损伤的前交叉韧带和内侧副韧带中的赖氨酰氧化酶和基质金属蛋白酶的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
前交叉韧带(Anterior cruciate ligament,ACL)和内侧副韧带(Medial collateralligament, MCL)是两个极容易受损伤的膝关节组织。损伤的内侧副韧带具有较强的自我修复能力,即使在韧带中部完全撕裂的情况下,在一个月的时间内也能恢复并保留原有韧带的功能。而损伤的前交叉韧带自我恢复能力极弱,精心的外科手术治疗也不能恢复其功能。前交叉韧带的损伤会引起膝关节的不稳定、膝关节疼痛,甚至还会导致膝关节内其他组织的进一步降解和骨性关节炎(Osteoarthritis,OA)的发生。
     韧带损伤后的修复过程,都会伴随损伤的细胞外基质的降解和新的细胞外基质的合成。基质金属蛋白酶家族(Matrix Metalloproteinases, MMPs)在这个降解与合成的动态平衡中起着重要的作用。与此同时,越来越多的证据表明赖氨酰氧化酶家族(Lysyl Oxidase Family, LOXs)与组织的损伤、修复有直接的联系。赖氨酰氧化酶催化胶原蛋白和弹性蛋白的赖氨酸肽残基使其变成乙醛肽,从而引起这些不稳定的乙醛肽之间的相互交叉连接,形成不溶的细胞外基质蛋白网。赖氨酰氧化酶的这种能力,使它担当起了细胞外基质生成、稳定和修复的职能。赖氨酰氧化酶家族的每个成员(LOX和LOXL-1,2,3,4)的这种促进胶原之间相互连接的缩合反应功能,到目前为止已经陆续得到证实。但是,赖氨酰氧化酶家族在前交叉韧带和内侧副韧带中的表达情况的研究还不为人们所知。
     韧带损伤后会出现炎症反应时期(Inflammatory phase)。炎症反应时期伴随各种细胞因子(诸如炎症因子TNF-α、IL-1β和生长因子TGF-β_1等)的产生,这些细胞因子作为炎症反应调节者参与韧带的修复。论文通过体外细胞实验,研究赖氨酰氧化酶家族和基质金属蛋白酶家族的表达。本文的主要研究内容和研究结果如下:
     首先,用力学拉伸模拟体内韧带细胞的损伤,检测损伤后LOX家族的表达。实验用等双轴拉伸装置,对ACL和MCL细胞同时施加不同程度的力学刺激(6%生理拉伸组;12%损伤拉伸组),结果显示,力学刺激上调LOX家族的表达,且12%的力学损伤使LOX家族的表达远高于6%的生理拉伸。6%生理拉伸时,LOX家族成员在ACL和MCL细胞中都呈上调趋势,但LOX和LOXL-4在ACL中的表达高于MCL,LOXL-3在MCL中的表达高于ACL,而LOXL-1和LOXL-2则有一定的波动性。12%力学损伤时,LOX家族在MCL细胞中的高表达均明显高于在ACL中的表达。
     其次,在外源性转化生长因子TGF-β_1、肿瘤坏死因子TNF-α、白介素-1beta(IL-1β)作用下,考察正常ACL和MCL细胞中LOX家族的差异性表达。结果显示,TGF-β_1和IL-1β均上调LOX家族的表达,且LOX家族在MCL细胞中的表达总体上高于在ACL中的表达。TGF-β_1引起LOX家族在两种分细胞中的高表达是一个持续的过程;而IL-1β上调LOX家族则呈剂量依赖性。TNF-α抑制LOX家族在两种细胞中的表达,且在ACL细胞中的抑制效果比MCL明显。
     再次,在损伤的ACL和MCL细胞中(即12%力学拉伸实现细胞损伤),考察TGF-β_1、TNF-α、和IL-1β作用下LOX家族的差异性表达。结果发现,TGF-β_1和IL-1β均增强了LOX家族在损伤的ACL和MCL中的表达,且TGF-β_1的作用效果强于IL-1β。TGF-β_1引起损伤的ACL和MCL细胞中LOXL-1,3和4的高表达强于TGF-β_1对正常细胞的刺激,而LOX和LOXL-2弱于TGF-β_1对正常细胞的刺激。IL-1β上调正常ACL细胞中LOX家族的表达高于损伤的ACL细胞,而损伤的MCL中IL-1β上调LOX家族远高于正常的MCL。TNF-α促使损伤的ACL和MCL中LOX家族(LOXL-2除外)出现峰值后迅速下降,作用24小时后基本低于正常对照组。LOXL-2在损伤的细胞中受TNF-α刺激后一直呈下降趋势,但弱于TNF-α对正常细胞的下调。
     接着,在实验室已有研究的基础上,在损伤的ACL和MCL细胞中,考察MMP家族部分成员受TGF-β_1、TNF-α、IL-1β作用后的差异性表达。结果显示,三种因子都高表达MMP-1,2,3和12,且MMPs在ACL中的表达均高于在MCL中的表达。炎症因子TNF-α和IL-1β上调了MMPs的基因表达,且TNF-α引起的上调比IL-1β高;而酶谱检测MMP-2蛋白时,发现IL-1β引起的MMP-2活性带的表达比TNF-α强。生长因子TGF-β_1同样引起MMP-1,2,3和12在损伤的ACL和MCL中的高表达,且ACL中的表达均比MCL中高。
     接着,为了进一步模拟体内环境,实验用滑膜细胞和前交叉韧带细胞实现共培养,考察共培养条件下,损伤的前交叉韧带中MMP-2的蛋白表达。结果显示,共培养促进MMP-2在ACL细胞中的表达,但共培养引起的MMP-2高表达低于单损伤条件引起的MMP-2高表达,而共培养下损伤的ACL中MMP-2的高表达强于共培养下正常ACL的表达或单培养下损伤ACL中的表达。
     最后,实验采用MMP抑制剂作用于共培养下损伤的前交叉韧带细胞(或损伤的滑膜细胞),结果发现,6种抑制剂均不同程度下调MMP-2在损伤的前交叉韧带细胞或滑膜细胞中的表达,其中以通路NF-kappa B的抑制剂Bay11-7082和AP-1的抑制剂Curcumin效果最为明显,MMP-2的活化形式被抑制,仅存在少量MMP-2的酶原形式的表达。
     综合以上研究结果,我们证实,与MCL相比,生长因子TGF-β_1和炎症因子TNF-α、IL-1β均引起正常/损伤的ACL细胞表达相对较低的LOX家族,使损伤后的细胞外基质朝着不利于修复的方面发展,我们推断这可能是ACL不能自我修复的原因之一;同时三种因子均引起损伤的ACL中MMPs的高表达远超过损伤的MCL,过高表达的MMPs使损伤后的细胞外基质朝着有利于降解的方面发展,我们推断这可能是ACL不能自我修复的另一个原因。
     研究LOX家族在损伤ACL和MCL中的表达,可以为临床上韧带创伤的治疗提供定量的参考依据。增强LOX家族在损伤的韧带细胞中的作用,也可能为ACL的修复提供一种方法;同时共培养实现更深层次体内环境的模拟,在共培养下,多种抑制剂均能下调损伤的ACL中MMPs的表达,这可能为ACL治疗提供一种思路。
The anterior cruciate ligament (ACL) and medial collateral ligament (MCL) aretwo commonly injured areas of knee joints. In general, the MCL has the capacity toself-heal and restore the joint function of a completely ruptured mid-substance withinone month, and in most cases, without the need for surgery. On the other hand, the ACLdoes not heal satisfactorily, even if the surgical repair is attempted, and ACL injuriesoften lead to knee instability, pain, and even progressive degeneration of other jointtissues and Osteoarthritis (OA).
     During lgament healing process, a fine balance between the synthesis ofextracellular matrix (ECM) and its degradation by a large family of enzymes, known asmatrix metalloproteinases (MMPs) of which is well known that the most important roleis that they could cleave one or more of the components of the extracellular matrix ofligaments, is required to maintain the structural integrity of healing tissue; Meanwhile,more and more evidences have inferred the relationship between lysyl oxidase family(LOXs) of which has the capability of oxidizing peptidyl lysine to peptidyl aldehyderesidues within collagen and elastin, thus initiating formation of the covalentcross-linkages that insolubilize these extracellular proteins, and facilitates the formationand repair of extracellular matrix (ECM), and wound healing. The role of each familymember towards ECM cross-linkage has been consecutively identified. However, thevariations in expression of this LOX family in the normal and injured anterior cruciateligament (ACL) are not fully known.
     Inflammatory phase accompany with the ligament injury. In the inflammatoryphase, many factors such as transforming growth factor-beta1(TGF-β_1), tumor necrosisfactor alpha (TNF-α) and interleukin-1beta (IL-1β) involved in mediating the healingprocess. We detected differential expressions of lysyl oxidases and matrixmetalloproteinases in injured ACL-MCL model in vitro. The main research and resultswere as follows:
     Firstly, we used equi-biaxial stretch system to mimic ligament injury in vivo anddetected the lysyl oxidases expressions in injured ACL and MCL (6%stretchrepresentative of physiological state and12%stretch representative of injurious state).The results had shown that mechanical stretch up-regulated the expressions of LOXs,moreover,12%stretch-induced up-regulations of LOXs were much higher than6% stretch. In physiological state, LOX and LOXL-4were expressed higher in ACL thanthese in MCL fibroblasts, while LOXL-3in MCL was higher compared with in ACL,the other two members showed fluctuated. In injurious state, LOXs in MCL were moreprominent than those in ACL fibroblasts.
     Secondly, we detected the differential expressions of lysyl oxidases in normal ACLand MCL fibroblasts induced by TGF-β_1, TNF-α and IL-1β. The results had shown thatboth TGF-β_1and IL-1β could increase the expressions of lysyl oxidases in normal ACLand MCL fibroblasts, and the two factors enhaced LOXs in MCL were much higherthan in ACL. The TGF-β_1-induced-increases of LOXs showed persistent in both ACLand MCL, while IL-1β-induced-increases of LOXs showed a dose-dependent increase.TNF-α down-regulated expressions of lysyl oxidases, furthermore, decreases of LOXsin ACL were more prominent in ACL than in MCL fibroblasts.
     Thirdly, we detected the differential expressions of lysyl oxidases in ACL andMCL fibroblasts after12%stretch injury induced by TGF-β_1, TNF-α and IL-1β. Wefound that TGF-β_1and IL-1β enhaced different expressions of LOXs in both ACL andMCL after12%stretch injury, moreover, the effects of TGF-β_1on injured fibroblastswere much stronger than IL-1β. LOXL-1,3and4induced by TGF-β_1were much higherin injured fibroblasts than normal cells, LOX and LOXL-2relatively lower in injuredfibroblast than normal ones. IL-1β induced much higher expressions of LOXs in normalACL compared with the injured cells, while in MCL, IL-1β induced much higherexpressions of LOXs in injured MCL than normal cells. TNF-α induced value peaks inLOXs (except LOXL-2) at2hour after treatments, and then immediatelydown-regulated blew non-treated normal controls within24hours. The expression ofTNF-α-induced LOXL-2in injured fibroblasts was constantly down-regulated, but thedown-regulation was somewhat weaker than TNF-α-induced LOXL-2in normal cells.
     Fourthly, based on the previous data in our lab, we detected the expressions ofMMPs in ACL and MCL after12%stretch injury induced by TGF-β_1, TNF-α and IL-1β.We found these three factors all increased the expressions of MMP-1,2,3, and12inboth ACL and MCL fibroblasts. Inflammatory factors TNF-α and IL-1β bothup-regulated gene expressions of MMPs, moreover, the effect of TNF-α was strongerthan IL-1β. But protein expression of MMP-2by zymography showed the active formof MMP-2was much stronger induced by IL-1β than TNF-α. TGF-β_1also up-regulatedMMP-1,2,3, and12in both ACL and MCL, but TGF-β_1-induced-MMPs in ACL werehigher compared with in MCL.
     Fifthly, to mimic micro-envirenment, we established coculture system by transwellbwtween ACL fibroblasts and synovial cells. We found that coculture promoted MMP-2expressions. But coculture-induced increase of MMP-2was somewhat lower comparedwith high expression of MMP-2in injured ACL. We combined12%injury stretch andcoculture, found the expression of MMP-2was higher than single coculture or singleinjury.
     Finally, to resovle the high degradation induced by high expression of MMP-2ininjured ACL, we used signal pathway inhibitors aiming to decrease the high expressionof MMP-2induced by injury. Under coculutre system, we found all6inhibitors in theexperiments could reduce MMP-2expression, especially Bay11-7082, inhibitor ofNF-kappa B, and Curcumin, inhibitor of AP-1, which almostly inhibited the active formof MMP-2, and restore parts of the pro-form.
     In summary, we comfirmed that TGF-β_1, TNF-α, and IL-1β could inducedrelatively lower expressions of LOXs in normal and injured ACL fibroblasts comparedwith MCL, which mean to count against the repair of injured ligament. We inferred thatrelatively low expressions of LOXs might be on of the reseans why ACL could not selfheal. On the other hand, the three factors respectively promoted high MMPs in injuredACL compared with MCL fibroblasts, which mean to trend to degradation. We inferredthat high expressions of MMPs might be another reason why injured ACL had poorself-healing.
     The results of LOXs expressions in normal/injured ACL and MCL fibroblastsmight provide the basal data for cure of ligament injury in clinical trial. To enhance theexpressions of LOXs in injured ACL might provide a novel view for ACL healing;meanwhile, to reduce the expressions of MMPs in injured ACL by inhibitors undermimicked micro-envirenment might provide another therapeutial potential of injuredACL ligament.
引文
[1] Passler H H. History of anterior cruciate ligament surgery: old and new facts [J].Arthroskopie.1997,10:222-228.
    [2] Dandy DJ. Arthroskopic Surgery of the knee. Churchill Livingstone Edinburgh London [M].1981:67-68.
    [3] Yagi M., Wong EK., Kanamori A., Debski RE, Fu FH, Woo SL-Y. Biomechanical analysis ofan anatomic anterior cruciate ligament reconstruction [J]. Am J Sport Med.2002,30(5):660-666.
    [4] Birk DE, Mayne R. Localization of collagen typesⅠ, Ⅲ and Ⅴ during tendon development.Changes in collagen types I and III are correlated with changes in fibril diameter [J]. Eur JCell Biol.1997,72(4):352-361.
    [5] Linsenmayer TF, Gibney E, Igoe F, Gordon MK, Fitch JM, Fessler LI, Birk DE. TypeⅤcollagen: molecular structure and fibrillar organization of the chicken alpha1(V)NH2-terminal domain, a putative regulator of corneal fibrillogenesis [J]. J Cell Biol.1993,121(5):1181-1189.
    [6] Fukuta S, Oyama M, Kavalkovich K, Fu FH, Niyibizi C. Identification of typesⅡ, Ⅸ andⅩcollagens at the insertion site of the bovine achilles tendon [J]. Matrix Biol.1998,17(1):65-73.
    [7] Niyibizi C, Sagarrigo Visconti C, Gibson G, Kavalkovich K. Identification andimmunolocalization of type Ⅹ collagen at the ligament-bone interface [J]. Biochem BiophRes Co.1996,222(2):584-589.
    [8] Sagarriga Visconti C, Kavalkovich K, Wu J, Niyibizi C. Biochemical analysis of collagens atthe ligament-bone interface reveals presence of cartilage-specific collagens [J]. ArchBiochem Biophys.1996,328(1):135-142.
    [9]尚平,高勇.交叉韧带外科发展史略[J].中华医史杂志,2002,卷32,期4.
    [10] Miyasaka KC, Daniel DM, Stone ML, Hirshman P. The incidence of knee ligament injuriesin the general population [J]. Am J Knee Surg.1991,4:3-8.
    [11] Bruesch M, Holzach P. Epidemiology, treatment and follow-up of acute ligamentous kneeinjuries in Alpine skiing [J]. Z Unfallchir Versicherungsmed.1993,(Suppl)1:144-155.
    [12] Anderson AF, Snyder RB, Lipscomb Jr AB. Anterior cruciate ligament reconstruction: Aprospective randomized study of three surgical methods [J]. Am J Sport Med.2001,29(3):272-279.
    [13] Arendt E, Dick R. Knee injury patterns among men and women in collegiate basketball andsoccer: NCAA data and review of literature [J]. Am J Sport Med.1995,23(6):694-701.
    [14] Powell JW, Barber-Foss KD. Sex-related injury patterns among selected high school sports[J]. Am J Sport Med.2000,28(3):385-391.
    [15] Terry Canal.坎贝尔骨科学[M].10版.山东:山东科学技术出版社,2005:2168.
    [16] Spindler KP, Murray MM, Detwiler KB, Tarter JT, Dawson JM, Nanney LB, Davidson JM.The biomechanical response to doses of TGF-beat2in the healing rabbit medial collateralligament [J]. J Orthop Res.2003,21(2):245-249.
    [17]朱少兵.膝关节前交叉韧带损伤治疗进展[J].医学综述.2008,卷14,期13.
    [18] Hirshman HP, Daniel DM, Miyasaka K. The fate of the un-operated knee ligament injuries [J].In: Danil, DAW, O’Connor J.(Eds.), Knee Ligaments: Structure, Function, Injury and Repair.Raven Press, New York.1990, pp:481-503.
    [19] Nishimori M, Sumen Y, Sakaridani K, Nakamura M. An evaluation of reconstructed ACLimpingement on PCL using MRI [J]. Magn Reson Imaging.2007,25(5):722-726.
    [20] Liu SH, Osti L, Dorey F, Yao L. Anterior cruciate ligament tear: A new diagnostic index onmagnetic resonance imaging [J]. Clin Orthop Relat R.1994,302:147-150.
    [21] Mink J H, Levy T, Crues III JV. Tears of the anterior cruciate ligament and menisci of theknee: MR imaging evaluation [J]. Radiology.1988,167:769-774.
    [22] Siwinski D, Ziemianski A. Value of posterior cruciate ligament index in the diagnosis ofanterior cruciate ligament injuries [J]. Arch Orthop Trauma Surg.1998,118(1-2):116-118.
    [23] Woo SLY, Abramowitch SD, Kilger R, Liang R. Biomechanics of knee ligaments: injury,healing, and repair [J]. J Biomech.2006,39(1):1-20.
    [24] Jokl P, Kaplan N, Stovell P, Keggi K. Non-operative treatment of severe injuries to the medialand anterior cruciate ligaments of the knee [J]. J Bone Joint Surg Am.1984,66(5):741-744.
    [25] Kannus P. Long-term results of conservatively treated medial collateral ligament injuries ofthe knee joint [J]. Clin Orthop Relat R.1988,226:103-112.
    [26] Loitz-Ramage BJ, Frank CB, Shrive NG. Injury size affects long-term strength of the rabbitmedial collateral ligament [J]. Clin Orthop Relat R.1997,337:272-280.
    [27] Weiss JA, Woo SL-Y, Ohland KJ, Horibe S, Newton PO. Evaluation of a new injury model tostudy medial collateral ligament healing: primary repair versus non-operative treatment [J]. JOrthop Res.1991,9(4):516-528.
    [28]李建华.膝关节前交叉韧带损伤[J].中国临床康复,2004.卷8,期5.
    [29] Woo SLY, Horibe S, Ohland KJ, Ameil D. The response of ligaments to injury: healing of thecollateral ligaments. Knee ligaments: structure, function, injury, and repair [J]. New York:Raven Press.1990.
    [30] Lipscomb Jr AB, Anderson AF, Norwig ED, Hovis WD, Brown DL. Isolated posteriorcruciate ligament reconstruction: Long-term results [J]. Am J Sport Med.1993,21(4):490-496.
    [31]吴波.前交叉韧带解剖和生物力学特性[J].中国矫形外科杂志,2006,卷14,期22.
    [32]王旭.前交叉韧带本体感觉与膝关节功能[J].中国矫形外科杂志,2002,卷9,期4:398-400.
    [33] Bokoch GM, Katada T, Northup JK, Hewlett EL, Gilman AG. Identification of thepredominant substrate for ADP-ribosylation by islet activating protein [J]. J Biol Chem.1983,258:2072-2075.
    [34] Marshak DR, Lukas TJ, Watterson DM. Drug-protein interactions:Binding of chlorpromazineto calmodulin, calmodulin fragments and related calcium binding proteins [J].Biochemistry-US.1985,24:144-150.
    [35] Zhou D, Lee HS, Villarreal F, Teng A, Lu E, Reynolds S, Qin C, Smith J, Sung KLP.Differential MMP-2activity of ligament cells under mechanical stretch injury: An in vitrostudy on human ACL and MCL fibroblasts [J]. J Orthop Res.2005,23:949-957.
    [36] Distler JHW, Jungel A, Huber LC, Seemayer CA, Reich CF, Gay RE, Michel BA, Fontana A,Gay S, Pisetsky DS, Distler O. The induction of matrix metalloproteinase and cytokineexpression in synovial fibroblasts stimulated with immune cell microparticles [J]. Proc NatlAcad Sci USA.2005,102(8):2892-2897.
    [37] Tang ZY, Yang L, Wang YQ, Xue RY, Zhang J, Huang W, Chen PC, Sung KLP. Contributionsof Different Intraarticular Tissues to the Acute Phase Elevation of Synovial Fluid MMP-2following Rat ACL Rupture [J]. J Orthop Res.2008,27(2):243-248.
    [38] Marti HP. The role of matrix metalloproteinases in the activation of mesangial cells [J].Transpl Immunol.2002,9:99-100.
    [39] Woessner JF, Nagase H. Matrix metalloproteinases and TIMPs [J]. Oxford New York, US:University Press, Inc.2000, pp:109-135.
    [40] Marcus J. Foos, John R. Hickox, Paul G. Mansour, James R. Slauterbeck, Daniek M. Hardy.Expression of matrix metalloprotease and tissueinhibitor of metalloprotease genes inhumananterior cruciate ligament [J]. J Orthop Res.2001,19:642-649.
    [41] Lenz O, Elliot SJ, Stetler-Stevenson WG. Matrix metalloproteinases in renal development anddisease [J]. J Am Soc Nephrol.2000,11:574-581.
    [42] Skotnicki JS, Zask A, Nelson FC, Albright JD, Levin JI. Design and synthetic considerationsof matrix metalloproteinase inhibitors [J]. Ann NY Acad Sci.1999,878:61-72.
    [43] Lynda I, Smith-Mungo and Kagan HM. Lysyl Oxidase: Properties, Regulation and MultipleFunctions in Biology [J]. Matrix Biol.1998,16:387-398.
    [44] Giampuzzi M, Botti G, Di Duca M, Arata L, Ghiggeri G, Gusmano R, Ravazzolo R, DiDonato A. Lysyl oxidase activates the transcription activity of human collagene Ⅲ promoter:Possible involvement of Kuantigen [J]. J Biol Chem,2000,275(46):3634l-36349.
    [45] Kushner L, Mathrubutham M, Burney T, Greenwald R, Badlani G. Excretion of collagenderived peptides is increased in women with stress urinary incontinence [J]. NeurourolUrodyn.2004,23(3):198-203.
    [46] Kim Y, Boyd CD, Csiszar K. A new gene with sequence and structural similarity to the geneencoding human lysyl oxidase [J]. J Biol Chem.1995,270(13):7176-7182.
    [47] Saito H, Papaconstantinou J, Sato H, Goldstein S. Regulation of a novel gene encoding alysyl oxidase-related protein in cellular adhesion and senescence [J]. J Biol Chem.1997,272(13):8157-8160.
    [48] Jang W, Hua A, Spilson SV, Miller W, Roe BA, Meisler MH. Comparative sequence ofhuman and mouse BAC clones from the mnd2region of chromosome2p13[J]. Genome Res.1999,9(1):53-61.
    [49] Maki JM, Tikkanen H, Kivirikko KI. Cloning and characterization of a fifth human lysyloxidase isoenzyme: the third member of the lysyl oxidase-related subfamily with fourscavenger receptor cysteine-rich domains [J]. Matrix Biol.2001,20(7):493-496.
    [50] Jourdan-Le Saux C, Tomsche A, Ujfalusi A, Jia L, Csiszar K. Central nervous system, uterus,heart, and leukocyte expression of the LOXL-3gene, encoding a novel lsysl oxidase-likeprotein [J]. Genomics.2001,74:211-218.
    [51] Asuncion L, Fogelgren B, Fong KS, Fong SF, Kim Y, Csiszar K. A novel human lysyloxidase-like gene (LOXL4) on chromosome10q24has an altered scavenger receptorcysteine rich domain [J]. Matrix Biol.2004,20:487-491.
    [52] Hohenester E, Sasaki T, Timpl R. Crystal structure of a scavenger receptor cysteine-richdomain sheds light on an ancient superfamily [J]. Nat Struct Biol,1999,6:228-232.
    [53] Jourdan-Le Saux C, Tronecker H, Bogic L, Bryant-Greenwood GD, Boyd CD, Csiszar K.The LOXL2gene encodes a new lysyl oxidase-like protein and is expressed at high levels inreproductive tissues [J]. J Biol Chem.1999,274:12939-12944.
    [54] Murawaki Y, Kusakabe Y, Hirayama C. Serum lysyl oxidase activit in chronic liver disease incomparison with serum levels of proly hydroxylase and laminin [J]. Hepatology.1991,14:1167-1173.
    [55] Kim YH, Peyrol S, So CK, Boyd CD, Csiszar K. Co-expression of the lysyl oxidase-likegene (LOXL) and the gene encoding type III procollagen in induced liver fibrosis [J]. J CellBiochem.1999,72:181-188.
    [56] Aeschlimann D, Thomazy V. Protein crosslinking in assembly and remodelling ofextracellular matrices: the role of transglutaminases [J]. Connect Tissue Res.2000,41:1-27.
    [57] Kagan HM, Li W. Lysyl oxidase: properties, specificity, and biological roles inside andoutside of the cell [J]. J Cell Biochem.2003,88:660-672.
    [58] Kagan HM. Characterization and regulation of lysyl oxidase. Biology of extracellular matrix[J], Orlando, FL: Academic Press.1986, pp:321-398.
    [59] Yu QL, Horak K, Larson DF. Role of T Lymphocytes in Hypertension-Induced CardiacExtracellular Matrix Remodeling [J]. Hypertension.2006,48(1):98-104.
    [60] Kim DJ, Lee DC, Yang SJ, Lee JJ, Bae EM, Kim DM, Min SH, Kim SJ, Kang DC, Sang BC,Myung PK, Park KC, Young I. Lysyl oxidase like4, a novel target gene of TGF-beta1signaling, can negatively regulate TGF-beta1-induced cell motility in PLC/PRF/5hepatomacells [J]. Biochemical and Biophysical Research Communications,2008,373(4):521-527.
    [61] Young-Mi Kim, Eun-Cheol Kim, Youngho Kim. The human lysyl oxidase-like2proteinfunctions as an amine oxidase toward collagen and elastin [J]. Mol Biol Rep.2011,38(1):145-149.
    [62] Mamoru Yoshida and Katsuyuki Fujii. Differentces in cellular properties and responses togrowth factors between human ACL and MCL cells [J]. J Orthop Sci.1999,4:293-298.
    [63] Woo SL-Y, Newton PO, MacKenna DA, Lyon RM. A comparative evaluation of themechanical properties of the rabbit medial collateral and anterior cruciate ligaments [J]. JBiomech.1992,25(4):377-386.
    [64] Savio L-Y Woo, Christopher Niyibizi, John Matyas, Karl Kavalkovich, ColleenWeaver-Green and Ross J Fox. Medial collateral knee ligament healing: Combined medialcollateral and anterior cruciate ligament injuries studied in rabbits [J]. Acta Orthop Scand,1997,68(2):142-148.
    [65] Frank C, Woo SL-Y, Amiel D, Harwood F, Gomez M. Akeson W. Medial collateral ligamenthealing. A multi-disciplinary assessment in rabbits [J]. Am J Sport Med.1983,11(6):379-389.
    [66] Niyibizi C, Kavalkovich K, Yamaji T, Woo SL-Y. Type V collagen is increased during rabbitmedial collateral ligament healing [J]. Knee Surg Sport Tr A.2000,8(5):281-285.
    [67] Jiang Q, Lin G, Qu M, Cui G, Teng H. Cartilage-like phenomenon in the anterior cruciateligamenta [J]. Chin Med Sci J.2001,16(2):103-106.
    [68] Murray MM, Martin SD, Martin TL, Spector M. Histological changes in the human anteriorcruciate ligament after rupture [J]. J Bone Joint Surg Am.2000,82-A(10):1387-1397.
    [69] Datto MB, Li Y, Panus JF, Howe DJ, Xiong Y, Wang XF. Transforming growth factor betainduces the cyclin-dependent kinase inhibitor p21through a p53-independent mechanism [J].Proc Natl Acad Sci.1995,92:5545-5549.
    [70] Hannon GJ, Beach D. p12INK4B is a potential effector of TGF-beta-induced cell cyclearrest [J]. Nature.1994,371:257–261.
    [71] Yue JB, Mulder KM. Transforming growth factor-beta signal transduction in epithelial cells[J]. Pharmacol Ther.2001,91:1-34.
    [72] Dong M, Blobe GC. Role of transforming growth factor-beta in hematologic malignancies [J].Blood.2006,107:4589-4596.
    [73] Lee J, Harwood FL, Akeson WH, Amiel D. Growth factor expression in healing rabbit medialcollateral and anterior cruciate ligaments [J]. Iowa Orthop J.1998,18:19-25.
    [74] Marui T, Niyibizi C, Georgescu HI, Cao M, Kavalkovich KW, Levine RE, Woo SL-Y. Theeffect of growth factors on matrix synthesis by ligament fibroblasts [J]. J Orthop Res.1997,15:18-23.
    [75] Goto Y, Uchio-Yamada K, Anan S, Yamamoto Y, Ogura A, Manabe N. Transforming growthfactor-β1mediated up-regulation of lysyl oxidase in the kidneys of hereditary nephroticmouse with chronic renal fibrosis [J]. Virchows Arch.2005,447:859-868.
    [76] Shanley CJ, GharaeeKermani M, Sarkar R, Welling TH, Kriegel A, Ford JW, Stanley JC,Phan SH. Transforming growth factor-beta1increases lysyl oxidase enzyme activity andmRNA in rat aortic smooth muscle cells [J]. J Vasc Surg.1995,25(3):446-451.
    [77] Roy R, Polgar P, Wang YY, Goldstein RH, Taylor L, Kagan HM. Regulation of LysylOxidase and Cyclooxygenase Expression in Human Lung Fibroblasts: Interactions AmongTGF-β, IL-1β, and Prostaglandin E [J]. J Cell Biochem.1996,62:411-417.
    [78] Koslowski R, Seidel D, Kuhlisch E, Knoch KP. Evidence for the involvement of TGF-β andPDGF in the regulation of prolyl4-hydroxylase and lysyloxidase in cultured rat lungfibroblasts [J]. Exp Toxic Pathol.2003, Vol55:257-264.
    [79] Murphy P, Frank CB, Hart DA. The cell biology of ligaments and ligament healing. In:Jackson D, Arnoczky S, Woo S, Frank C, Simon T, editors. The Anterior Cruciate Ligament:Current and Future Concepts [J]. New York: Raven Press.1993, pp:165-77.
    [80] Mauviel A. Cytokine regulation of metalloproteinase gene expression [J]. J Cell Biochem.1993,53:288-295.
    [81] Brenner DA, Ohara M, Angel P, Chojkier M, Karin M. Prolonged activation of jun andcollagenase genes by tumour necrosis factor-alpha [J]. Nature.1989,16:661-663.
    [82] Takei I, Takagi M, Santavirta S, Ida H, Ishii M, Ogino T, Ainola M, Konttinen YT. Messengerribonucleic acid expression of matrix metalloproteinases in bone-implant tissues of looseartificial hip joints [J]. J Biomed Mater Res.2000,15(4):613-620.
    [83] Cameron ML, Fu FH, Paessler HH, Schneider M, Evans CH. Synovial fluid cytokineconcentrations as possible prognostic indicators in the ACL-deficient knee [J]. Knee SurgSport Tr A.1994,2:38-44.
    [84] Warren RF, Marshall JL. Injuries of the anterior cruciate and medial collateral ligament of theknee. A long-term follow-up of86cases-PartⅡ[J]. Clin Orthop,1978, Vol136:198-211.
    [85] Majima T, Lo IKY, Randle JA, Marchuk LL, Shrive NG, Frank CB, Hart DA. ACLtransection influences mRNA levels for collagen typeⅠ and TNF-alpha in MCL scar [J]. JOrthop Res.2002,20:520-525.
    [86] Rodriguez C, Alcudia JF, Martinez-Gonzalez J, Raposo B, Navarro MA, Badimon L. Lysyloxidase (LOX) down-regulation by TNF-alpha: A new mechanism underlyingTNF-α-induced endothelial dysfunction [J]. Atherosclerosis.2008,196(2):558-564.
    [87] Pischon N, Darbois LM, Palamakumbura AH, Kessler E, Trackman PC. Regulation ofCollagen Deposition and Lysyl Oxidase by Tumor Necrosis Factor-α in Osteoblasts [J]. J BiolChem.2004,279(29):30060-30065.
    [88] Dye SF, Cannon WD. Anatomy and biomechanics of the anterior cruciate ligament [J]. ClinSports Med.1988,7:715-725.
    [89] Murray MM, Spindler KP, Ballard P, Welch TP, Zurakowski D, Nanney LB. Enhancedhistologic repair anterior cruciate ligament plasma scaffold [J]. J Orthop Res.2007,25(8):1007-1017.
    [90] Jomha NM, Borton DC, Clingeleffer AJ, Pinczewski LA. Long term osteoarthritic changes inanterior cruciate ligament reconstructed knees [J]. Clin Orthop Related R.1999,358:188-193.
    [91] Eijk FV, Sans DBF, Riesle J, Willems CA, Verbout AJ, Dhert WJA. Tissue engineering ofligaments: A comparison of bone marrow stromal cells, anterior cruciate ligament, and skinfibroblasts as cell source [J]. Tissue Eng.2004,10:893-901.
    [92] Kahari VM, SaarialhoKere U. Matrix metalloproteinases in skin [J]. Exp Dermatol.1997,6(5):199-213.
    [93] Shapiro SD. Matrix metalloproteinase degradation of extracellular matrix: biologicalconsequences [J]. Curr Opin Cell Biol.1998,10:602-608.
    [94] Streuli C. Extracellular matrix remodelling and cellular differentiation [J]. Curr Opin CellBiol.1999,11(5):634-640.
    [95] Steffensen B, Hakkinen L, Larjava H. Proteolytic events of wound-healing-coordinatedinteractions among matrix metalloproteinases (MMPs), integrins, and extracellular matrixmolecules [J]. Crit Rev Oral Biol Med.2001,12(5):373-398.
    [96] Dobaczewski Marcin, Gonzalez-Quesada Carlos, Frangogiannis Nikolaos G. Theextracellular matrix as a modulator of the inflammatory and reparative response followingmyocardial infarction [J]. J Mol Cell Cardiol.2010,48(3):504–511.
    [97] Kazunori Irie, Eiji Uchiyama, Hiroshi Iwaso. Intraarticular inflammatory cytokines in acuteanterior cruciate ligament injured knee [J]. The Knee.2003,10(1):93-96.
    [98] Birkedal Hansen H. Role of cytokines and inflammatory mediators in tissue destruction [J]. JPeriodontal Res.1993,28(6):500-510.
    [99] BujakM, Frangogiannis NG. The role of TGF-beta signaling inmyocardial infarction andcardiac remodeling [J]. Cardiovasc Res.2007,74:184-95.
    [100] Lerman RH, Apstein CS, Kagan HM, Osmers EL, Chichester CO, Vogel WM, Connelly CM,Steffee WP. Myocardial healing and repair after experimental infarction in the rabbit [J]. CircRes.1983,53(3):378-388.
    [101] Zhenyu Tang, Li Yang, Ruyue Xue, Jin Zhang, Yequan Wang, Peter CY Chen, KL Paul Sung.Differential expression of matrix metalloproteinases and tissue inhibitors ofmetalloproteinases in anterior cruciate ligament and medial collateral ligament fibroblastsafter a mechanical injury: Involvement of the p65subunit of NF-kappa B [J]. Wound RepReg.2009,17(5):709-716.
    [102] Ruyue Xue, Li Yang, Zhenyu Tang, Jin Zhang, Yequan Wang, Sung KL Paul. MMPs andTIMPs expression and the anterior cruciate ligamnent repair [J]. iCBBE.2009, pp:1-4.
    [103] Jin Zhang, Li yang, Zhenyu tang, Ruyue Xue, Yequan Wang, Ziwei Luo, Wei Huang, KLPaul Sung. Expression of MMPs and TIMPs Family in Human ACL and MCL Fibroblasts [J].Connect Tissue Res.2009,50(1):7-13.
    [104] Wang YQ, Tang ZY, Xue RY, Singh GK, Lv YG, Shi KN, Cai KY, Deng LH, Yang L. TGF-β1promoted MMP-2mediated wound healing of anterior cruciate ligament fibroblasts throughNF-κβ [J]. Connet Tissue Res.2011,52(3):218-225.
    [105] Wang YQ, Tang ZY, Xue RY, Singh GK, Shi KN, Lv YG, Yang L. Combined Effects ofTNF-alpha, IL-1beta, and HIF-1alpha on MMP-2Production in ACL Fibroblasts underMechanical Stretch: An In Vitro Study [J]. J Orthorp Res.2011,29(7):1008-1014.
    [106] Emonard H, Grimaud JA. Matrix metalloproteinases.A review [J]. Cell Mol Biol.1990,36:131-153.
    [107] Visse R, Nagase H. Matrix Metalloproteinases and Tissue Inhibitors of Metalloproteinases:Structure, Function, and Biochemistry [J]. Circ Res.2003,92(8):827-839.
    [108] Allan JA, Docherty AJP, Barker PJ, Huskisson NS, Reynolds JJ, Murphy G. Binding ofgelatinases A and B to type-I collagen and other matrix components [J]. Biochem J.1995,309:299-306.
    [109] Creemers LB, Jansen IDC, Docherty AJP, Reynolds JJ, Beertsen W, Everts V. Gelatinase A(MMP-2) and cysteine proteinases are essential for the degradation of collagen in softconnective tissue [J]. Matrix Biol.1998,17(1):35-46.
    [110] Bramono DS, Richmond JC, Weitzel PP, Kaplan DL, Altman GH. Matrix metalloproteinasesand their clinical applications in orthopaedics [J]. Clin Orthop Relat Res.2004,428:272-285.
    [111] Martel-Pelletier J, Welsch DJ, Pelletier JP. Metalloproteases and inhibitors in arthriticdiseases [J]. Best Pract Res Clin Rheumatol.2001,15:805-829.
    [112] Chandler S, Cossins J, Lury J, Wells G. Macrophage metalloelastase degrades matrix andmyelin proteins and processes a tumor necrosis factor-alpha fusion protein [J]. BiochemBiophys Res Comm.1996,228(2):421-429.
    [113] Gronski TJ, Martin RL, Kobayashi DK, Walsh BC, Holman MC, Huber M, VanWart H,Shapiro SD. Hydrolysis of a broad spectrum of extracellular matrix proteins by humanmacrophage elastase [J]. J Biol Chem.1997,272(18):12189-12194.
    [114] Higuchi H. Shirakura K, Kimura M, Terauchi M, Shinozaki T, Watanabe H, Takagishi K.Changes in biochemical parameters after anterior cruciate ligament injury [J]. Int Orthop.2006,30(1):43-47.
    [115] Sivakumar P, Gupta S, Sarkar S, Sen S. Upregulation of lysyl oxidase and MMPs duringcardiac remodeling in human dilated cardiomyopathy [J]. Mol Cell Biochem.2008,307(1-2):159-167.
    [116] Pattison ST, Melrose J, Ghosh P, Taylor TKF. Regulation of gelatinase-A (MMP-2)production by ovine intervertebral disc nucleus pulposus cells grown in alginate bead cultureby transforming growth factor-beta(1) and insulin like growth factor-1[J]. Cell BiologyInternational.2001,25(7):679-689.
    [117] Suomela S, Kariniemi AL, Snellman E, Saarialho-Kere U. Metalloelastase (MMP-12) and92-kDa gelatinase (MMP-9) as well as their inhibitors, TIMP-1and-3, are expressed inpsoriatic lesions [J]. Exp Dermatol.2001,10(3):175-183.
    [118] Kagan HM and Li W. Lysyl Oxidase: Properties, Specificity, and Biological Roles Inside andOutside of the Cell [J]. J CellBiochem.2003,88:660-672.
    [119] Lucero HA, Kagan HM. Lysyl oxidase: an oxidative enzyme and effector of cell function [J].Cell Mol Life Sci.2006,63:2304-2316.
    [120] Kumarasamy A, Schmitt I, Nave AH, Reiss I, van der Horst I, Dony E, Roberts JD, deKrijger RR, Tibboel D, Seeger W, Schermuly RT, Eickelberg O, Morty RE. Lysyl OxidaseActivity Is Dysregulated during Impaired Alveolarization of Mouse and Human Lungs [J].Am J Reap Crit Care.2009,180(12):1239-1252.
    [121] Colwell A, Krummel T, Longaker M, Lorenz H. Early gestation fetal searless wounds haveless lysyl oxidase expression [J]. Craniofacial Surgery:351-352,2005.
    [122] Liu X, Zhao Y, Gao J, Pawlyk B, Starcher B, Spencer JA, Yanagisawa H, Zuo J, Li T. Elasticfiber homeostasis requires lysyl oxidase-like1protein [J]. Nat Genet.2004,36:178-182.
    [123] Kim MS, Kim SS, Jung ST, Park JY, Yoo HW, Ko J, Csiszar K, Choi SY, Kim Y. Expressionand purification of enzymatically active forms of the human lysyl oxidase-like protein4[J]. J.Biol. Chem.2003,278:52071–52074.
    [124]. Roy R, Polgar P, Wang YY, Goldstein RH, Taylor L, Kagan HM. Regulation of Lysyl Oxidaseand Cyclooxygenase Expression in Human Lung Fibroblasts: Interactions Among TGF-beta,IL-1beta, and Prostaglandin E2. J Cell Biochem.1996,62:411-417.
    [125] Holzheimer RG, Steinmetz WG. Local and systemic concentrations of pro-andanti-inflammatory cytokines in human wounds [J]. Eur J Med Res.2000,5:347-355.
    [126] Alcudia JF, Martinez-Gonzalez J, Guadall A, Gonzalez-Diez M, Badimon L, Rodriguez C.Lysyl oxidase and endothelial dysfunction: mechanisms of lysyl oxidase down-regulation bypro-inflammatory cytokines [J]. Front Bio sci.2008,13:2721-2727.
    [127] Mann DL. Targeted anticytokine therapy and the failing heart[J]. Am J Cardiol.2005,95:9C-16C.
    [128] Rodriguez C, Alcudia JF, Martinez-Gonzalez J, Raposo B, Navarro MA, Badimon L. Lysyloxidase (LOX) down-regulation by TNF-α: A new mechanism underlying TNF-α inducedendothelial dysfunction [J]. Atherosclerosis.2007,196(2):558-564.
    [129] Sternlicht MD, Werb Z. How matrix metalloproteinases regulate cell behavior [J]. Annu RevCell Dev Biol.2001,17:463-516.
    [130] Galis ZS, Muszynski M, Sukhova GK, Simon-Morrissey E, Unemori EN, Lark MW, AmentoE, Libby P. Cytokine-stimulated human vascular smooth muscle cells synthesize acomplement of enzymes required for extracellular matrix digestion [J]. Circ Res.1994,75(1):181-189.
    [131] Lilach Gavish, Louise Perez, David GS. Low-Level Laser Irradiation Modulates MatrixMetalloproteinase Activity and Gene Expression in Porcine Aortic Smooth Muscle Cells [J].Laser Surg Med.2006,38(8):779-786.
    [132] Nagineni CN, Amiel D, Green MH, Berchuck M, Akeson WH. Characterization of theintrinsic properties of anterior cruciate ligament and medial collateral ligament cells: an invitro-cell culture study [J]. J Orthop Res.1992,10(4):465-475.
    [133] Dinarello CA. Interleukin-1, interleukin-1receptors and interleukin-1receptor antagonist. IntRev Immunol.1998,16:457-499.
    [134] Moos V, Rudwaleit M, Herzog V, Hohlig K, Sieper J, Muller B. Association of genotypesaffecting the expression of interleukin-1beta or interleukin-1receptor antagonist withosteoarthritis.Arthritis Rheum.2000,43:2417-2422.
    [135] Dinarello CA, Wolff SM. The role of interleukin-1in disease. N Engl J Med.1993,328(2):106-113.
    [136] Gauldie J, Sauder DN, McAdam KP, Dinarello CA. Purified interleukin-1(IL-1) from humanmonocytes stimulates acute-phase protein synthesis by rodent hepatocytes in vitro.Immunology.1987,60(2):203-207.
    [137] Tsuzaki M, Guyton G, Garrett W, Archambault JM, Herzog W, Almekinders L, Bynum D,Yang X, Banes AJ. IL-1beta induces COX2, MMP-1,-3and-13, ADAMTS-4, IL-1beta andIL-6in human tendon cells. J Orthop Res.2003,21(2):256-264.
    [138] Van Damme J, Cayphas S, Opdenakker G, Billiau A, Van Snick J. Interleukin1andpoly(rI).poly(rC) induce production of a hybridoma growth factor by human fibroblasts. Eur JImmunol.1987,17(1):1-7.
    [139] Guerne PA, Zuraw BL, Vaughan JH, Carson DA, Lotz M. Synovium as a source of interleukin6in vitro contribution to local and systemic manifestations of arthritis. J Clin Invest.1989,83(2):585-592.
    [140] Cenizo V, Andre V, Reymermier C, Sommer P, Damour O, Perrier, E. LOXL as a target toincrease the elastin content in adult skin: a dill extract induces the LOXL gene expression.Exp Dermatol.2006,15:574-581.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700