利用棉纤维发育相关基因研究不同棉种的起源与进化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棉花是世界性重要的经济作物。在植物分类学上,所有野生和栽培的棉种都属于被子植物的锦葵目(Malvales)、锦葵科(Malvaceae)、棉族Gossypieae)、棉属(Gossypium)。棉属植物的分类研究已有近百年的历史。最有权威的棉属分类结果由美国植物学家Fryxell在1992年提出,主要包括4个亚属,8个组,9个亚组,50个种,其中45个二倍体种和5个异源四倍体种。异源四倍体种是由二倍体A染色体组棉种和D染色体组棉种种间杂交而成的,其中海岛棉和陆地棉已被驯化为栽培种。陆地棉的产量高,适应性广,纤维品质中等,因其高产及对环境和生产的普遍适应性,目前世界上97%的棉纤维都产自陆地棉;而海岛棉的特点是纤维品质优良,说明与优质纤维品质相关的基因在海岛棉中高效表达,但海岛棉产量低、适应性差,因而限制了其种植范围。陆地棉、海岛棉两者杂交的F1部分可育,但生育期长,且两者杂交的后代表现典型的种间杂种向两极疯狂分离。
     目前普遍认为异源四倍体棉种的A染色体组供体种是草棉(G. herbaceum)。而对于异源四倍体棉种的D染色体组供体种目前并没有统一的认识。尽管海岛棉和陆地棉是两大四倍体栽培棉种,但这两个栽培种的农艺性状,特别是纤维品质差异很大。因此,在本研究中,基于EST-SSR标记和已克隆的与棉纤维发育相关基因信息进行四倍体棉种D染色体亚组供体种来源,陆地棉和海岛棉棉纤维发育相关基因的结构,表达特征等方面系统分析,为进一步阐明海陆种间分化的机理奠定基础。研究结果如下:
     Guo等(2007a)在利用EST-SSR引物加密本实验室的遗传图谱时,发现来源于雷蒙德氏棉的EST-SSR引物在陆地棉和海岛棉之间的多态性远高于来源于亚洲棉和陆地棉的EST-SSR引物所产生的多态性。本研究基于上述研究结果,选择14对来源于雷蒙德氏棉的EST-SSR引物和23个供试棉种(2个二倍体A染色体组棉种、13个二倍体D染色体组野生种和8个异源四倍体材料)来研究棉属二倍体D染色体组棉种之间的亲缘关系,以及异源四倍体棉种D染色体亚组的供体种。来源于雷蒙德氏棉的14对EST-SSR引物在23个棉种中共获得了438个扩增条带,每个条带都被克隆、测序并分别对测序结果的SSR重复区和侧翼保守序列进行分析,然后将所有引物的侧翼序列进行重组,重组后的序列用于碱基替换率分析和构建进化树。对染色体亚组与其祖先种之间的SSR区及其侧翼序列进行比较,结果都是D染色体组和D染色体亚组的变异程度高于A染色体组和A染色体亚组。说明在进化过程中,A染色体组和A染色体亚组之间比D染色体组和D染色体亚组更保守。进一步我们分别对13个二倍体D染色体组棉种、8个异源四倍体棉种及所有23个供试棉种的侧翼重组序列进行了进化树的构建,结果显示,13个D染色体组棉种之间的关系与Fryxell (1992)的亚组分类相同。而D染色体组棉种与异源四倍体棉种D染色体亚组之间的关系表明,雷蒙德氏棉与所有异源四倍体棉种D染色体亚组的亲缘关系最近。
     为了进一步了解棉纤维发育的分子机制,从而揭示海陆栽培种间纤维品质差异的本质,本研究选取NCBI上已登录的18个与棉纤维发育相关基因和本实验克隆的一个新的蔗糖合酶基因(SusA1),以阿非利加棉、雷蒙德氏棉、陆地棉遗传标准系TM-1和海岛棉7124的基因组DNA为模板,获得基因的全长序列,对序列及结构进行分析,并根据各部分同源基因在海岛棉和陆地棉之间的PCR扩增多态性或SNP位点,利用本实验[(TM-l×Hai7124)×TM-1] BC1群体,对19对部分同源基因进行了染色体定位研究,根据前人研究中已定位的QTLs与本研究中的基因的染色体定位结果,进行这些基因表达特点与纤维品质的关联分析。进一步根据TM-1和海7124序列之间的SNP位点设计亚组特异定量PCR引物,研究19个棉纤维发育相关基因在TM-1和海7124纤维发育中的表达谱,以及其部分同源基因的表达谱;推测这些棉纤维发育相关基因在海陆栽培种间分化中的作用,为纤维品质改良的分子育种研究奠定基础。
     在本研究的19个基因中,68.42%的基因序列及结构在各棉种及染色体组间比较保守,而31.58%的基因序列及结构在各棉种及染色体组间变异比较大。对各基因在4个棉种中获得的序列进行聚类,结果显示在异源四倍体形成后,16个基因在四倍体的A染色体亚组和D染色体亚组之间是独立进化的,而3个基因在两染色体亚组之间发生了不同程度的殖民化。通过比较同一棉种内不同染色体亚组之间及同一染色体亚组在不同棉种之间的进化速率,发现无论在TM-1还是海7124中都是D染色体亚组的进化速率大于A染色体亚组。同时无论是A染色体亚组还是D染色体亚组,TM-1的进化速率都大于海7124。说明在漫长的进化历史中,四倍体的D染色体亚组经历了较快的进化速率,而与TM-1相比,海7124与其祖先种的亲缘关系更近一些。根据基因在TM-1和海7124之间的序列差异,26个重复基因被定位在本实验室的遗传图谱上,并且在其定位区间内,检测发现至少存在一个已报道的纤维品质相关的QTLs。基因的表达谱分析显示,在纤维起始及伸长早期,大部分基因在海7124中的表达量高于TM-1;在纤维伸长期,基因的表达模式显示多样性,有的在陆地棉中的表达优势,有的在海岛棉中表达优势,有的在陆地棉和海岛棉中表达水平相同,但无论哪种表达模式,大部分基因的表达显示8DPA是个例外,表现为在海岛棉中的表达显著高于陆地棉;在纤维发育初生壁到次生壁转换期,大部分基因在陆地棉中的表达高峰早于海岛棉中的表达高峰,暗示海岛棉的纤维伸长期比陆地棉长,可能是导致其纤维品质好于陆地棉的原因之一。进一步从亚组特异表达谱来看,大部分基因在陆地棉和海岛棉之间具有相同的亚组表达模式,A或D亚组优势表达或两亚组同等表达,与异源四倍体形成后亚组功能分化有关。一些基因在纤维发育的同一时期,在陆地棉和海岛棉之间具有不同的亚组偏向性,说明自然选择和人工驯化可能对海岛棉和陆地棉纤维品质的差异形成起了很大作用。通过综合分析各重复基因在海陆栽培种间结构和表达特征的差异、以及与纤维品质QTLs的关系,推测重要农艺性状的选择可能对陆地棉和海岛棉之间纤维发育相关基因的分子进化起重要作用。
Cotton from the genus Gossypium is the world's most important fiber crop plant. For nearly 100 years, systematists have been interested in the classification of the genus Gossypium. A wide variety of data, including morphologic, meiotic, karyotypic, genetic and molecular have been generated to address relationships among members of the genus. Currently, the most widely accepted classification for Gossypium follows Fryxell (1992), who divided Gossypium into four subgenera, eight sections, nine subsections and approximately 50 species. Forty-five of the species are diploid and differentiated cytogenetically into eight genome groups (A-G and K), and five are tetraploid. The five tetraploid species are of allopolyploid origins, originated from interspecific hybridization between diploid A- and D-genome species, two of them, G. hirsutum and G. barbadense, have been independently domesticated for their fiber. G. hirsutum has broad adaptation, moderate fiber quality and high yield. Because of its yield potential and adaptation to diverse environmental conditions and production systems, about 97% of the world's cotton fiber derives from G. hirsutum (NCCoA,2006). On the other hand, G. barbadense is characterized by superior fiber quality, indicated G. barbadense contains novel alleles for superior fibre quality, but the narrow range of adaptation and low yield limited its planted regions. The two species are sexually compatible, although partial sterility, longer maturity, and hybrid breakdown are often observed in later generation hybrids.
     Now, the best extant model of the ancestral A-genome parent is G. herbaceum, while the D-subgenome donor in tetraploid cotton species remained elusive. Though G. hirsutum and G. barbadense are cultivated cotton species, they have very different agronomic and fiber quality characters. So, in this study, based on the EST-SSR sequence and the structures and expression partterns of fiber development genes, which had been cloned, we revealed the D-genome donor of tetraploid species, and put a solid foundation to further understand the genetic basis of cotton fiber development.
     In a previous study, we used EST-SSR to screen for polymorphisms to enhance our backbone geneticmap of allotetraploid cotton. Using G. raimondii derived-eSSR, a high polymorphismrate (47.9%) between G. hirsutum and G. barbadense was observed, which was much higher than that observed by G. arboreum and G. hirsutum derived-eSSR (Guo et al.,2007a). We questioned the role of the D-genome cotton species in the evolution of tetraploid cotton. In this study, we used EST-SSR sequences to reveale the relationship of D-genome in diploid in Gossypium and the D-subgenome donor in tetraploid species.14 EST-SSR primer pairs from G. raimondii were used to amplify 23 species in Gossypium. In total,438 amplicons were cloned, sequenced and analyzed. From the analysis of SSR motifs and the rates of base substitutions in the flanking region based on the combined data set, the D-genome and D-subgenome exhibited higher levels of polymorphism than the A-genome and A-subgenome, both in the microsatellite domains and the flanking regions. Suggest that in the process of evolution, the A-genome and A-subgenome have experienced lower divergence rates and are therefore more conserved than D-genome and D-subgenome. The phylogenetic trees of 13 D-genome diploid species,8 AD-genome tetraploid species and all the 23 species were constructed based on the combined SSR flanking sequence data, respectively. The results showed that 13 D-genome species were congruent with Fryxel’s subsection taxonomy. The relationship between D-subgenome tetraploid species and D-genome diploid species indicated that G. raimondii is the sole D-genome donor of all tetraploid species.
     To understand the genetic basis of cotton fiber development, further to reveal the essence of fiber quality difference between upland cotton and sea-island cotton, we selected 19 fiber development genes, including 18 accessioned to NCBI and a new sucrose synthase gene (SusA1) cloned by our lab, to study their structure and expression difference in the two cultivated tetraploid cotton. First, we cloned these genes in the genome DNA of G. hirsutum ace. TM-1, G barbadense cv. Hai7124 and their two putative diploid progenitor cottons, G. herbaceum and G. raimondii, to investigate their frame and sequence divergence. Then, the chromosomal locations of each homeolog of several studied genes, having effective SNP or amplification polymorphism loci between TM-1 and Hai7124, were carried out using our [(TM-1×Hai7124)×TM-1] inter-specific BC1 mapping population in allotetraploid cotton. Genes'distribution on chromosomes and their distance from QTLs, which were located by privous studies, were analysis. Further, expression patterns of each gene and each homeolog (duplicate genes) were explored to evaluate the expression difference on fiber development between G. hirsutum and G. barbadense. Synthesizing the analysis of genes frames, expression patterns and chromosomal location results, the interspecific divergence of fiber development genes in cultivated tetraploid cotton species was further elucidated. The results will also put a solid foundation for mining the key genes with important fiber quality contribution, further utilizing them to improve the fiber quality in cotton molecular breeding.
     In this study, in the orthologous and homoelogous loci of 19 studied genes, the sequence and structure of 68.42% were conservative and 31.58%were diverse. Gene tree topologies showed that 16 genes were independent evolution between A- and D-subgenome in the allopolyploid after polyploid formation, while 3 evolved different degrees of colonization. The evolution rates between A (D)-genome and A (D)-subgenome revealed that D-subgenome of allotetraploid had rapid differentiation in the evolution history, and compared with TM-1, Hai7124 may have a closer relationship with their primogenitor. Based on the sequence divergence between TM-1 and Hai7124,26 duplicate genes were located on our backbone genetic map, in which at least one fiber quality QTL reported previously was detected in the interval. The genes expression profiles showed that at fiber initiation and early elongation period, most genes had higher transcripts in Hai7124 than in TM-1, however, at fiber elongation period, most genes transcripts, except for CelA3 and HOX3, were the same or higher in TM-1 than in Hai7124 with an exception at 8DPA, and at primary-secondary transition period, expression peak of transcripts in most genes was earlier in TM-1 than in Hai7124. The genome-specific expression profiles showed that the same A- or D-biased or equal expression profile in the two cultivated cotton species were related with functional partitioning of genomic contributions during cellular development after the allopolyploid formation, however, significant alternation of homoelog A/D ratio at the same fiber developmental time points between G. hirsutum and G. barbadense indicated that domestication for fiber qualities may play an important role in fiber quality divergence of G. hirsutum and G. barbadense. The combined analysis of the structure and expression patterns of these studied genes further indicated that agronomic selection play important role in altering the molecular evolutionary patterns of genes related with fiber development between G. hirsutum and G. barbadense.
引文
1. 别墅,王坤波,孔繁玲.棉花基因组重复序列研究进展[J].分子植物育种,2003,1(3):373-379
    2. 楚鹰.纤维发育相关基因的SNP研究与棉花蔗糖合酶基因片段的克隆及表达分析.南京农业大学,2004,硕士学位论文
    3. 单世华,施培,孙学振,等.温度影响棉纤维发育研究进展[J].山东农业大学学报(自然科学版),2002,33(3):395-398
    4. 杜雄明,潘家驹,汪若海.棉纤维细胞分化和发育[J].棉花学报,2000,12(4):212-217
    5. 郭旺珍,孙敬,张天真.棉花纤维品质基因的克隆与分子育[J].科学通报,2003,48(5):410-417
    6. 郭旺珍,王凯,张天真,等.利用SSR标记技术研究棉属A、D染色体组的进化[J].遗传学报,2003,30(2):183-188
    7. 韩志国,郭旺珍,张天真.一个FIF1基因的SNP及定位研究[J].作物学报,2007,33(2):256-261
    8. 韩志国.棉纤维发育相关EST-SSR的特征、功能及其定位.南京农业大学,2006,博士学位论文
    9. 蒋建雄,郭旺珍,张天真.棉花两个β-甘露糖苷酶cDNA的克隆及其特征[J].植物生理与分子生物学学报.2004,30(2):216-220
    10.蒋建雄,张天真.利用CTAB酸酚法提取棉花组织总RNA[J]棉花学报,2003,15(3):166-167
    11.琚铭.棉纤维相关基因时空表达与纤维品质关联分析及β-1,4-葡糖苷酶基因的转基因功能验证.南京农业大学,2008,硕士学位论文
    12.赖童飞,杜雄明.棉纤维分化起始的分子生物学研究进展[J].西北植物学报,2008,28(2):416-424
    13.李先碧,肖岳华,罗明.两个棉花Rac蛋白基因的克隆与表达分析[J].遗传学报,2005,32(1):72-78
    14.聂汝芝,李懋学.棉属植物核型研究[M].北京:科学出版社,1993
    15.潘存红,王子斌,马玉银,等InDel和SNP标记在水稻图位克隆中的应用[J].中国水稻科学,2007,21(5):447-453
    16.潘家驹.棉花育种学[M].北京:中国农业出版社,1998
    17.钱思颖等.棉属酯酶同工酶的分析[J].江苏农业学报,1985,1(4):15-20
    18.任启军.基于棉花微卫星序列的SNP变异和系统进化.南京农业大学,2004,硕十学位论文
    19.上官小霞,王凌健,李燕娥,等.棉花纤维发育的分子机理及品质改良研究进展[J].棉花学报,2008,20(1):62-69
    20.宋国立.棉属种间关系的RAPD分析.华中农业大学,1998,博士学位论文
    21.孙杰,李艳军,等.棉花纤维特异表达基因GhFl的分离及鉴定[J].棉花学报,2005,17:259-263
    22.王坤波,李懋学.棉属D染色体组的核型变异和进化[J].作物学报,1990,16(3):200-207
    23.王水平,沈曾佑,张志良,等.棉纤维细胞伸长生长与过氧化物酶和IAA氧化酶的关系[J].植物生理学报,1985,11(4):409-417
    24.杨霞,侯磊,肖月华,等.棉花4个GL2同源基因的序列比较及表达分析[J].作物学报,2008,34(6):1086-1091
    25.张军,武耀廷,郭旺珍,等.棉花微卫星标记的PAGE/银染快速检测[J].棉花学报,2000,12(5):267-269
    26.张洪映,毛新国,景蕊莲,等.小麦TaPK7基因单核苷酸多态性与抗旱性的关系[J].作物学报,2008,34(9):1537-1543
    27.张辉,汤文开,谭新,等.棉纤维发育及其相关基因表达调控研究进展[J].植物学通报,2007,24(2):127-133
    28.张天真.棉花纤维品质分子育种的现状及展望[J].棉花学报,2000,12(6):321-326
    29.周宝良,陈松,沈新莲,等.棉属种子SOD酶的凝胶电泳图谱与种间关系[J].江苏农业学报,1995,11(1):11-15
    30.朱美霞,刘海清,张月永.应用RAPD-PCR分析棉花A基因组的起源与进化[J].安徽农业科学,2004,32(6):1109-1111
    31.朱一超.棉花纤维发育转录因子的表达分析和两个基因的克隆与初步功能分析.南京农业大学,2009,博士学位论文
    32. Abdalla A M, Reddy O U, El-Zik K M. Genetic diversity and relationships of diploid and tetraploid cottons revealed using AFLP [J]. Theor Appl Genet,2001,102:22-29
    33. Adams K L, Cronn R, Percifield R, et al. Genes duplicated by polyploidy show unequal contributions to the transcriptome and organ-specific reciprocal silencing [J]. Proc Natl Acad Sci USA,2003,100:4649-4654
    34. Adams K L, Percifield R, Wendel J F. Organ-specific silencing of duplicated genes in a newly synthesized cotton allotetraploid [J]. Genetics,2004,168:2217-2226
    35. Adams K L, Wendel J F. Allele-specific, bidirectional silencing of an alcohol dehydrogenase gene in different organs of interspecific diploid cotton hybrids [J]. Genetics,2005,171: 2139-2142
    36. Aiyangar G S. Origin and development of lint and fuzz in cotton [J]. Indian J A gr Sci,1951, 21:293-312
    37. Alvarez I, Cronn R, Wendel J F. Phylogeny of the new world diploid cottons (Gossypium L. Malvaceae) based on sequences of three low-copy nuclear genes [J]. Plant Syst. Evol.,2005, 252:199-214
    38. Amor Y, Haigler C H, Johnson S, et al. A membrane-associated form of Sus and its potential role in synthesis of cellulose and callose in plants [J]. Proc Natl Acad Sci USA,1995,92: 9353-9357
    39. An C, Saha S, Jenkins J N, et al. Cotton (Gossypium spp.) R2R3-MYB transcription factors SNP identification, phylogenomic characterization, chromosome localization, and linkage mapping [J]. Theor Appl Genet,2008,116: 1015-1026
    40. An C, Saha S, Jenkins J N, et al. Transcriptome proffiling, sequence characterization, and SNP-based chromosomal assignment of the EXPANSIN genes in cotton [J]. Mol Genet Genomics,2007,278:539-553
    41. Anonymous (1997). Zonal coordinators annual report of all-india coordinated cotton improvement project.
    42. Batley J, Barker G, O'Sullivan H, et al. Mining for single nucleotide polymorphisms and insertions/deletions in maize expressed sequence tag data [J]. Plant Physiol,2003,132:84-91
    43. Beasley C A, Ting I P. The effect of plant growth substances on in vitro fiber development from fertilized cotton ovules. Am J Bot,1973,60(2):130-139
    44. Beasley J O. Meiotic chromosome behavior in species, specieshybrids, haploids, and induced polyploids of Gossypium. Geneties,1942,27:25-54
    45. Beasley J O. The origin of American tetraploid Gossypium species [J]. Am Nat,1940,74: 285-286
    46. Bergthorsson U, Andersson D I, Roth J R. Ohno's dilemma: evolution of new genes under continuous selection [J]. Proc Natl Acad Sci USA,2007,104:17004-17009
    47. Blumensteil J P, Hartl D L, Lozovsky E R. Patterns of insertion and deletion in contrasting chromatin domains [J]. Mol Biol Evol,2002,19: 2211-2225
    48. Brubaker C L, Bourland F M, Wendel J F. The origin and domestication of cotton. In: Smith WC, Cothren T (eds) Cotton:origin, history, technology and production [M]. John Wiley and Sons,1999, New York, pp 3-31
    49. Brubaker C L, Wendel J F. Reevaluating the origin of domesticated cotton(Gossypium hirsutum; Malvaceae) using nuclear restriction fragment length polymorphisms (RFLPs) [J]. Am J Bot,1994,81:1309-1326
    50. Bundock P C, Christopher J T, Eggler P, et al. Single nucleotide polymorphisms in cytochrome P450 genes from barley [J]. Theor Appl Genet,2003,106:676-682
    51. Bundock P C, Henry R J. Single nucleotide polymorphism, haplotype diversity and recombination in the Isa gene of barley [J].Theor Appl Genet,2004,109: 543-551
    52. Caldwell K S, Dvorak J, Lagudah E S, et al. Sequence polymorphism in polyploid wheat and their D-genome diploid ancestor [J]. Genetics,2004,167:941-947
    53. Caudrado A, Schwarzacher T. The chromosomal organization of simple sequence repeats in wheat and rye genomes [J]. Chromosoma,1998,107:587-594
    54. Cedroni M L, Cronn R C, Adams K L, et al. Evolution and expression of MYB genes in diploid and polyploid cotton [J]. Plant Molecular Biology,2003,51:313-325
    55. Chaudhary B, Flagel L, Stupar R M, et al. Reciprocal silencing, transcriptional bias and functional divergence of homeologs in polyploid cotton (Gossypium) [J]. Genetics,2009,182: 503-517
    56. Chee P W, Draye X, Jiang C X, et al. Molecular dissection of interspeciffic variation between Gossypium hirsutum and G. barbadense (cotton) by a backcross-self approach: I. Fiber elongation [J]. Theor Appl Genet,2005,111:757-763
    57. Chen X, Cho Y G, McCouch S R. Sequence divergence of rice microsatellites in Oryza and other plant species [J]. Mol Genet Genomics,2002,268:331-343
    58. Ching A, Caldwell K S, Jung M, et al. SNP frequency, haplotype structure and linkage disequilibrium in elite maize inbred lines [J]. BMC Genet,2002,3:19-32
    59. Clark A G Invasion and maintenance of a gene duplication [J]. Proc Natl Acad Sci USA, 1994,91:2950-2954
    60. Cleveland D W, Sullivan K F. Molecular biology and genetics of tubulin. Annu Rev Biochem, 1985,54:331-365
    61. Cronn R C, Small R L, Haselkorn T, et al. Cryptic repeated genomic recombination during speciation in Gossypium gossypioides [J]. Evolution,2003,57:2475-2489
    62. Cronn R C, Small R L, Haselkorn T, et al. Rapid diversification of the cotton genus (Gossypium:Malvaceae) revealed by analysis of sixteen nuclear and chloroplast gene [J]. Am J Bot,2002,89: 707-725
    63. Cronn R C, Small R L, Wendel J F. Duplicated genes evolve independently following polyploid formation in cotton [J]. Proc Natl Acad Sci USA,1999,96:14406-14411
    64. Cronn R C, Zhao X, Paterson A H, et al. Polymorphism and concerted evolution in a tandemly repeated gene family: 5S ribosomal DNA in diploid and allopolyploid cottons [J].J Mol Evol,1996,42:685-705
    65. Cronn R, Cedroni M, Haselkorn T, et al. PCR-mediated recombination in amplification products derived from polyploid cotton [J]. Theor Appl Genet,2002,104:482-489
    66. Cui X, Shin H, Song C, et al. A putative plant homolog of the yeast beta-1,3-glucan synthase subunit FKS1 from cotton (Gossypium hirsutum L.) fibers. Planta,2001,213(2):223-230
    67. Delanghe E A L. Lint development [J]. In Mauney J R and Stewart J M, ed, Cotton Physiology, Cotton Foundation, Memphis, TN,1986: 325-349
    68. Delanghe E A. Towards an international strategy for genetic improvement in the genus Musa [J]. In: Banana and Plantain Breeding Strategies. Persley, G S and De Langhe, E A. (Eds.), pp.19-21. Proceedings of an international workshop,13-17 October 1986, Cairns, Australia, ACIARPRIC.No21
    69. Delmer D P, Pear J R, Andrawis A et al. Genes encoding small GTP-binding proteins analogous to mammalian rac are preferentially expressed in developing cotton fibers [J]. Mol Gen Genet,1995,248(1):43-51
    70. Dixon D C, Seagull R W, Triplett B A. Changes in the accumulation of α-and β-tubulin isotypes during cotton fiber development [J]. Plant Physiol.,1994,105:1347-1353
    71. Drenkard E, Richter B G, Rozen S, et al. A simple procedure for the analysis of single nucleotide polymorphisms facilitates Map-Based Cloning in Arabidopsis [J]. Plant Physiology,2000,124(4):1483-1492
    72. Earl T, Jodi S, Brian S. Characterization of two cotton(Gossypium hirsutum L) invertase genes [J]. MolBiol Rep,2010, DOI 10.1007/s11033-010-0048-8
    73. Earl T. Characterization of an ADP-glucose pyrophosphorylase small subunit gene expressed in developing cotton(Gossypium hirsutum) fibers [J]. Mol Biol Rep,2010, DOI 10.1007/s11033-010-9961-0
    74. Edwards G A, Mirza M A. Genomes of the Australian wild species of cotton. Ⅱ The designation of a new G genome for Gossypium bickii [J]. Can J Genet Cytol,1979,21: 367-372
    75. Eisen J A. Mechanistic basis for microsatellites instability. In: D. B.Goldstein & C.Schlotterer, (Eds.). Microsatellites: Evolution and Application [M]. Oxford University press, New York,1999, pp.34-38
    76. Endrizzi J E, Turcotte E L, Kohel R J. Genetics, cytology, and evolution of Gossypium [J]. Adv Genet,1985,23:271-375
    77. Eujayl Ⅰ, Sorrells M E, Baum M, et al. Assessment of genotypic variation among cultivated durum wheat based on EST-SSRs and genomic SSRs [J]. Euphytica,2001,119:39-43
    78. Fahima T, Roder M S, Wendehake K, et al. Microsatellite polymorphism in natural populations of wild emmer wheat, Triticum dicoccoides, in Israel [J]. Theor Appl Genet, 2002,104:17-29
    79. Feltus F A, Wan J, Schulze S R, et al. An SNP resource for rice genetics and breeding based on subspecies:India and Japonica genome alignments [J]. Genome Res,2004,14:1812-1819
    80. Feng Q, Zhang Y, Hao P, et al. Sequence and analysis of rice chromosome 4 [J]. Nature, 2002,420: 316-320
    81. Flagel L, Udall J A, Nettleton D, et al. Duplicate gene expression in allopolyploid Gossypium reveals two temporally distinct phases of expression evolution [J]. BMC Biol,2008,6: 16-24
    82. Force A, Lynch M, Pickett F B, et al. Preservation of duplicate genes by complementary, degenerative mutations[J]. Genetics,1999,151:1531-1545
    83. Frelichowski J E, Palmer M B, Main D, et al. Cotton genome mapping with new microsatellites from Acala'Maxxa'BAC-ends[J]. Mol Genet Genomics,2006,275:479-491
    84. Fryxell P A, Craven L A, Stewart J M. A revision of Gossypium sect. Grandicalyx (Malvaceae), including the description of six new species [J]. Syst Bot,1992,17:91-114
    85. Fryxell P A. The Natural History of the Cotton Tribe [M]. Texas A&M Univ Press, College Station, TX.1979
    86. Gao P, Zhao P M, Wang J, et al. Identification of genes preferentially expressed in cotton fibers: A possible role of calcium signaling in cotton fiber elongation [J]. Plant Sci,2007, 173(1):61-69
    87. Gaut B S, Clegg M T. Nucleotide polymorphism in the Ashl locus of pearlmillet (Pennisetum glaucum) (Poaceae) [J]. Geneties,1993,135:1091-1097
    88. Germano J, Klein A S. Species specific nuclear and chloroplast single nucleotide polymorphisms to distinguish Picea glauca, P. mariana and P. rubens [J]. Theor Appl Genet, 1999,99: 37-49
    89. Gerstel D U, PhilliPs L L. Segregation of synthetieamphiploids in Gossypium and Nicotiana [J]. Quantity Biology,1958,23:225-237
    90. Gerstel D U. Chromosome translocation in interspecies hybrids of genus Gossypium [J]. Evolution,1953,7:234-244
    91. Guan X Y, Li Q J, Shan C M, et al. The HD-Zip IV gene GaHOXl from cotton is a functional homologue of the Arabidopsis GLABRA2 [J]. Physiol Plant,2008,134(1):174-182
    92. Guan X Y, Yu N, Shangguan X X, et al. Arabidopsis trichome research sheds light on cotton fiber development mechanisms [J]. Chinese Science Bulletin,2007,52:1734-1741
    93. Guo W Z, Cai C P, Wang C B, et al. A microsatellite-based, gene-rich linkage map reveals genome structure, function, and evolution in Gossypium [J]. Genetics,2007a,176:527-541
    94. Guo W Z, Fang D, Yu W D, et al. Sequence divergence of microsatellites and phylogeny analysis in tetraploid cotton species and their putative diploid ancestors [J]. J Integr Plant Biol,2005,47:1418-1430
    95. Guo W Z, Sang Z Q, Zhou B L, et al. Genetic relationships of D-genome species based on two types of EST-SSR markers derived from G. arboreum and G. raimondii in Gossypium [J]. Plant Science,2007b,172:808-814
    96. Haigler C H, Ivanova-Datcheva M, Hogan P S. Carbon Partitioning to cellulose synthesis [J]. Plant Mol Biol,2001,47:29-51
    97. Han Z G, Guo W Z, Song X L, et al. Genetic mapping of EST-derived microsatellites from the diploid Gossypium arboreum in allotetraploid cotton [J]. Mol Genet Genomics,2004, 272:308-327
    98. Han, Z G, Wang C B, Song X L, et al. Characteristics, development and mapping of Gossypium hirsutum derived EST-SSR in allotetraploid cotton [J]. Theor Appl Genet,2006, 112:430-439
    99. Hanson R E, Islam-Faridi M N, Percival E A, et al. Distribution of 5S and 18S-28S rDNA loci in a tetraploid cotton(Gossypium hirsutum L.) and its pupative diploid ancestors [J]. Chromosoma,1996,105:55-61
    100. Hanson R E, Zhao X, Schewina C F, et al. FISH indicates a dispersed repetitive element highly represented in the Gossypium hirsutum L. D-subgenome is absent from its putative ancestral diploid donor(Gossypium raimondii U.) [M]. Plant Genome IV Conference Abstract, Town & Country Conference Center, San Diego, CA, January,1995
    101. Hanson R E. Evolution of interspersed repetitive elements in Gossypium(Malvaceae) [J] American Journal of Botany,1998,85 (10):1364-1368
    102. Harmer S E, Orford S J, Timmis J N. Characterisation of six a-expansin genes in Gossypium hirsutum (upland cotton) [J]. Mol Genet Genomics,2002,268:1-9
    103. He D H, Lin Z X, Zhang L, et al. QTL mapping for economic traits based on a dense genetic map of cotton with PCR-based markers using the interspecific cross of Gossypium hirsutum X Gossypium barbadense [J]. Euphytica,2007,153:181-197
    104. He Y, Guo W, Shen X, et al. Molecular cloning and characterization of a cytosolic glutamine synthetase gene, a fiber strength-associated gene in cotton [J]. Planta,2008,228:473-483
    105. Hovav R, Chaudhary B, Udall J A, et al. Parallel Domestication, Convergent Evolution and Duplicated Gene Recruitment in Allopolyploid Cotton [J]. Genetics,2008a,179:1725-1733
    106. Hovav R, Udall J A, Chaudhary B, et al. Partitioned expression of duplicated genes during development and evolution of a single cell in a polyploid plant [J]. Proc Natl Acad Sci USA, 2008b,105:6191-6195
    107. Hovav R, Udall J A, Chaudhary B, et al. The evolution of spinable cotton fiber entailed natural selection for prolonged development and a novel metabolism [J]. PLoS Genet,2008c, 4(2):e25
    108. Howell W M, Jobs J, Gyllensten U, et al. Dynamic allele specific hybridization: a new method for scoring single nueleotide polymorphisms [J]. Nature Biotechnology,1999,17: 87-88
    109. Humphries J A, Walker A R, Timmis J N, et al. Two WD-repeat genes from cotton are functional homologues of the Arobidopsis thaliana [J]. Plant Mol Biol,2005,57:67-81
    110. Hurst L D. The Ka/Ks ratio:diagnosing the form of sequence evolution [J]. TRENDS in Genetics,2002,91:8486-487
    111. Inouhe M, Nevins D. Regulation of cell wall glucanase activities by non-enzymic Proteins in maize coleoptiles [J]. J Biol Macromol,1997,21(1):15-20
    112. Jasdanwala R T. Auxin metabolism in developing cotton hairs [J]. J Exp Bot,1977,28(106): 1111-1116
    113. Ji S J, Lu Y C, Li J. A-beta-tubulin-like cDNA expressed specifically in elongating cotton fibers induces longitudinal growth of fission yeast [J]. Biochem Biophys Res Commun,2002, 296: 1245-1250
    114. Jiang C X, Wright R J, El-zik K M, et al. Polyploid formation created unique avenues for response to selection in Gossypium (cotton) [J]. Proc Natl Acad Sci USA,1998,95: 4419-4424
    115. John E M, Crow L J. Gene expression in cotton(Gossypium hirsutum L.) fiber: Cloning of the mRNAs[J]. Proc Natl Acad Sci USA,1992,89: 5769-5773
    116. John M E, Keller G. Characterization of mRNA for a praline-rich protein of cotton fiber [J]. Plant Physiol,1995,108:669-676
    117. Jones M A, Shen J J, Fu Y, et al. The Arabidopsis Rop-GTPase is a positive regulator of both root hair initiation and tip Growth [J]. Plant Cell,2002,14:763-776
    118. Joshi P C, Wadhwani A M and Johri B M. Morphological and embryological studies of Gossypium L [J]. Proc Nat Inst Sci, India,1967,33:37-93
    119. Kanazin V, Talbert H, See D, et al. Discovery and assay of single-nucleotide polymorphisms in barley(Hordeum vulgare) [J]. Plant Mol Biol,2002,48:529-537
    120. Kawai M, Aotsuka S, Uchimiya H. Isolation of a cotton CAP gene: a homologue of adenylyl cyalase-associated protein highly expressed during fiber elongation [J]. Plant Cell Physiol, 1998,39: 1380-1383
    121. Kim M Y, Van K, Lestart P, et al. SNP identification and SNAP marker development for a GmNARK gene controlling supernodulation in soybean [J]. Theor Appl Genet,2005,110: 1003-1010
    122. King D, Soller M, Kashi Y. Evolutionary tuning knobs [J]. Endeavour,1997,21:36-40
    123. Kohel R J, Yu J, Park Y H, et al. Molecular mapping and characterization of traits controlling fiber quality in cotton [J]. Euphytica,2001,121:163-172
    124. Kondrashov F A, Kondrashov A S. Role of selection in fixation of gene duplications [J]. J Theor Biol,2006,239: 141-151
    125. Kota R, Varshney R K, Thiel T, et al. Generation and comparison of EST-derived SSRs and SNPs in barley (Hordeum uulgare L.) [J]. Hereditas,2001,135:145-151
    126. Lacape J M, Nguyen T B, Courtois B, et al. QTL analysis of cotton fiber quality using multiple Gossypium hirsutum(?)Gossypium barbadense backcross generations [J]. Crop Sci, 2005,45:123-140
    127. Laosinchai W, Cui X, Brown R M et al. A full cDNA of cotton cellulose synthase has high homology with the Arabidopsis RSW1 gene and cotton CelAl (Accession No. AF 200453) (PGR 00-002) [J]. Plant Physiol,2000,122-291
    128. Lee J J, Woodward A W, Chen Z J. Gene expression changes and early events in cotton fibre development [J]. Annals of Botany,2007,100:1391-1401
    129. Li X B, Cai L, Cheng N H et al. Molecular characterization of the cotton GhTUBl gene that is preferentially expressed in fiber [J]. Plant Physiol,2002,130: 666-674
    130. Li X B, Fan X P, Wang X L, et al. The cotton ACTIN1 gene is functionally expressed in fibers and participates in fiber elongation [J]. The Plant Cell,2005a,17:859-875
    131. Li X B, Xiao Y H, Luo M, et al. Cloning and expression analysis of two Rac genes from cotton(Gossypium hirsutum L.) [J]. Acta Genetica Sinica,2005b,32(1):72-78
    132. Lin Z, He D, Zhang X, et al. Stewart Linkage map construction and mapping QTL for cotton fibre quality using SRAP, SSR and RAPD [J]. Plant Breeding,2005,124:180-187
    133. Liu B, Brubaker C L, Mergeai G, et al. Polyploid formation in cotton is not accompanied by rapid genomic changes [J]. Genome,2001a,44:321-330
    134. Liu Q, Brubaker C L, Green A G, et al. Evolution of the FAD-2 fatty acid desaturase 5'UTR intron and the molecular systematics of Gossypium(Malvaceae) [J]. Am J Bot,2001b,88: 92-102
    135.Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△Ct Method[J]. Methods,2001,25 (4):402-408
    136. Loguercio L L, Zhang J Q, Wllkins T A. Differential regulation of six novel MYB-domain genes defines two distinct expression patterns in allotetraploid cotton (Gossypium hirsutum L.) [J]. Mol Gen Genet,1999,261:660-671
    137. Luan M, Guo X, Zhang Y, et al. QTL mapping for agronomic and fibre traits using two interspecific chromosome substitution lines of Upland cotton [J]. Plant Breeding,2009,128: 671-679
    138. Lynch M, Conery J S. The origins of genome complexity [J]. Science,2003,302:1401-1404
    139. Lynch M, Force A. The probability of duplicate-gene preservation by subfunctionalization [J]. Genetics,2000,154: 459-473
    140. Lynch M, O'Hely M, Walsh B, et al. The probability of preservation of a newly arisen gene duplicate [J]. Genetics,2001,159: 1789-1804
    141. Ma G J, Zhang T Z, Guo W Z. Cloning and characterization of cotton GhBG gene encoding B-glucosidase [J]. DNA Sequence,2006,17(5):355-362
    142. Marth G T, Korf D Y, Mark T Y, et al. A general approach to single nueleotide polymorphism discovery [J]. Nature Geneties,1999,23:452-456
    143. McQueen-Mason S, Cosgrove D J. Disruption of hydrogen bonding between plant cell wall polymers by proteins that induce wall extension [J]. Proc Natl Acad Sci, USA,1994,91: 6574-6578
    144. Meinert M C, Delmer D P. Changes in biochemical composition of the cellwall in cotton fiber during development [J]. Plant Physiol,1977,59: 1088-1097
    145. Mochida K, Yamazaki Y, Ogihara Y. Discrimination of homoeologous gene expression in hexaploid wheat by SNP analysis of contigs grouped from a large number of expressed sequence tags [J]. Mol Genet Genomics,2003,270: 371-377
    146. Nakanomyo I, Kost B, Chua N H, et al. Preferential and asymmetrical accumulation of a Rac small GTPase mRNA in differentiating xylem cells of Zinnia elegans [J]. Plant Cell Physiol, 2002,43(12):1484-1492
    147. Nasu S, Suzuki J, Ohta R, et al. Seareh for and analysis of single nucleotide polymorphisms (SNPs) in rice (Oryz asativa, Oryza rufipogon) and establishment of SNP markers [J]. DNA Research: An International Journal for Rapid Publication of Reports on Genes and Genomes, 2002,9:163-171
    148. NCCoA. (2006). World cotton database (National Cotton Council of America, http://www. cotton.org/econ/cropinfo/cropdata/index.cfm)
    149. Nei M, Gu X, Sitnikova T. Evolution by the birth-and-death process in multigene families of the vertebrate immune system [J]. Proc Natl Acad Sci USA,1997,94: 7799-7806
    150. Nei M. Evolutionary change of linkage intensity [J]. Nature.1968,218:1160-1161
    151.Noda K, Glover B J, Linstead P, et al. Flower colour intensity depends on specialized cell shape controlled by a Myb-related transcription factor [J]. Nature,1994,369:661-664
    152. Nolte K D, Hendrix D L, Radin J W, et al. Sucrose synthase localization during initiation of seed development and trichome differentiation in cotton ovules [J]. Plant Physiol,1995,109: 1285-1293
    153. Ono E, Wong H L, Kawasaki T, et al. Essential role of the small GTPase Rac in disease resistance of rice [J]. Proc Natl Acad Sci USA,2001,98(2):759-764
    154. Orford S J, Timmis J N. Specific expression of an expansin gene during elongation of cotton fibers [J]. Biochin Biophy Acta,1998,1398:342-346
    155. Pang Y, Song W Q, Chen F Y, et al. A new cotton SDR family gene encodes a polypeptide possessing aldehyde reductase and 3-ketoacyl-CoA reductase activities [J]. Biochemistry, 2010,75(3):320-6
    156. Parks C R, Ezell W L, Williams D E, et al. The application of flavonoid distribution to taxonomic problems in the genus Gossypium [J]. Bull Torrey Bot Club,1975,102:350-361
    157. Pear J R, Kawagoe Y, Schreckengost W E, et al. Higher plants contain homologs of the bacterial celA genes encoding the catalytic subunit of cellulose synthase [J]. Proc Natl Acad Sci USA,1996,93:12637-12642
    158. Perez-Rodriguez M, Jaffe FW, Butelli E, et al. Development of three different cell types is associated with the activity of a specific MYB transcription factor in the ventral petal of Antirrhinum majus flowers [J]. Development,2005,132:359-370.
    159. Petrov D A, Chao Y C, Stephenson E C, et al. Pseudogene evolution in Drosophila suggest high rate of DNA loss [J]. Mol Biol Evol,1998,15:1562-1567
    160. Phillips L L, Striekland M A. The cytology of a hybrid between Gossypium hirsutum and G. longicalyx [J]. Can J Genet Cytol,1966,8:91-95
    161. Pu L, Li Q, Fan X, et al. The R2R3-MYB transcription factor GhMYB109 is required for cotton fiber development [J]. Genetics,2008,180: 811-820
    162. Qin H D, Guo W Z, Zhang Y M, et al. QTL mapping of yield and fiber traits based on a four-way cross population in Gossypium hirsutum L. [J]. Theor Appl Genet,2008,117: 883-894
    163. Rafalski J A. Application of single nucleotide polymorphisms in crop genetics [J]. Current Opinion in Plant Biology,2002a,5:94-100
    164. Rafalski J A. Novel genetic mapping tools in Plants:SNP and LD-based approaches [J]. Plant Science,2002b,162:329-333
    165. Ramsey J C and Berlin J D. Ultrastructure of early stages of cotton fiber differentiation [J]. Bot Gaze,1976,137(1):11-19
    166. Raven P, Evert R, Eichhorn S.1992. Biology of Plants [M]. New York, USA: Worth Publishers, Inc.
    167. Ruan Y L, Chourey P S, Delmer D P, et al. The differential expression of sucrose synthase in relation to diverse patterns of carbon portioning in developing cotton seed [J]. Plant Physiol, 1997,115:375-385
    168. Ruan Y L, Chourey P S. A fiberless seed mutation in cotton is associated with lack of fiber cell initiation in ovule epidermis and alterations in sucrose synthase expression and carbon partitioning in developing seeds [J]. Plant Physiol,1998,118:399-406
    169. Ruan Y L, Lewellyn D J, Furbank R T. The control of single-celled cotton fiber elongation by developmentally reversible gating of plasmadesmata and coordinated expression of sucrose and K+transporters and expansin [J]. Plant Cell,2001,13(1):47-63
    170. Ruan Y L, Llewellyn D J, Furbank R T et al. The delayed initiation and slow elongation of sucrose synthase expression and plasmodesmata gating in a lintless mutant of cotton [J]. J Exp Bot,2005,56,977-984
    171. Ruan Y L, Llewellyn D J, Furbank R T. Suppression of sucrose synthase gene expression represses cotton fiber cell initiation, elongation, and seed development [J]. Plant Cell,2003, 15:952-964
    172. Ruan Y L, Xu S M, White R, et al. Genotypic and developmental evidence for the role of plasmodesmatal regulation in cotton fiber elongation mediated by callose turnover [J]. Plant Physiology,2004,136:4104-4113
    173. Saha S, Zipf A. Genetic diversity and phylogenetic relationships in cot ton based on isozyme markers [J]. Crop Production,1998,1:79-93
    174. Schuber A M, Benedict C R, et al. Cotton fiber development kinetics of cell elongation and secondary wall thickening [J]. Crop Sci,1973,13:704-709
    175. Scott K D, Eggler P, Seaton G, et al. Analysis of SSRs derived from grape ESTs [J]. Theor Appl Genet,2000,100: 723-726
    176. Sela-Buurlage M B, Ponstein A S, Bres-Moemans S A. Only specific tobacco (Nicotiana tabacum) chitinases and (3-1,3-glucanases exhibit antifungal activity [J]. Plant Physiol,1993, 101(3):857-863
    177. Senchina D S, Rihard A, Cronn C, et al. Rate variation among nuelear genes and the age of polyploidy in Gossypium [J]. Mol Biol Evol,2003,20(4):633-643
    178. Shen X L, Guo W Z, Lu Q X, et al. Genetic mapping of quantitative trait loci for fiber quality and yield trait by RIL approach in Upland cotton [J]. Euphytica,2007,155:371-380
    179. Shen X L, Guo W Z, Yu J, et al. Molecular tagging of QTLs for fiber qualities in three diverse lines in Upland cotton using SSR marker [J]. Mol Breeding,2005,15:169-181
    180. Shen X, Zhang T, Guo W, et al. Mapping fiber and yield QLTs with main, epistatic, and QTL X environment interaction effects in recombinant inbred lines of Upland cotton [J]. Crop Sci, 2006,46:61-66
    181. Shi H Y, Wang X L, Li D D, et al. Molecular characterization of cotton 14-3-3L gene preferentially expressed during fiber elongation [J]. Journal of Genetics and Genomics,2007, 34(2):151-159
    182. Shimizu Y, Aotsuka S, Hasegawa O, et al. Changes in levels of mRNAs for cell wall-related enzymes in growing cotton fiber cells [J]. Plant Cell Physiol,1997,38:375-378
    183. Silflow C D, Oppenheimer D G, Kopczak S D. Plant tubulin genes: structure and differential expression during development [J]. Dev Genet,1987,8:435-460
    184. Skovested A. Cytological studies in cotton. II Two interspecific hybrids between Asiatic and new world cotton [J]. J Genet,1934,28:407-424
    185. Small R L, Ryburn J A, Cronn R C, et al. The tortoise and the hare: choosing between noncoding plastome and nuclear Adh sequences for phylogeny reconstruction in recently diverged plant group [J]. Am J Bot,1998,85:1301-1315
    186. Small R L, Ryburn J A, Wendel J F. Low levels of nucleotide diversity at homoelogous Adh loci in allotetraploid cotton(Gossypium L.) [J]. Mol Biol Evol,1999,16:491-501
    187. Small R L, Wendel J F. Copy number lability and evolutionary dynamics of the Adh gene family in diploid and tetraploid cotton(Gossypium) [J]. Genetics,2000a,155:1913-1925
    188. Small R L, Wendel J F. Differential evolutionary dynamics of duplicated paralogous Adh loci in alloteraploid cotton(Gossypium) [J]. Mol Biol Evol,2002,19: 597-607
    189. Small R L, Wendel J F. Phylogeny, duplication, and intraspecific variation of Adh sequences in new world diploid cotton(Gossypium L., Malvaceae) [J]. Mol Phylogenet Evol,2000b,16: 73-84
    190. Somers D J, Kirkpatrick R, Moniwa M, et al. Mining single-nucleotide polymorphisms from hexaploid wheat ESTs [J]. Genome,2003,49:431-437
    191. Song P, Allen R D. Identification of a cotton fiber-specific acyl carrier protein cDNA by differential display [J]. Biochim Biophy Acta,1997,1351(3):305-312
    192. Song Q J, Marek L F, Shoemaker R C, et al. A new integrated genetic linkage map of the soybean [J]. Theor Appl Genet,2004,109:122-128
    193. Song X L, Wang K, Guo W Z, et al. A comparison of genetic maps constructed from haploid and BC1 mapping populations from the same crossing between Gossypium hirsutum L. X G. barbadense L. [J]. Genome,2005,48:378-390
    194. Stephens S G. Evolution under domestication of the New World cottons (Gossypium spp.) [J]. Cienc Cult,1967,19:118-134
    195. Stephens S G. Native Hawaiian cotton (Gossypium tomentosum Nutt.) [J]. Pac Sci,1964,18: 385-398
    196. Stephens S G. Polynesian cottons [J]. Ann Mo Bot Gard,1963,50: 1-22
    197. Stewart JM. Fiber initiation on the cotton ovule (Gossypium hirsutem) [J]. Am J Bot,1975, 62:723-730
    198. Suo J, Liang X, Pu L, et al. Identification of GhMYB109 encoding a R2R3-MYB transcription factor that expressed specifically in fiber initials and elongating fibers of cotton (Gossypium hirsutum L) [J]. Biochim Biophys Acta,2003,1630:25-34.
    199. Syvanen A C. Aeeessing genetic variation:genotyping single nueleotide polymorphisms [J]. Nature Review Genetics,2001,2:930-942
    200. Taylor J S, Durkin J M H, Breden F. The death of a microsatellite: A phylogenetic perspective on microsatellite interruptions [J]. Mol Biol Evol,1999,16: 567-572
    201. Udall J A, Swanson J M, Nettleton D, et al. A novel approach for characterizing expression levels of genes duplicated by polyploidy [J]. Genetics,2006,173:1823-1827
    202. Van-Ooijen J W, Vorrips R E. JoinMapR Version 3.0: software for the calculation of genetic linkage maps, CPRO-DLO, Wageningen,2001
    203. Voigt J, Frank R.14-3-3 proteins are constituents of the insoluble glycoprotein framework of the chlamydomonas cell wall [J]. Plant Cell,2003,15(6):1399-1413
    204. Walsh J B. How often do duplicated genes evolve new fuctions? [J]. Genetics,1995,139: 421-428
    205. Wan C Y, Wilkins T A. Isolation of multiple cDNA encoding the vacuolar H+-ATPase subunit B from developing cotton (Gossypium hirsutum L.) [J]. Plant Physiol,1994,106:393-394
    206. Wang B H, Guo W Z, Zhu X F, et al. QTL mapping of fiber quality in an elite hybrid derived-RIL population of upland cotton [J]. Euphytica,2006,152:367-378
    207. Wang H H, Guo Y, Lv F N, et al. The essential role of GhPEL gene, encoding a pectate lyase in cell wall loosening by depolymerization of the de-esterified pectin during fiber elongation in cotton[J]. Plant Mol Biol,2010,72(4-5):397-406
    208. Wang H Y, Yu Y, Chen Z L. Functional characterization of Gossypium hirsutum profiling 1 gene (GhPFNl) in tobacco suspension cells. Characterization of in vivo functions of a cotton profilin gene [J]. Planta,2005,222,594-603
    209. Wang K, Song X L, Han Z G, et al. Complete assignment of the chromosomes of Gossypium hirsutum L. by translocation and fluorescence in situ hybridization mapping [J]. Theor Appl Genet,2006,113:73-80
    210. Wang L K, Niu X W, Lv Y H et al. Molecular cloning and localization of a novel cotton annexin gene expressed preferentially during fiber development [J]. Mol Biol Rep,2009, DOI 10.1007/s11033-009-9919-2
    211. Wang S, Wang J W, Yu N, et al. Control of plant trichome development by a cotton fiber MYB gene [J]. Plant Cell,2004,16(9):2323-2334
    212. Wang S, Zhao G H, Jia Y H, et al. Cloning and characterization of a CAP gene expressed in Gossypium arboretum fuzzless mutant [J]. Crop Sci,2008,48:2314-2320
    213.Wendel J F, Albert V A. Phylogenetics of the cotton genus(Gossypium):Character-state weighted parsimony analysis of chloroplast-DNA restriction site data and its systematic and biogeographic implications [J]. Syst Bot,1992,17: 115-143
    214. Wendel J F, Schnabel A, Seelanan T. An unusual ribosomal DNA sequence from Gossypium gossypioides reveals ancient, cryptic, intergenomic introgression [J]. Mol Phylogenet Evol, 1995a,4: 298-313
    215. Wendel J F, Schnabel A, Seelanan T. Bidirectional interlocus concerted evolution following allopolyploid speciation in cotton(Gossypium) [J]. Proc Natl Acad Sci USA,1995b,92: 280-284
    216. Wendel J F. New world tetraploid cottons contain Old World cytoplasm [J]. Proc Natl Acad Sci USA,1989,86:4132-4136
    217. Wllkins T A. Vacuolar H+-ATPase 69-kilodalton catalytic subunit cDNA from developing cotton(Gossypium hirsutum L.) ovules [J]. Plant Physiol,1993,102,679-680
    218. Wu Y, Meeley R B, Cosgrove D J. Analysis and expression of the alpha-expansin and beta-expansin gene families in maize [J]. Plant Physiol,2001,126: 222-232.
    219. Yang S, Cheung F, Lee J J, et al. Accumulation of genome-specific transcripts, transcription factors and phytohormonal regulators during early stages of fiber cell development in allotetraploid cotton [J]. Plant J,2006,47:761-775
    220. Yoder M D, Keen N T, Jurnak F. New domain motif: the structure of pectate lyase c, a secreted plant virulence factor [J]. Science,1993,260:1503-1507
    221. Zhang J, Guo W Z, Zhang T Z. Molecular linkage map of allotetraploid cotton(Gossypium hirsutum L.(?)Gossypium barbadense L.) with a haploid population [J]. Theor Appl Genet, 2002,105:1166-1174
    222. Zhang T Z, Yuan Y L, Yu J, et al. Molecular tagging of a major QTL for fiber strength in Upland cotton [J]. Theor Appl Genet,2003a,106:262-268
    223. Zhang W, Gianibelli M C, Ma W, et al. Identification of SNPs and development of allele-speciffic PCR markers for γ-gliadin alleles in Triticum aestivum [J]. Theor Appl Genet, 2003b,107: 130-138
    224. Zhang Z S, Hu M C, Zhang J, et al. Construction of a comprehensive PCR-based marker linkage map and QTL mapping for fiber quality traits in upland cotton (Gossypium hirsutum L.) [J]. Mol Breeding,2009,24:49-61
    225. Zhao X, Yang S, Hanson R E, et al. Dispersed repetitive DNA has spread to new genome since polyploid formation in cotton [J]. Genome Research,1998,8(5):479-492
    226. Zheng Z L, Nafisi M, Li H, et al. Plasma membrane-associated ROP10 small GTPase is a specific negative regulator of abscisic acid responses in Arabidopsis [J]. Plant Cell,2002,14: 2787-2797
    227. Zhu H Y, Zhang T Z, Yang L M, et al. EST-SSR sequences revealed the relationship of D-genome in diploid and tetraploid Species in Gossypium [J]. Plant Science,2009,176: 397-405
    228. Zhu Y L, Song Q J, Hyten S M, et al. Single-nucleotide polymorphism in soybean [J]. Genetics,2003,163:1123-1134

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700