.
    [140] Duparre A, Flemming M, Steinert J, et al. Optical coatings with enhanced roughness for ultrahydrophobic, low scatter applications [J]. Applied Optics, 2002, 41(6):3294-3298.
    [141] Veeramasuneni S, Drelich J, Miller J D, et al. Hydrophobicity of ion-plated coatings [J]. Progress in Organic Coatings, 1997, 31: 265-270.
    [142] Miller J D, Veeramasuneni S, Drelich J, et al. Effect of roughness as determined by atomic force microscopy on the wetting properties of PTFE thin films [J]. Polymer Engineering Science, 1996, 36: 1849-1853.
    [143] Chen A, Peng X, Koczkur K, et al. Super-hydrophobic tin oxide nanoflowers [J].Chemical Communications, 2004: 1964-1965.
    [144] Tsoi S, Fok E, Sit J C, et al. Superhydrophobic, high surface area, 3-D SiO_2 nanostructures through siloxane-based surface fimctionalization [J]. Langmuir, 2004,20: 10771-10774.
    [145] Lau K K S, Bico J, Teo K B K, et al. Superhydrophobic Carbon Nanotube Forests [J].Nano Letters, 2003, 3: 1701-1705.
    [146] Li S H, Li H J, Wang X B, et al. Super-Hydrophobicity of Large-Area Honeycomb-Like Aligned Carbon Nanotubes [J]. Journal of Physical Chemistry B,2002, 106: 9274-9276.
    [147] Hozumi A, Takai O. Preparation of ultra water-repellent films by microwave plasma-enhanced CVD [J]. Thin Solid Films, 1997, 303: 222-225.
    [148] Wu Y, Sugimura H, Moue Y, et al. Thin films with nanotextures for transparent and ultra water-repellent coatings produced from trimethylmethoxysilane by microwave plasma CVD [J]. Chemical Vapor Deposition, 2002, 8(2): 47-50.
    [149] Wu Y, Sugimura H, Moue Y, et al. Preparation of hard and ultra water-repellent silicon oxide films by microwave plasma-enhanced CVD at low substrate temperatures [J]. Thin Solid Films, 2003,435: 161- 164.
    [150] Wu Y, Bekke M, Moue Y, et al. Mechanical durability of ultra-water-repellent thin film by microwave plasma-enhanced CVD, Thin Solid Films, 2004, 457: 122-127.
    [151] Teshima K, Sugimura H, Inoue Y, et al. Wettablity of polyethylene terephthalate) substrates modified by a two-step plasma process: ultra water repellent surface fabrication [J]. Chemical Vapor Deposition, 2004, 10(6): 295-297.
    [152] Teare D O H, Spanos C G, Ridley P, et al. Pulsed plasma deposition of super-hydrophobic nanospheres [J]. Chemistry of Materials 2002, 14: 4566-4571.
    [153] Zhang Y, Kang E T, Neoh K G, et al. Surface modification of polyimide films via plasma polymerization and deposition of allylpentafluorobenzene [J].Polymer, 2002,43: 7279-7288.
    [154] Sahin H T, Manolache S, Young R A, et al. Surface fluorination of paper in CF_4-RF plasma environments, Cellulose, 2002, 9: 171-181.
    [155] Woodward I, Schofield W C E, Roucoules V, et al. Super-hydrophobic surfaces produced by plasma fluorination of polybutadiene films [J]. Langmuir, 2003, 19:3432-3438.
    [156] Liu H, Feng L, Zhai J, et al. Reversible wettability of a chemical vapor deposition prepared ZnO film between superhydrophobicity and superhydrophilicity, Langmuir,2004, 20(14): 5659-5661.
    [157] Qian B T, Shen Z Q. Fabrication of Superhydrophobic Surfaces by Dislocation-Selective Chemical Etching on Aluminum, Copper, and Zinc Substrates[J]. Langmuir, 2005, 21: 9007-9009
    [158] Guo Z G, Zhou F, Hao J C, et al. Stable Biomimetic Super-Hydrophobic Engineering Materials [J]. Journal of the American Chemical Society, 2005, 127: 15670-15671.
    [159] Vogelaar L, Lammertink R G H, Wessling M. Superhydrophobic Surfaces Having Two-Fold Adjustable Roughness Prepared in a Single Step [J]. Langmuir, 2006, 22:3125-3130.
    [160] Erbil H Y, Demirel A L, Avci Y, et al. Transformation of a simple plastic into a superhydrophobic surface [J]. Science, 2003, 299: 1377-1380.
    [161] Lu X, Zhang C, Han Y. Low-density polyethylene superhydrophobic surface by control of its crystallization behavior [J]. Macromolecular Rapid Communications,2004,25: 1606-1610.
    [162] Lu X, Zhang J, Zhang C, et al. Low-density polyethylene (LDPE) surface with a wettability gradient by tuning its microstructures. Macromolecular Rapid Communications, 2005, 26(8): 637-642.
    [163] Xie Q, Xu J, Feng L, et al. Facile creation of a super-amphiphobic coating surface with bionic microstructure [J]. Advanced Materials, 2004, 16(4): 302-305.
    [164] Xie Q, Fan G, Zhao N, et al. Facile creation of a bionic super-hydrophobic block copolymer surface [J]. Advanced Materials, 2004, 16(20): 1830-1833.
    [165] Zhao N, Xu J, Xie Q, et al. Fabrication of biomimetic superhydrophobic coating with a micro-binary structure [J]. Macromolecular Rapid communications, 2005, 26:1075-1080.
    [166] Zhao N, Xie Q D, Weng L H, et al. Superhydrophobic Surface from Vapor-Induced Phase Separation of Copolymer Micellar Solution [J]. Macromolecules, 2005, 38:8996-8999.
    [167] Jisr R M, Rmaile H H, Schlenoff J B. Hydrophobic and Ultrahydrophobic Multilayer Thin Films from Perfluorinated Polyelectrolytes [J]. Angewandte Chemie International Edition, 2005, 44: 782-785.
    [168] Zhai L, Cebeci F, Cohen R E, et al. Stable Superhydrophobic Coatings from Polyelectrolyte Multilayers [J]. Nano Letters, 2004,4: 1349-1353.
    [169] Han J T, Zheng Y L, Cho J H, et al. Stable Superhydrophobic Organic-Inorganic Hybrid Films by Electrostatic Self-Assembly [J]. Journal of Physical Chemistry B,2005, 109:20773-20778.
    [170] Ji J, Fu J, Shen J. Fabrication of a Superhydrophobic Surface from the Amplified Exponential Growth of a Multilayer [J]. Advanced Materials, 2006, 18: 1441-1444.
    [171] Tromel G Z. The optimum conditions for the formation of HA. Physical Chemistry,1932,158:422-425.
    [172] Christian O. Plasma surface modification of polymers for biomedical use. Nuclear Instrument and Method in Physics Research B, 2003, 208: 40- 47.
    [173]Oehr C.Plasma surface modification of polymers for biomedical use.Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,2003,208:40-47.
    [174]Biederman H.plasma polymer films.Imperial College Press,2004.
    [175]崔福斋,郑传林.等离子体表面工程新进展[J].中国表面工程,2003,4:7-11.
    [176]Thorns C,Gladwin S D,Robert F W.Use of plasma glow discharge for surface-engineering biomolecules to enhance blood compatibility of Dacron and PTEF vascular prosthesis.Biomaterials,2000,21:699-712.
    [177]Lens J P.Immobilization of fuctionalized alkyl-poly(ethylene oxide) surfactants on poly(ethylene) surfaces.Journal of Biomaterials Science,Polymer Edition,1997,18:963-970.
    [178]Wang C,Hsiue G.Glucose oxidase immobilization onto a plasma-induced graft copolymerized polymeric membrane modified by poly(ethylene oxide) as a spacer.Journal of Polymer Science,1993,31:1307-1314.
    [179]Riyadh M A,majeed A,Datar A,et al.Surface modification of polymers by atomic oxygen using ECR plasma.Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,2007,258:345-351.
    [180]Bruser V,Heintze M,Brandl W,et al.Surface modification of carbon nanofibres in low temperature plasmas.Diamond and Related Materials,2004,13:1177-1181.
    [181]Dessaux O,Goudmand P,Jama C.Far cold remote nitrogen plasma for surface modification and film deposition.Surface and Coatings Technology,1998,100-101:38-44.
    [182]Liu C,Cui N,Brown N M D,et al.Effects of DBD plasma operating parameters on the polymer surface modification.Surface and Coatings Technology,2004,185:311-320.
    [183]Chung Y M,Jung M J,Lee M W,et al.Surface modification effects on film growth with atmospheric Ar/Ar+O_2 plasma.Surface and Coatings Technology,2003,174-175:1038-1042.
    [184] Meichsner J, Zeuner M, Krames B, et al. Plasma diagnostics for surface modification of polymers. Surface and Coatings Technology, 1998, 98: 1565-1571.
    [185] Keil M, Rastomjee C S, Rajagopal A, et al. Argon plasma-induced modifications at the surface of polycarbonate thin films. Applied Surface Science, 1998, 125: 273-286.
    [186] Pascu M, Vasile C, Gheorghiu M. Modification of polymer blend properties by argon plasma/electron beam treatment: surface properties. Materials Chemistry and Physics,2003, 80: 548-554.
    [187] Larrieu J, Held B, Martinez H, et al. Ageing of atactic and isotactic polystyrene thin films treated by oxygen DC pulsed plasma. Surface and Coatings Technology, 2005,200:2310-2316.
    [188] Dey R M, Singh S B, Biswas A, et al. Substrate bias effects during diamond like carbon film deposition by microwave ECR plasma CVD. Current Applied Physics,2008, 8: 6- 12.
    [189] Chen J P, Chiang Y P. Surface modification of non-woven fabric by DC pulsed plasma treatment and graft polymerization with acrylic acid. Journal of Membrane Science, 2006, 270: 212-220.
    [190] Ramires P A, Mirenghi L, Romano A R, et al. Plasma-treated PET surfaces improve the biocompatibility of human endothelial cells. Journal of Biomedical Materials Research, 2000, 51:535-539.
    [191] Mwale F, Wang H T, Nelea V, et al. The effect of glow discharge plasma surface modification of polymers on the osteogenic differentiation of committed human mesenchymal stem cells. Biomaterials, 2006, 27: 2258- 2264.
    [192] Jacobsohn L G, Prioli R, Freire F L, et al. Comparative study of anneal-induced modifications of amorphous carbon films deposited by dc magnetron sputtering at different argon plasma pressures. Diamond and Related Materials, 2000, 9: 680- 684.
    [193] Duca M D, Plosceanu C L, Pop T. Surface modifications of polyvinylidene fluoride (PVDF) under rf Ar plasma. Polymer Degradation and Stability, 1998, 61: 65- 72.
    [194] Beom H O, Jeong J S, Park S G. Improvement of ICP plasma with periodic control of axial magnetic field. Surface and Coatings Technology, 1999, 120-121: 752- 756.
    [195] Korovchenko P, Renken A, Minsker L K. Microwave plasma assisted preparation of Pd-nanoparticles with controlled dispersion on woven activated carbon fibres. Catalysis Today, 2005,102-103: 133- 141.
    [196] Su C Y, Lin C K, Lin C R, et al. Polymerization-like grafting of thermoplastic polyurethane by microwave plasma treatment. Surface and Coatings Technology,2006, 200: 3380- 3384.
    [197] Arancia G, Ragona G, Rocchi G, et al. Epstein-barr virus-related ultrastructural modifications of plasma membrane during B-cell transformation. International Journal of Cancer, 1986, 38: 549- 552.
    [198] Carlotti S, Mas A. Improvement of adhesion of PET fibers to rubber by argon-oxygen plasma treatment.. Journal of Applied Polymer Science, 1998, 69: 2321- 2330.
    [199] Gilbert C M, Johansson K S. Surface modification of plastics by plasma treatment and plasma polymerization and its effect on adhesion. Surface and Interface Analysis,1993,20:441-448.
    [200] Hsieh. Surface graft copolymerization of acrylic acid onto corona-treated poly (ethylene terephthalate) fabric. Journal of Applied Polymer Science, 1989, 38: 1719-1726.
    [201] Ikada Y. Surface modification of polymers for medical application. Biomaterials,1994,15:725-732.
    [202] Loh L H, Lin H L, Chu C C. Plasma surface modification of synthetic absorbable sutures. Journal of Applied Biomaterials, 1992, 3: 131- 146.
    [203] Stephane C, Andre M. Improvement of adhesion of PET fibers to rubber by argon-oxygen plasma treatment. Journal of Applied Polymer Science, 1998, 69: 2321-2330.
    [204] Shi F F. Recent advances in polymer thin films prepared by plasma polymerization synthesis, structral characterization, properties and application. Surface and Coatings Technology, 1996,82: 1-15.
    [205]Yu Q S,Huang C,Yasuda H K.Glow Characterization in Direct Current Plasma Polymerization of Trimethylsilane.Journal of Polymer Science:Part A:Polymer Chemistry,2004,42:1042-1052.
    [206]Miyama M,Hirotsugu K,Yasuda.Direct Current Cathodic Glow Discharge Polymerization of Methane and Butane.Journal of Applied Polymer Science,1998,70:237-245.
    [207]K(o|¨)nig U,Nitschke M,Menning A,et al.Durable surface modification of poly(tetrafluoroethylene) by low pressure H_2O plasma treatment followed by acrylic acid graft polymerization.Colloids and Surfaces B:Biointerfaces,2002,24:63-71.
    [208]Guruvenket S,Rao G M,Komath M,et al.Plasma surface modification of polystyrene and polyethylene.Applied Surface Science,2004,236:278-284.
    [209]Yang S,Gupta M C.Surface modification of polyethyleneterephthalate by an atmospheric-pressure plasma source.Surface and Coatings Technology,2004,187:172-176.
    [210]Mulder M(荷兰)著,李琳译.膜技术基本原理(第2版)[M].北京:清华大学出版社,1999.1-5.
    [211]Lee S D,Hsiue Ging Ho,Kao Chen-Yu,Patricia Chuen-Tsuei Chane.Atificial cornea:surface modification of silicone rubber membrane by graft polymerization of Phema via glow discharge[J].Biomaterials,1996,17:587-595.
    [212]陈晓东,朴东旭,孙瑞焕.硅橡胶的等离子体表面亲水改性[J].高分子材料科学与工程,2000,16(1):153-155.
    [213]许并社等.纳米材料及应用技术[M].化学工业出版社,2004.120-122.
    [214]桂琳琳,黄惠忠,郭国霖译.X射线与紫外光电子能谱[M].北京:北京大学出版社,1984.1-2.
    [215]王建祺,吴文辉,冯大明编著.电子能谱学(XPS/XAES/UPS)引论[M].北京:国防工业出版社,1992.160-162.
    [216]吴宁晶,黄礼侃,郑安呐,等.聚苯乙烯/聚二甲基硅氧烷嵌段与接枝共聚物表面聚集态的研究[J].高分子学报,2005(1):137-141.
    [217]汪贵华,杨伟毅,常本康.变角XPS定量分析的研究[J].真空与低温,1999,5(4):242-245.
    [218]Owens D K,Wendt R C.Estimation of the surface energy of polymers[J].Journal of Applied Polymer Science.1969,13:1741.
    [219]Ulman A.An Introduction to Uultrathin Film:From Langmuir-Blodgett to Self-Assembly[M],Academic press:New York,1991.56-60.
    [220]宋华杰,董海山,郝莹.计算固体表面能的Young-Good-Girifalco-Fowkes方程的理论基础[J].粘接,2000,(5):1-5.
    [221]Liberman M A,Lichtenberg A L.Principles of Plasma Discharges and Materials Processing,John Wiley & Sons,1994.261-262.
    [222]Hopwood J,Guarnieri C R,Whitehair S J,Cuomo J J.Electromagnetic fields in a radio-frequency induction plasma[J].Journal of Vacuum Science and Technology A,1993,11(1):147-151.
    [223]Hopwood J,Guarnieri C R,Whitehair S J,et al.Langmuir probe measurements of a radio frequency induction plasma[J].Journal of Vacuum Science and Technology A,1993,11(1):152-156.
    [224]管井秀郎编著,大江一行执笔,张海波,张丹翻译,等离子体电子工程学[M].北京:科学出版社,2002.119-122.
    [225]Turner M M.Collisionless electron heating in an inductively coupled discharge[J].Physical Review Letters,1993,71(12):1844-1847.
    [226]Kolobov V I,Hitchon W N.Electron distribution function in a low-pressure inductively coupled plasma[J].Physical Review E,1995,52(1):972-980.
    [227]Ehsani M,Borsi H,Gockenbach E,et al.Modified silicone rubber for use as high voltage outdoor insulators[J].Advances in Polymer Technology,2005,24(1):51-61.
    [228]黄良仙,顾玲,杨百勤,杨刚,戴毅,安秋凤.磷酸酯型有机硅表面活性剂的制备及其表面活性[J].日用化学工业,2008,38(2):87-94.
    [229]孔华,辛煜,黄松,宁兆元.CF_4/Ar等离子体刻蚀中入射角对SiO_2刻蚀速率的影响[J].功能材料与器件学报,2004,10(3):327-331.
    [230]张毅,张志颖,陈英颖.辉光放电光谱仪的基本原理及在钢铁分析中的应用[J].现代科学仪器,2000,(2):63-65.
    [231]陈刚,葛爱景,卓尚军,王佩玲.辉光放电质谱法在无机非会属材料分析中的应用[J].分析化学研究报告,2004,32(1):107-112.
    [232]Raizer Y.Gas Discharge Physics[M].Spriger-Verlag,1987.110-112.
    [233]Onda T,Shibuichi S,Satoh N,et al.Super-water-repellent Fractal Surfaces[J].Langmuir,1996,12(9):2125-2127.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700