高屈曲状态下膝关节生物力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:探讨正常膝关节在完全负重条件下由完全伸直到最大屈曲运动过程中,膝关节相对运动、关节软骨接触轨迹和主要韧带结构的生物力学特性。
     方法:健康成年志愿者8人(8个膝关节;年龄:23~49岁;6男2女;体重指数(Body Mass Index, BMI):19.9~29.3kg/m2),无任何膝关节受伤史或慢性疼痛史。每位受试者均签署知情同意书。本研究通过麻省总医院伦理委员会审查批准。受试膝关节接受MRI扫描,根据MRI建立膝关节髌骨、胫骨及股骨的三维模型,模型包括髌股关节软骨、胫股关节软骨以及前、后交叉韧带(ACL, PCL)、内侧副韧带浅层(sMCL)和深层(dMCL)及外侧副韧带(LCL)的附着点。根据功能解剖,将ACL分为前内侧束(AMB)和后外侧束(PLB),PCL分成前外侧束(ALB)和后内侧束(PMB)。将sMCL、dMCL和LCL按纤维走行,分别平均分成三部分,包括:前束(AB)、中间束(MB)和后束(PB)。模型建立完成后,所有受试者在双荧光成像系统的正交双“C”型臂之间进行准静态单足下蹲动作(每屈曲15°停顿一次),嘱每位受试者均尽可能使膝关节达到最大屈曲。将膝关节3D模型与双荧光成像系统图像整合,重建体内膝关节屈伸运动。随着膝关节由完全伸直到最大屈曲的过程,记录并计算膝关节在每个观测点6个自由度的相对运动参数、关节软骨的接触点坐标(取胫骨平台上所投影关节软骨接触面的几何中心作为软骨接触点)及主要韧带结构不同束支的长度变化(应用MATLAB软件脚本计算出膝关节主要韧带结构各束支的长度变化)。定义膝关节完全伸直时的各束支长度为初始长度。将膝关节由完全伸直到最大屈曲的运动过程按屈曲度分为以下三个范围:①低屈曲度(fullextension~30°);②中屈曲度(30°~120°);③高屈曲度(120°~maximal flexion)。使用Repeated measure ANOVA方法分析在不同屈曲角度及屈曲范围内,胫股关节的相对运动参数、软骨接触点坐标及主要韧带结构的长度变化的差异是否有统计学意义。
     结果:膝关节由完全伸直到最大屈曲过程中,股骨持续后移。膝关节屈曲FE~30°时,股骨轻度外移、胫骨内旋、内翻;在屈曲30°~120°时,股骨轻度内移、胫骨内翻而内、外旋转变化较小;在120°~MaxF时,股骨迅速内移、胫骨迅速内旋并在最大屈曲度时轻度外翻。膝关节屈曲小于120°时,膝关节内、外侧间室的软骨接触轨迹类似,但是超过屈曲120°后,内侧软骨接触点后移小于外侧。在膝关节屈曲30°~120°时,ACL的长度缩短量较大,在高屈曲度时较小;在膝关节屈曲90°左右,PCL的伸长量最大。随着屈曲角度增大,内、外侧副韧带的前束(AB)均不同程度的延长,除了内侧副韧带浅层(sMCL)的AB在最大屈曲度时缩短;内、外侧副韧带的中间束(MB)在整个膝关节屈伸运动过程中长度变化最小,除了sMCL的MB随着屈曲角度增大而逐渐缩短;所有的后束(PB)随着屈曲角度增大而逐渐缩短。
     结论:在整个屈伸过程中,尤其在高屈曲度,膝关节的相对运动、关节软骨接触轨迹及主要韧带结构的长度变化无法用单一的规律来描述。本研究的结果对高屈曲型假体、交叉韧带保留型假体的设计和改进及膝关节伤后康复计划有重要的指导意义。
Purpose: The objective of this study is to investigate the6-DOF kinematics,tibiofemoral cartilage contact biomechanics and the changes in length of the majorligaments of the knee during weight bearing flexion from full extension to maximal flexionof living subjects.
     Methods: Eight healthy subjects (eight knees; age,23~49;6male and2female; BMI,19.9~29.3kg/m2) with no history of knee injuries or chronic knee pain were recruited.Each subject signed a consent form approved by the IRB of Massachusetts GeneralHospital. The knees were MRI scanned to create3D models of the patella, tibia and femur,including the articular cartilage of the patella, tibia and femur and the insertions of theACL, PCL, sMCL, dMCL and LCL. Base on the functional anatomy, the ACL was dividedinto two bundles: the anteromedial bundle (AMB) and posterolateral bundle (PLB).Similarly, the PCL was divided into two bundles: the anterolateral bundle (ALB) andposteromedial bundle (PMB). The sMCL, dMCL and LCL were each divided into threeequal portions: the anterior bundle (AB), the middle bundle (MB) and the posterior bundle(PB). The subjects were then imaged using a dual fluoroscopic image system in twoorthogonal directions while performing a quasi-static single-leg lunge (every15°)fromfull extension to the maximal flexion they could perform. The knee models andfluoroscopic images were used to reproduce the in vivo motion of the knee. The6-DOFkinematics, the motion of articular cartilage contact points and the elongation of eachbundle of the major ligaments were measured along the flexion path of the knee. Thecontact points on the medial and lateral tibial plateau were calculated by finding thecentroid of the intersection of the tibial cartilage layers. A mathematical algorithm wasimplemented to find the shortest3D wrapping path of a ligament bundle around the bones.The length of each bundle at the full extension was set as the initial length. The flexionpath of the knee was divided into three ranges: low flexion range (full extension to30°offlexion), middle flexion range (30°to120°of flexion); high flexion range (120°tomaximal flexion). A repeated measure ANOVA was used to detect statistically significantdifferences in the6-DOF kinematics, the motion of articular cartilage contact points andthe bundles at different flexion angles and ranges.
     Results: The posterior femoral translation consistently increased from full extension tothe maximum flexion. The lateral femoral translation increased slightly and internal tibialrotation and varus increased at low flexion angles (full extension to30°), the medialfemoral translation and the internal tibial rotation maintained a small variation, and thetibial varus consistently increased in the middle range of flexion (30°to120°), and thenmedial femoral translation and internal tibial rotation sharply increased, and tibia varussharply decreased at high flexion angles (120°to maximal flexion). The contact pointmoved similarly in the medial and lateral compartments before120°of flexion, but less onthe medial compartment at high flexion angles. The ACL was shown to have largerreduction in length at mid-range of flexion and less reduction at maximal flexion. The PCLwas shown to have maximal increase in length around90°of flexion. For collateralligaments, all AB bundles were shown to have increasing length with flexion except that ofthe sMCL showing reduction in length at high flexion. The MB bundles showed minimalchange in lengths except that of the sMCL showing consistent reduction in length withflexion. All PB bundles showed reduction in lengths with flexion.
     Conclusions: The results indicated that the knee motion couldn’t be described usingone character in the entire range of flexion, especially in high flexion. The kneebiomechanical data in the entire range of flexion of the knee could be instrumental fordesigning new knee prostheses to achieve physical high flexion, designing anddevelopment of cruciate retaining total knee arthroplasty and improving rehabilitationprotocols after knee injuries.
引文
[1] Acker SM, Cockburn RA, Krevolin J, et al. Knee kinematics of high-flexionactivities of daily living performed by male Muslims in the Middle East. JArthroplasty,2011,26(2):319-27.
    [2] Ahlberg A, Moussa M, Al-Nahdi M. On geographical variations in the normalrange of joint motion. Clin Orthop Relat Res,1988(234):229-31.
    [3] Hemmerich A, Brown H, Smith S, et al. Hip, knee, and ankle kinematics of highrange of motion activities of daily living. J Orthop Res,2006,24(4):770-81.
    [4] Hefzy MS, Kelly BP, Cooke TD, et al. Knee kinematics in-vivo of kneeling in deepflexion examined by bi-planar radiographs. Biomed Sci Instrum,1997,33:453-8.
    [5] Johal P, Williams A, Wragg P, et al. Tibio-femoral movement in the living knee. Astudy of weight bearing and non-weight bearing knee kinematics using'interventional' MRI. J Biomech,2005,38(2):269-76.
    [6] Moynihan AL, Varadarajan KM, Hanson GR, et al. In vivo knee kinematics duringhigh flexion after a posterior-substituting total knee arthroplasty. Int Orthop,2010,34(4):497-503.
    [7] Tanavalee A, Ngarmukos S, Tantavisut S, et al. High-flexion TKA in patients with aminimum of120degrees of pre-operative knee flexion: outcomes at six years offollow-up. Int Orthop,2011,35(9):1321-6.
    [8] Rowe PJ, Myles CM, Walker C, et al. Knee joint kinematics in gait and otherfunctional activities measured using flexible electrogoniometry: how much kneemotion is sufficient for normal daily life? Gait Posture,2000,12(2):143-55.
    [9] Laubenthal KN, Smidt GL, Kettelkamp DB. A quantitative analysis of knee motionduring activities of daily living. Phys Ther,1972,52(1):34-43.
    [10] Mulholland SJ, Wyss UP. Activities of daily living in non-Western cultures: rangeof motion requirements for hip and knee joint implants. Int J Rehabil Res,2001,24(3):191-8.
    [11] Zhang Y, Hunter DJ, Nevitt MC, et al. Association of squatting with increasedprevalence of radiographic tibiofemoral knee osteoarthritis: the BeijingOsteoarthritis Study. Arthritis Rheum,2004,50(4):1187-92.
    [12] Coggon D, Croft P, Kellingray S, et al. Occupational physical activities andosteoarthritis of the knee. Arthritis Rheum,2000,43(7):1443-9.
    [13] Klussmann A, Gebhardt H, Liebers F, et al. Individual and occupational risk factorsfor knee osteoarthritis-study protocol of a case control study. BMC MusculoskeletDisord,2008,9:26.
    [14] Palmer KT. Occupational activities and osteoarthritis of the knee. Br Med Bull,2012,102:147-70.
    [15] Rytter S, Jensen LK, Bonde JP. Clinical knee findings in floor layers with focus onmeniscal status. BMC Musculoskelet Disord,2008,9:144.
    [16] Amin S, Goggins J, Niu J, et al. Occupation-related squatting, kneeling, and heavylifting and the knee joint: a magnetic resonance imaging-based study in men. JRheumatol,2008,35(8):1645-9.
    [17] Jensen LK. Knee-straining work activities, self-reported knee disorders andradiographically determined knee osteoarthritis. Scand J Work Environ Health,2005,31Suppl2:68-74.
    [18] Jensen LK, Eenberg W. Occupation as a risk factor for knee disorders. Scand JWork Environ Health,1996,22(3):165-75.
    [19] Nagura T, Dyrby CO, Alexander EJ, et al. Mechanical loads at the knee joint duringdeep flexion. J Orthop Res,2002,20(4):881-6.
    [20] Smith SM, Cockburn RA, Hemmerich A, et al. Tibiofemoral joint contact forcesand knee kinematics during squatting. Gait Posture,2008,27(3):376-86.
    [21] Siewe J, Rudat J, Rollinghoff M, et al. Injuries and overuse syndromes inpowerlifting. Int J Sports Med,2011,32(9):703-11.
    [22] Andriacchi TP, Mundermann A, Smith RL, et al. A framework for the in vivopathomechanics of osteoarthritis at the knee. Ann Biomed Eng,2004,32(3):447-57.
    [23]王海鹏,王友,容可, et al.三维有限元法分析膝关节内侧副韧带的生物力学功能.医用生物力学,2012,27(1):40-45.
    [24] Bruss MB, Morris JR, Dannison LL, et al. Food, culture, and family: exploring thecoordinated management of meaning regarding childhood obesity. Health Commun,2005,18(2):155-75.
    [25] Kitagawa A, Tsumura N, Chin T, et al. In vivo comparison of knee kinematicsbefore and after high-flexion posterior cruciate-retaining total knee arthroplasty. JArthroplasty,2010,25(6):964-9.
    [26] Kuroyanagi Y, Mu S, Hamai S, et al. In vivo knee kinematics during stair and deepflexion activities in patients with bicruciate substituting total knee arthroplasty. JArthroplasty,2012,27(1):122-8.
    [27] Leszko F, Hovinga KR, Lerner AL, et al. In vivo normal knee kinematics: isethnicity or gender an influencing factor? Clin Orthop Relat Res,2011,469(1):95-106.
    [28] Hoshino Y, Tashman S. Internal tibial rotation during in vivo, dynamic activityinduces greater sliding of tibio-femoral joint contact on the medial compartment.Knee Surg Sports Traumatol Arthrosc,2012,20(7):1268-75.
    [29] Cates HE, Komistek RD, Mahfouz MR, et al. In vivo comparison of kneekinematics for subjects having either a posterior stabilized or cruciate retaininghigh-flexion total knee arthroplasty. J Arthroplasty,2008,23(7):1057-67.
    [30] Defrate LE, Gill TJ, Li G. In vivo function of the posterior cruciate ligament duringweightbearing knee flexion. Am J Sports Med,2004,32(8):1923-8.
    [31] Jordan SS, Defrate LE, Nha KW, et al. The in vivo kinematics of the anteromedialand posterolateral bundles of the anterior cruciate ligament during weightbearingknee flexion. Am J Sports Med,2007,35(4):547-54.
    [32] Taylor KA, Terry ME, Utturkar GM, et al. Measurement of in vivo anterior cruciateligament strain during dynamic jump landing. J Biomech,2011,44(3):365-71.
    [33] Gao B, Zheng NN. Investigation of soft tissue movement during level walking:translations and rotations of skin markers. J Biomech,2008,41(15):3189-95.
    [34] Gao B, Zheng NN. Alterations in three-dimensional joint kinematics of anteriorcruciate ligament-deficient and-reconstructed knees during walking. Clin Biomech(Bristol, Avon),2010,25(3):222-9.
    [35] Koo S, Andriacchi TP. The knee joint center of rotation is predominantly on thelateral side during normal walking. J Biomech,2008,41(6):1269-73.
    [36] Koo S, Rylander JH, Andriacchi TP. Knee joint kinematics during walkinginfluences the spatial cartilage thickness distribution in the knee. J Biomech,2011,44(7):1405-9.
    [37] Li G, Wuerz TH, Defrate LE. Feasibility of using orthogonal fluoroscopic images tomeasure in vivo joint kinematics. J Biomech Eng,2004,126(2):314-8.
    [38] Tanifuji O, Sato T, Kobayashi K, et al. Three-dimensional in vivo motion analysisof normal knees using single-plane fluoroscopy. J Orthop Sci,2011,16(6):710-8.
    [39] Hill PF, Vedi V, Williams A, et al. Tibiofemoral movement2: the loaded andunloaded living knee studied by MRI. J Bone Joint Surg Br,2000,82(8):1196-8.
    [40] Nakagawa S, Kadoya Y, Todo S, et al. Tibiofemoral movement3: full flexion in theliving knee studied by MRI. J Bone Joint Surg Br,2000,82(8):1199-200.
    [41] Liu F, Gadikota HR, Kozanek M, et al. In vivo length patterns of the medialcollateral ligament during the stance phase of gait. Knee Surg Sports TraumatolArthrosc,2011,19(5):719-27.
    [42] Bergamini E, Pillet H, Hausselle J, et al. Tibio-femoral joint constraints for bonepose estimation during movement using multi-body optimization. Gait Posture,2011,33(4):706-11.
    [43] Hosseini A, Van De Velde SK, Kozanek M, et al. In-vivo time-dependent articularcartilage contact behavior of the tibiofemoral joint. Osteoarthritis Cartilage,2010,18(7):909-16.
    [44] Banks SA, Hodge WA. Accurate measurement of three-dimensional kneereplacement kinematics using single-plane fluoroscopy. IEEE Trans Biomed Eng,1996,43(6):638-49.
    [45] Dennis DA, Komistek RD, Hoff WA, et al. In vivo knee kinematics derived usingan inverse perspective technique. Clin Orthop Relat Res,1996(331):107-17.
    [46] Komistek RD, Dennis DA, Mahfouz M. In vivo fluoroscopic analysis of the normalhuman knee. Clin Orthop Relat Res,2003(410):69-81.
    [47] You BM, Siy P, Anderst W, et al. In vivo measurement of3-D skeletal kinematicsfrom sequences of biplane radiographs: application to knee kinematics. IEEE TransMed Imaging,2001,20(6):514-25.
    [48] Moro-Oka TA, Hamai S, Miura H, et al. Dynamic activity dependence of in vivonormal knee kinematics. J Orthop Res,2008,26(4):428-34.
    [49] Dennis DA, Mahfouz MR, Komistek RD, et al. In vivo determination of normaland anterior cruciate ligament-deficient knee kinematics. J Biomech,2005,38(2):241-53.
    [50] Li G, Defrate LE, Park SE, et al. In vivo articular cartilage contact kinematics of theknee: an investigation using dual-orthogonal fluoroscopy and magnetic resonanceimage-based computer models. Am J Sports Med,2005,33(1):102-7.
    [51] Li G, Zayontz S, Defrate LE, et al. Kinematics of the knee at high flexion angles: anin vitro investigation. J Orthop Res,2004,22(1):90-5.
    [52] Asano T, Akagi M, Tanaka K, et al. In vivo three-dimensional knee kinematicsusing a biplanar image-matching technique. Clin Orthop Relat Res,2001(388):157-66.
    [53] Conditt MA, Noble PC, Bertolusso R, et al. The PCL significantly affects thefunctional outcome of total knee arthroplasty. J Arthroplasty,2004,19(7Suppl2):107-12.
    [54] Yildirim G, Walker PS, Sussman-Fort J, et al. The contact locations in the kneeduring high flexion. Knee,2007,14(5):379-84.
    [55] Defrate LE, Sun H, Gill TJ, et al. In vivo tibiofemoral contact analysis using3DMRI-based knee models. J Biomech,2004,37(10):1499-504.
    [56] Wretenberg P, Ramsey DK, Nemeth G. Tibiofemoral contact points relative toflexion angle measured with MRI. Clin Biomech (Bristol, Avon),2002,17(6):477-85.
    [57] Zelle J, Barink M, De Waal Malefijt M, et al. Thigh-calf contact: does it affect theloading of the knee in the high-flexion range? J Biomech,2009,42(5):587-93.
    [58] Fitz W, Sodha S, Reichmann W, et al. Does a modified gap-balancing techniqueresult in medial-pivot knee kinematics in cruciate-retaining total knee arthroplasty?A pilot study. Clin Orthop Relat Res,2012,470(1):91-8.
    [59] Kozanek M, Hosseini A, Liu F, et al. Tibiofemoral kinematics and condylar motionduring the stance phase of gait. J Biomech,2009,42(12):1877-84.
    [60] Fukagawa S, Matsuda S, Tashiro Y, et al. Posterior displacement of the tibiaincreases in deep flexion of the knee. Clin Orthop Relat Res,2010,468(4):1107-14.
    [61] Dyrby CO, Andriacchi TP. Secondary motions of the knee during weight bearingand non-weight bearing activities. J Orthop Res,2004,22(4):794-800.
    [62] Goodfellow J, Hungerford DS, Zindel M. Patello-femoral joint mechanics andpathology.1. Functional anatomy of the patello-femoral joint. J Bone Joint Surg Br,1976,58(3):287-90.
    [63] Huberti HH, Hayes WC. Patellofemoral contact pressures. The influence of q-angleand tendofemoral contact. J Bone Joint Surg Am,1984,66(5):715-24.
    [64] Nakagawa S, Kadoya Y, Kobayashi A, et al. Kinematics of the patella in deepflexion. Analysis with magnetic resonance imaging. J Bone Joint Surg Am,2003,85-A(7):1238-42.
    [65] Most E, Axe J, Rubash H, et al. Sensitivity of the knee joint kinematics calculationto selection of flexion axes. J Biomech,2004,37(11):1743-8.
    [66] Engh GA. The difficult knee: severe varus and valgus. Clin Orthop Relat Res,2003(416):58-63.
    [67] Mihalko WM, Whiteside LA. Bone resection and ligament treatment for flexioncontracture in knee arthroplasty. Clin Orthop Relat Res,2003(406):141-7.
    [68] Park SE, Defrate LE, Suggs JF, et al. Erratum to "The change in length of themedial and lateral collateral ligaments during in vivo knee flexion". Knee,2006,13(1):77-82.
    [69] Sasanuma H, Sekiya H, Takatoku K, et al. Evaluation of soft-tissue balance duringtotal knee arthroplasty. J Orthop Surg (Hong Kong),2010,18(1):26-30.
    [70] Ghosh KM, Merican AM, Iranpour F, et al. Length-change patterns of the collateralligaments after total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc,2012,20(7):1349-56.
    [71] Schirm AC, Jeffcote BO, Nicholls RL, et al. Sensitivity of knee soft-tissues tosurgical technique in total knee arthroplasty. Knee,2011,18(3):180-4.
    [72] Li N, Tan Y, Deng Y, et al. Posterior cruciate-retaining versus posterior stabilizedtotal knee arthroplasty: a meta-analysis of randomized controlled trials. Knee SurgSports Traumatol Arthrosc,2012.
    [73] Luo SX, Zhao JM, Su W, et al. Posterior cruciate substituting versus posteriorcruciate retaining total knee arthroplasty prostheses: a meta-analysis. Knee,2012,19(4):246-52.
    [74] Kim YH, Choi Y, Kim JS. Range of motion of standard and high-flexion posteriorcruciate-retaining total knee prostheses a prospective randomized study. J BoneJoint Surg Am,2009,91(8):1874-81.
    [75] Kim YH, Choi Y, Kwon OR, et al. Functional outcome and range of motion ofhigh-flexion posterior cruciate-retaining and high-flexion posteriorcruciate-substituting total knee prostheses. A prospective, randomized study. J BoneJoint Surg Am,2009,91(4):753-60.
    [76] Lionberger DR, Eggers MD, Brewer KE, et al. Improved knee flexion followinghigh-flexion total knee arthroplasty. J Orthop Surg Res,2012,7:22.
    [77] Mont MA, John M, Johnson AJ. Bicruciate Retaining Arthroplasty. Surg TechnolInt,2012, XXII.
    [78] Liu F, Yue B, Gadikota HR, et al. Morphology of the medial collateral ligament ofthe knee. J Orthop Surg Res,2010,5:69.
    [79] Amis AA, Gupte CM, Bull AM, et al. Anatomy of the posterior cruciate ligamentand the meniscofemoral ligaments. Knee Surg Sports Traumatol Arthrosc,2006,14(3):257-63.
    [80] Greiner P, Magnussen RA, Lustig S, et al. Computed tomography evaluation of thefemoral and tibial attachments of the posterior cruciate ligament in vitro. Knee SurgSports Traumatol Arthrosc,2011,19(11):1876-83.
    [81] Hwang MD, Piefer JW, Lubowitz JH. Anterior cruciate ligament tibial footprintanatomy: systematic review of the21st century literature. Arthroscopy,2012,28(5):728-34.
    [82] Jeong WS, Yoo YS, Kim DY, et al. An analysis of the posterior cruciate ligamentisometric position using an in vivo3-dimensional computed tomography-basedknee joint model. Arthroscopy,2010,26(10):1333-9.
    [83] Kopf S, Musahl V, Tashman S, et al. A systematic review of the femoral origin andtibial insertion morphology of the ACL. Knee Surg Sports Traumatol Arthrosc,2009,17(3):213-9.
    [84] Lopes OV, Jr., Ferretti M, Shen W, et al. Topography of the femoral attachment ofthe posterior cruciate ligament. J Bone Joint Surg Am,2008,90(2):249-55.
    [85] Mannor DA, Shearn JT, Grood ES, et al. Two-bundle posterior cruciate ligamentreconstruction. An in vitro analysis of graft placement and tension. Am J SportsMed,2000,28(6):833-45.
    [86] Osti M, Tschann P, Kunzel KH, et al. Anatomic characteristics and radiographicreferences of the anterolateral and posteromedial bundles of the posterior cruciateligament. Am J Sports Med,2012,40(7):1558-63.
    [87] Steckel H, Vadala G, Davis D, et al.2D and3D3-tesla magnetic resonance imagingof the double bundle structure in anterior cruciate ligament anatomy. Knee SurgSports Traumatol Arthrosc,2006,14(11):1151-8.
    [88] Tajima G, Nozaki M, Iriuchishima T, et al. Morphology of the tibial insertion of theposterior cruciate ligament. J Bone Joint Surg Am,2009,91(4):859-66.
    [89] Takahashi M, Matsubara T, Doi M, et al. Anatomical study of the femoral and tibialinsertions of the anterolateral and posteromedial bundles of human posteriorcruciate ligament. Knee Surg Sports Traumatol Arthrosc,2006,14(11):1055-9.
    [90] Tallay A, Lim MH, Bartlett J. Anatomical study of the human anterior cruciateligament stump's tibial insertion footprint. Knee Surg Sports Traumatol Arthrosc,2008,16(8):741-6.
    [91] Li G, Defrate LE, Sun H, et al. In vivo elongation of the anterior cruciate ligamentand posterior cruciate ligament during knee flexion. Am J Sports Med,2004,32(6):1415-20.
    [92] Papannagari R, Defrate LE, Nha KW, et al. Function of posterior cruciate ligamentbundles during in vivo knee flexion. Am J Sports Med,2007,35(9):1507-12.
    [93] Li G, Zayontz S, Most E, et al. In situ forces of the anterior and posterior cruciateligaments in high knee flexion: an in vitro investigation. J Orthop Res,2004,22(2):293-7.
    [94] Nakagawa S, Johal P, Pinskerova V, et al. The posterior cruciate ligament duringflexion of the normal knee. J Bone Joint Surg Br,2004,86(3):450-6.
    [95] Wu JL, Seon JK, Gadikota HR, et al. In situ forces in the anteromedial andposterolateral bundles of the anterior cruciate ligament under simulated functionalloading conditions. Am J Sports Med,2010,38(3):558-63.
    [96] Van De Velde SK, Defrate LE, Gill TJ, et al. The effect of anterior cruciate ligamentdeficiency on the in vivo elongation of the medial and lateral collateral ligaments.Am J Sports Med,2007,35(2):294-300.
    [97] Yue B, Varadarajan KM, Rubash HE, et al. In vivo function of posterior cruciateligament before and after posterior cruciate ligament-retaining total kneearthroplasty. Int Orthop,2012,36(7):1387-92.
    [98] Yang Z, Wickwire AC, Debski RE. Development of a subject-specific model topredict the forces in the knee ligaments at high flexion angles. Med Biol EngComput,2010,48(11):1077-85.
    [1]李江,庄逢源,宋国立.膝关节韧带的生物力学研究进展[J].医用生物力学2005,20(1):59-64.
    [2] Acker SM, Cockburn RA, Krevolin J, et al. Knee kinematics of high-flexionactivities of daily living performed by male Muslims in the Middle East[J]. TheJournal of arthroplasty2011,26(2):319-27.
    [3] Hemmerich A, Brown H, Smith S, et al. Hip, knee, and ankle kinematics of highrange of motion activities of daily living[J]. Journal of orthopaedic research:official publication of the Orthopaedic Research Society2006,24(4):770-81.
    [4] Ahlberg A, Moussa M,Al-Nahdi M. On geographical variations in the normal rangeof joint motion[J]. Clinical orthopaedics and related research1988,234:229-31.
    [5] Zhang Y, Hunter DJ, Nevitt MC, et al. Association of squatting with increasedprevalence of radiographic tibiofemoral knee osteoarthritis: the BeijingOsteoarthritis Study[J]. Arthritis and rheumatism2004,50(4):1187-92.
    [6] Palmer KT. Occupational activities and osteoarthritis of the knee[J]. British medicalbulletin2012,102:147-70.
    [7] Klussmann A, Gebhardt H, Liebers F, et al. Individual and occupational risk factorsfor knee osteoarthritis-study protocol of a case control study[J]. BMCmusculoskeletal disorders2008,9(26.
    [8] Rytter S, Jensen LK,Bonde JP. Clinical knee findings in floor layers with focus onmeniscal status[J]. BMC musculoskeletal disorders2008,9:144.
    [9] Amin S, Goggins J, Niu J, et al. Occupation-related squatting, kneeling, and heavylifting and the knee joint: a magnetic resonance imaging-based study in men[J]. TheJournal of rheumatology2008,35(8):1645-9.
    [10] Jensen LK. Knee-straining work activities, self-reported knee disorders andradiographically determined knee osteoarthritis[J]. Scandinavian journal of work,environment&health2005,3(Suppl2):68-74.
    [11] Jensen LK,Eenberg W. Occupation as a risk factor for knee disorders[J].Scandinavian journal of work, environment&health1996,22(3):165-75.
    [12] Siewe J, Rudat J, Rollinghoff M, et al. Injuries and overuse syndromes inpowerlifting[J]. International journal of sports medicine2011,32(9):703-11.
    [13]林昊,张余,李国安.人工全膝关节研究新进展[J].医用生物力学2012,27(2):115-21.
    [14] Amiri S, Cooke TD,Wyss UP. A multiple-bundle model to characterize themechanical behavior of the cruciate ligaments[J]. The Knee2011,18(1):34-41.
    [15] Yang Z, Wickwire AC,Debski RE. Development of a subject-specific model topredict the forces in the knee ligaments at high flexion angles[J]. Medical&biological engineering&computing2010,48(11):1077-85.
    [16] Victor J, Wong P, Witvrouw E, et al. How isometric are the medial patellofemoral,superficial medial collateral, and lateral collateral ligaments of the knee?[J]. TheAmerican journal of sports medicine2009,37(10):2028-36.
    [17] Jordan SS, DeFrate LE, Nha KW, et al. The in vivo kinematics of the anteromedialand posterolateral bundles of the anterior cruciate ligament during weightbearingknee flexion[J]. The American journal of sports medicine2007,35(4):547-54.
    [18] Komatsu T, Kadoya Y, Nakagawa S, et al. Movement of the posterior cruciateligament during knee flexion--MRI analysis[J]. Journal of orthopaedic research:official publication of the Orthopaedic Research Society2005,23(2):334-9.
    [19] DeFrate LE, Gill TJ,Li G. In vivo function of the posterior cruciate ligament duringweightbearing knee flexion[J]. The American journal of sports medicine2004,32(8):1923-8.
    [20] Li G, Zayontz S, Most E, et al. In situ forces of the anterior and posterior cruciateligaments in high knee flexion: an in vitro investigation[J]. Journal of orthopaedicresearch: official publication of the Orthopaedic Research Society2004,22(2):293-7.
    [21] Li G, Wuerz TH,DeFrate LE. Feasibility of using orthogonal fluoroscopic images tomeasure in vivo joint kinematics[J]. Journal of biomechanical engineering2004,126(2):314-8.
    [22] Taylor KA, Terry ME, Utturkar GM, et al. Measurement of in vivo anterior cruciateligament strain during dynamic jump landing[J]. Journal of biomechanics2011,44(3):365-71.
    [23] Tanavalee A, Ngarmukos S, Tantavisut S, et al. High-flexion TKA in patients with aminimum of120degrees of pre-operative knee flexion: outcomes at six years offollow-up[J]. International orthopaedics2011,35(9):1321-6.
    [24] Johal P, Williams A, Wragg P, et al. Tibio-femoral movement in the living knee. Astudy of weight bearing and non-weight bearing knee kinematics using'interventional' MRI[J]. Journal of biomechanics2005,38(2):269-76.
    [25] Hefzy MS, Kelly BP, Cooke TD, et al. Knee kinematics in-vivo of kneeling in deepflexion examined by bi-planar radiographs[J]. Biomedical sciences instrumentation1997,33:453-458.
    [26] Moynihan AL, Varadarajan KM, Hanson GR, et al. In vivo knee kinematics duringhigh flexion after a posterior-substituting total knee arthroplasty[J]. Internationalorthopaedics2010,34(4):497-503.
    [27] Rowe PJ, Myles CM, Walker C, et al. Knee joint kinematics in gait and otherfunctional activities measured using flexible electrogoniometry: how much kneemotion is sufficient for normal daily life?[J]. Gait&posture2000,12(2):143-55.
    [28] Laubenthal KN, Smidt GL,Kettelkamp DB. A quantitative analysis of knee motionduring activities of daily living[J]. Physical therapy1972,52(1):34-43.
    [29] Mulholland SJ,Wyss UP. Activities of daily living in non-Western cultures: range ofmotion requirements for hip and knee joint implants[J]. International journal ofrehabilitation research Internationale Zeitschrift fur RehabilitationsforschungRevue internationale de recherches de readaptation2001,24(3):191-8.
    [30] Nakagawa S, Kadoya Y, Todo S, et al. Tibiofemoral movement3: full flexion in theliving knee studied by MRI[J]. The Journal of bone and joint surgery Britishvolume2000,82(8):1199-200.
    [31] Fukagawa S, Matsuda S, Tashiro Y, et al. Posterior displacement of the tibiaincreases in deep flexion of the knee[J]. Clinical orthopaedics and related research2010,468(4):1107-14.
    [32] Nagura T, Dyrby CO, Alexander EJ, et al. Mechanical loads at the knee joint duringdeep flexion[J]. Journal of orthopaedic research: official publication of theOrthopaedic Research Society2002,20(4):881-6.
    [33] Smith SM, Cockburn RA, Hemmerich A, et al. Tibiofemoral joint contact forces andknee kinematics during squatting[J]. Gait&posture2008,27(3):376-86.
    [34] Bergamini E, Pillet H, Hausselle J, et al. Tibio-femoral joint constraints for bonepose estimation during movement using multi-body optimization[J]. Gait&posture2011,33(4):706-11.
    [35] Li G, DeFrate LE, Sun H, et al. In vivo elongation of the anterior cruciate ligamentand posterior cruciate ligament during knee flexion[J]. The American journal ofsports medicine2004,32(6):1415-20.
    [36] Papannagari R, DeFrate LE, Nha KW, et al. Function of posterior cruciate ligamentbundles during in vivo knee flexion[J]. The American journal of sports medicine2007,35(9):1507-12.
    [37] Robinson JR, Bull AM,Amis AA. Structural properties of the medial collateralligament complex of the human knee[J]. Journal of biomechanics2005,38(5):1067-74.
    [38] Liu F, Yue B, Gadikota HR, et al. Morphology of the medial collateral ligament ofthe knee[J]. Journal of orthopaedic surgery and research2010,5:69.
    [39] Robinson JR, Sanchez-Ballester J, Bull AM, et al. The posteromedial cornerrevisited. An anatomical description of the passive restraining structures of themedial aspect of the human knee[J]. The Journal of bone and joint surgery Britishvolume2004,86(5):674-81.
    [40] Liu F, Gadikota HR, Kozanek M, et al. In vivo length patterns of the medialcollateral ligament during the stance phase of gait[J]. Knee surgery, sportstraumatology, arthroscopy: official journal of the ESSKA2011,19(5):719-27.
    [41]王海鹏,王友,容可, et al.三维有限元法分析膝关节内侧副韧带的生物力学功能[J].医用生物力学2012,27(1):40-5.
    [42] Park SE, DeFrate LE, Suggs JF, et al. Erratum to "The change in length of themedial and lateral collateral ligaments during in vivo knee flexion"[J]. The Knee2006,13(1):77-82.
    [43] Van de Velde SK, DeFrate LE, Gill TJ, et al. The effect of anterior cruciate ligamentdeficiency on the in vivo elongation of the medial and lateral collateral ligaments[J].The American journal of sports medicine2007,35(2):294-300.
    [44] Van de Velde SK, Gill TJ,Li G. Dual fluoroscopic analysis of the posterior cruciateligament-deficient patellofemoral joint during lunge[J]. Medicine and science insports and exercise2009,41(6):1198-205.
    [45] Goyal K, Tashman S, Wang JH, et al. In vivo analysis of the isolated posteriorcruciate ligament-deficient knee during functional activities[J]. The Americanjournal of sports medicine2012,40(4):777-85.
    [46] Conditt MA, Noble PC, Bertolusso R, et al. The PCL significantly affects thefunctional outcome of total knee arthroplasty[J]. The Journal of arthroplasty2004,19(7Suppl2):107-12.
    [47] Cates HE, Komistek RD, Mahfouz MR, et al. In vivo comparison of knee
    kinematics for subjects having either a posterior stabilized or cruciate retaining
    high-flexion total knee arthroplasty[J]. The Journal of arthroplasty
    2008,23(7):1057-67.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700