菊花DREB同源基因的克隆和功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
菊花(Dendranthema×morifolium)为菊科菊属宿根草本花卉,该属各种主要分布于亚洲温带和亚热带部分地区,观赏价值极高,位居世界四大切花之首,在人们生活和花卉生产中占有非常重要的地位.菊花具有良好的耐逆性具有很强的生命力和适应性,研究和探讨菊花的耐逆分子机制具有非常重要的意义.
     各种环境因素,如干旱、高盐、激素和低/高温等非生物胁迫对植物的生长发育造成很大影响.DREB转录因子是一类在植物抵抗非生物胁迫中起到关键作用的转录因子家族.DREB转录因子特异结合DRE/CRT顺式作用元件,激活一系列靶基因的表达.这些靶基因编码脯氨酸、蔗糖、LEA蛋白、AQP蛋白以及果糖合成酶等.在转基因拟南芥中DREB1A的超表达将激活至少40个逆境应答基因的表达,增强植物对逆境的忍耐力.一个转录因子可同时激活多个功能基因的表达,导入或改良一个关键的转录因子,促使多个功能基因发挥作用,从而提高植株的综合品质,因此转录因子在植物分子育种中具有巨大的潜在价值和广阔的应用前景.本研究内容主要包括:一、从菊花中克隆了两个与低温、高盐等非生物胁迫相关的DREB家族转录因子同源基因,并对它们的功能进行了初步研究;二、利用12份野生菊和5份栽培菊材料进行了DmDREBb基因的核苷酸多态性的初步分析.
     本研究利用RACE-PCR的方法从耐寒性强的栽培菊花‘红枫'中分离克隆了两个DREB同源基因,分别命名为DmDREBa和DmDREBb.研究表明,DmDREBa和DmDREBb基因全长分别为872bp和675bp,分别编码192和185个氨基酸的完整阅读框,推测两个蛋白的分子量分别为21.66和20.99 kDa,等电点分别为6.72和6.80.两个基因提交NCBI,登录号分别为EF490996和EF487535.以相同的引物对菊花基因组DNA进行了扩增,得到了DmDREBs基因组序列,大小与cDNA序列一致.表明该基因中不含有内含子。经过Alighment比对,证实两个基因与已经报道的其他作物的DREB基因有着很高的相似性,并且和DREB1类基因有着更高的相似性.BLAST比较分析发现,除了个别氨基酸差异之外,DmDREBa比DmDREBb还明显多了七个“MPGVIDS”氨基酸残基(153—159).DmDREBa与DmDREBb在氨基酸水平上的一致性达到88%,核苷酸水平上为90%。另外在二级结构预测中发现两个蛋白均含有三个β-折叠和一个a-螺旋,含有一个AP2结构域,并且也具有此结构域两端的标签序列“PKKRAGGKKFMETRHP”和“DSAWR”.这些都符合DREB1亚家族的特征.系统进化树分析也表明DmDREBa和DmDREBb与DREB1亚家族的相似性比较高,与辣椒和葡萄等木本的双子叶植物距离比较近.Southern杂交表明,在‘红枫'中存在着DmDREBa和DmDREBb基因的多个拷贝或者同源基因.组织表达谱分析发现,DmDREBa和DmDREBb基因在茎、叶中的表达量比较高,而根和花中则表达量低.在各种非生物胁迫处理下,DmDREBa基因更能响应高盐的诱导,而DmDREBb基因则是在4℃低温处理下较早的强烈表达.DmDREBa和DmDREBb基因响应PEG6000模拟的干旱和40℃高温胁迫时候,表达被强烈抑制.酵母单杂交实验证实DmDREBa和DmDREBb具有与DRE顺式作用元件相结合的能力,并且具有转录激活活性.亚细胞定位研究也显示两者都定位到了细胞核内,这也表明两个基因编码的蛋白是转录因子.
     为了进一步了解DmDREBs基因的功能,我们对DmDREBa基因进行了烟草转化的研究.研究利用PCR的方法鉴定出了43株转基因阳性植株.随机选取10株转基因植株有7椿雀RNA转录水平能够表达.Southern杂交检测表明,目的基因已经整合到烟草的基因组中,并且以1-3个拷贝形式随机插入.另外,研究将DmDREBa基因过量表达的烟草在4℃低温、干旱和高盐胁迫后,发现转基因阳性植株的抗性比野生型烟草都有所增强.丙二醛(MDA)测定后,发现导入35S:DmDREBa基因的烟草丙二醛含量为0.481×10~(-3)μmol/g,低于野生型烟草的丙二醛含量(0.619×10~(-3)μmol/g),也说明转基因烟草提高了抗低温的能力.失水率分析表明,转基因阳性植株蒸腾失水量低于对照.随之对叶片的表皮气孔观察发现,转基因阳性植株上下表皮的气孔密度与对照相比有所降低,经t值测验,转基因烟草和野生型烟草的上、下表皮气孔数的差异均达到显著水平.经过低温、干旱以及高盐的胁迫处理后,转基因阳性植株较对照而言都表现出良好的抗性.
     利用DmDREBb基因对12份野生菊和5份栽培菊进行了SNP的分析.结果发现,研究中野生菊中SNP的主要突变形式为颠换,而栽培菊中则是转换.野生菊的核苷酸多样性(π=0.02368)高于栽培菊(π=0.00963).表明栽培菊在进化过程中受到了强大的人工选择的作用.DmDREBb基因编码区内Ka/Ks远远小于1,说明DmDREBb基因序列十分保守,现代菊花在进化的过程中受到了净化选择的作用。LD分析发现LD强度随着距离的延伸而逐渐减弱,野生菊减弱趋势比栽培菊明显,栽培菊减弱趋势比较平缓.从野生菊到栽培菊LD强度大大提高.说明,菊花在栽培驯化过程中LD结构发生了变化,LD结构的变化与驯化过程中有遗传多样性的丢失.
Chrysanthemum(Dendranthema×morifolium Ramat.) is one type of herbage plants in chrysanthemum genus of composite.With important ornamental value,chrysanthemum grows in temperate zone and subtropics in Asia.Chrysanthemum is the fist one in the four dominating cut flowers in the world and it is very important in the people's life and the production of flowers.Moreover,with strong vitality and adaptability,chrysanthemum has good tolerance to abiotic stresses.Therefore,the study on molecular mechanism about stresses in chrysanthemum is valuable.
     Plants are affected by many abiotic stresses,such as drought,high salinity,low/high temperature and hormone and so on,in the process of growth and development.DREB transcription factors play the key roles in response to abiotic stresses.DREB transcription factors specifically bind the DRE/CRT cis-acting element and trigger the downstream target genes.The coding products of target genes were functional proteins and enzymes such as proline,sucrose,LEA,aquaporin(AQP) and praline synthetase et al.In transgenic Arabidopsis plants,overexpression of DREB1A can introduce at least 40 downstream genes and increase the tolerance to abiotic stresses.One transcription factor introduces many downstream genes and improves the resistance activity to stresses.It had very large potential value and widest foreground to study transcription factors in plant breeding.The thesis aims included:firstly,two DREB-like genes were isolated from chrysanthemum and the relate function were studied;secondly,some information was obtained by the SNP analysis in chrysanthemum using DmDREBb gene.
     To analysis the molecular mechanism of DREB in chrysanthemum,two DREB-like genes were isolated from chrysanthemum cv.'Hong Feng' using degenerate PCR and RACE methods in this study.These cDNAs were 872bp and 675bp in length containing a single open reading frame encoding 191,185 amino acids with predicted molecular masses of 21.66 and 20.99 kDa,and the pI were 6.72 and 6.80,respectively.Both sequences had been deposited to the GenBank database under accession numbers EF490996 and EF487535 for DmDREBa and DmDREBb,respectively.The genome sequences were obtained by the same primers with cDNAs and the lengths of both genes were also same with cDNA sequences.The results indicated that there was no intron in the two chrysanthemum DREB-like genes.The sequence alignment analysis showed that DmDREBs genes had high similarity with other DREB genes and had higher similarity with DREB1 genes.Blast analysis suggested high similarity between DmDREBa and DmDREBb with the overall identities 88%at amino acid level and 90%at nucleotide acids except for one obvious gap of MPGVIDS(152—159) in amino acids level.The DmDREBs proteins contained a conserved DNA-binding domain of 57 amino acids that presented in a large family of plants.DmDREBs genes revealed a typical DREB1-type nuclear localization signal(NLS) consensus PKKRAGGKKFMETRHP before the EREBP/AP2 domain and a DSAWR sequence after the domain,and that domain existed in all DREB1-type proteins from various species.Threeβ-sheets and an amphipathic a-helix were also found in the EREBP/AP2 domain of DmDREBa and DmDREBb,which may be responsible for DNA-binding activity.Thus,sequence analysis indicated that DmDREBa and DmDREBb were putative DREB1 homologs.Phylogenic analysis suggested that DmDREBs were attributable to the DREB1 subgroups comparing to DREB2 transcription factors. Interestingly,DmDREBs shared the highest similar to Capsicum annuum CaCBF1A (AY368482) and Vitis vinifera VvCBF1(AY390372)at amino acid level,two species that are chilling sensitive.Furthermore,Vitis vinifera is one of woody plants.Southern blot analysis was used to determine the approximate number of the DREB-like genes in chrysanthemum.Probing with the DmDREBa sequence indicated that chrysanthemum contains multiple DREB-like genes/alleles.To investigate the expression patterns of DmDREBs in chrysanthemum,the expression of the two genes at different organs was analyzed.Both genes were highly expressed in leaves and stems,but with low expression in roots or flowers at 15℃.The expression levels of DmDREBa and DmDREBb were different in several stresses.Under cold stress(4℃),DmDREBb was expressed highly at 0.5h,but DmDREBa was highly expressed in 24h under salt condition.The expression level of DmDREBa was also reduced during the whole process but a little expression was observed after 24h with 100μM ABA treatment.However,the expression level of DmDREBb was variable under 100μM ABA condition.The mRNA level of DmDREBa was inhibited significantly under PEG6000 and hot condition(40℃).The expression of DmDREBb was continued only 0.5h,and then was also inhibited strongly.These two proteins were found to have transcriptional activity and had the DRE-binding capacity as shown by yeast one-hybrid system and were localized to the nucleus of cells.These studies indicated that the two proteins were DREB transcription factors.
     The DmDREBa gent was overexpressed in tobacco and 43 transgenic plants were obtained by PCR method.And southern blot analysis indicated that 1-3 copies of DmDREBa were randomly inserted.The tolerance of transgenic tobacco plants was increased comparing to the wild tobacco plants under low temperature,drought and high salinity conditions.The content of MDA in wild tobacco plants was 0.619×10~(-3)μmol/g which was more than 0.481×10~(-3)μmol/g in transgenic plants,which indicated the tolerance ability to low temperature of transgenic plants was increased.The lost water of transgenic tobacco was less than wild plants after natural transpiration.Further,the density of the stoma in the epidermis was observed and found that the numbers of stoma in upper or lower epidermis of transgenic plants were reduced comparing to wild tobacco.The result of t test suggested that the differences between the upper and lower epidermis of transgenic plants and wild type were significant.The transgenic tobaccos had better character than the wild plants under low temperature,drought and high salinity conditions.
     At last the SNP research was carried out in chrysanthemum cultivars and wild plants using DmDREBb gene.The main mutations were transversions in chrysanthemum wild plants with more mutations of transitions in chrysanthemum cultivars.The results showed that the diversity of SNP in wild plants(π=0.02368) was higher than that in chrysanthemum cultivars(π=0.00963).The results indicated that artificial selection affected the evolution of chrysanthemum cultivars.The value of Ka/Ks was less than 1 suggested that the nucleotide acids sequence was very conservative and purifying selection affected the evolution of chrysanthemum cultivars.The analysis of LD was suggested that the strength of LD was decreased with the extrending of distance.The decreased trend of chrysanthemum wild plants was very evidence,but the trend was gentle in chrysanthemum cultivars.The structure of LD was changed during the domestication of chrysanthemum cultivars that affected diversity drop.
引文
1.Abe H,Yamaguchi-shinozaki K,Urao T,Iwasaki T,Shinozaki K.Role of MYC and MYB homologs in drought-and abscisic acid-regulated gene expression.Plant Cell,1997(9):1859-1868
    2.Abe H,Urao T,Ito T,Seki M,Shinozaki K,Yamaguchi-Shinozaki K.Arabidopsis AtMYC2(bHLH)and AtMYB2(MYB) function as transcription activators in abscisic acid signaling.Plant Cell,2003,15(1):63-78
    3.Aida M,Ishida T,Fukaki H,Fujisawa H,Tasaka M.Genes involed in organ separation in Arabidopsis:An analysis of the cup-shaped cotyledon mutant.Plant Cell,1997(9):841-857
    4.Allen M D,Yamasaki K,Ohme-Takagi M,Tateno M,Suzuki M.A novel mode of DNA recognition by a β-sheet revealed by the solution structure of the GCC-box binding domain in complex with DNA.EMBO J,1998(17):5484 -5496
    5.An Takatsu Y,Nshizawa Y.Transgenic chrysanthemum(Dendranthema grandiflorum Ramat kitamura) expressing rice chitinase gene shows enhanced resistance fungal diseases.Sci Hor,1999,82(1-2):113-123
    6.Anna V S,Olga A S,Richard I,Konstantin G S,Gerco C A.Identification and Characterization of Four Chrysanthemum MADS-Box Genes,Belonging to the APETALA1/FRUITFULL and SEPALLATA3 Subfamilies1.Plant Physiol,2004(134):1632-1641
    7.Annadana S,Beekwilder M J,Kuipers G,Visser PB,Outchkourov N,Pereira A,Udayakumar M,De Jong J,Tongsma M A.Cloning of the chrysanthemum UEP1 promoter and comparative expression in florets and leaves of Dendranthema grandiflora.Transgenic Research,2002(11):437-445
    8.Ardlie K G,Kruglyak L,Seielstad M.Patterns of linkage disequilibrium in the human genome.Nat Rev Genet,2002(3):299-309
    9.Barker G,Batley J,O'sullivan H,Edward K J,Edwards D.Redundancy based detection o sequence polymorphisms in expressed sequence tag data using auto SNP,Bioinformatics,2003,19(3):421-422
    10.Balley J,Barker G,O′ Sullivan H,Edwards KJ,Edwards D.Mining for single nucleotide polymorphisms and insertion/deletion in maize expressed sequence tag data.Plant Plyiol,2003,132(1):84-91
    11.Bilaud T,Koering C E,Binrt-Brasselet E,Ancelin K,Pollice A,Gasser S M,Gilson E.The telobox, a myb-related telomeric DNA binding motif found in proteins from yeast, plants and human. Nucleic Acids Res, 1996(24): 1294-1303
    12. Boase M R, Butler R C, Borst N K. Chrysanthemum cultivar Agrobacterium interactions revealed by GUS expression time course experiments. Sci Hot, 1998,77:89-107
    13. Boase M R, Bradley J M, Borst N K. Genetic transformation mediated by Agrobacterium tumefaciens of florists' chrysanthemum (Dendranthema grandiflorum) cultivar 'Peach Margaret'. In Vitro Cell Dev Biol Plant, 1998,34 (1): 46-51
    14. Bowman J L, Alvarez J, Weigel D, Meyerowitz E M, Smyth D R. Control of flower development in Arabidopsis thaliana by APETALA1 and interacting genes. Development, 1993(119): 721-743
    15. Brookes A J. The essence of SNPs. Gene, 1999,234:177-186
    16. Brown R L, Kazan K, McGrath K C, Maclean D J, Manners J M. A Role for the GCC-Box in Jasmonate-MediatedActivation of the PDF1.2 Gene of Arabidopsis. Plant Physiol, 2003(132): 1020-1032
    17. Buttner M and Singh K B. Arabidopsis thaliana ethylene-responsive element binding protein (AtEBP), an ethylene-inducible, GCC box DNA-binding protein interacts with an ocs element binding protein. Proc. Natl. Acad. Sci. USA, 1997,94 (11): 5961-5966
    18. Chatterjee J, Mandal A K A, Ranade S A, Silva Datta S K. Molecular systematics in Chrysanthemum x grandiflorum (Ramat.) Kitamura. Sci Hort, 2006,379-384
    19. Chen W Q, Provart N J, Glazebrook J, Fatagitri F, Chang H S, Eulgem T, Mauch F, Luan S, Zou G Z, Whitham S A, Budworth P R, Tao Y, Xie Z Y, Chen X, Lam S L, Kreps J A, Harper J F, Si-Ammour A, Mauch-Mani B, Heinlein M, Kobayashi K, Hohn T, Dang J L, Wang X, Zhu T. Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. Plant Cell, 2002(14): 559-574
    20. Cheong Y H, Chang H S, Gupta R, Wang X, Zhu T, Luan S. Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis. Plant Physiol, 2002(125): 661-677
    21. Ching A, Katherine S C, Mark J, Maurine D, Oscar S S, Scott T, Michele M, Rafalski J. SNP freguency haplotype structure and lingkage disequilibrium in elite maize inbred lines. BMC Genetics, 2002(3): 1-14
    22. Chinnusamy V, Ohta M, Kanrar S, Lee BH, Hong X H, Agarw M, Zhu J K. ICE1: a regulator of cold-induced transcriptome a freezing tolerance in Arabidopsis. Genes&Evelopment, 2003(17): 1043-1054
    23. Cho R J, Mindrinos M, Richards D R, Sapolsky R J, Anderson M, Drenkard E, Dewdney J, Reuber T L,Stammers M,Federspiel N,Theologis A,Yang W H,Hubbell E,Au M,Chung EY,Lashkari D,Lemieux B,Dean C,Lipshutz R J,Ausubel F M,Davis R W,Oefner P J.Genome wide mapping with bi-allelic markers in Arabidopsis thaniana.Nature Genet,1999,23(2):203-207
    24.Choi H,Hong J,Ha J,Kang J,Kim S Y.ABFs,a family of ABA-responsive element binding factors.J Biol Chem,2000(275):1723-1730
    25.Choi D W,Rodriguez E M,Close T J.Barley Cbf3 gene identification,expression pattern,and map location.Plant Physiol,2002(129):1781-1787
    26.Clos J,Westwood J T,Becker P B,Wilson S,Lambert K,Wu C.Molecular cloning and expression of a hexameric Drosophila heat stress factor subject to negative regulation.Cell,1990(63):1085-1097
    27.Cutterson N C.Carolyn Napoli,Christine lemieux,Alison Morgan,Bio/Technology,Vol.12 Match,1994
    28.Cutterson N.Anthocyanin Biosynthetic genes and their application to flower color modification through sense suppression.Science Hort,1995,30(5):August
    29.De Jong J,1VErtens M M J,Rademaker W.Stable expression of the GUS reporter gene in chrysanthemum depends on binary plasmid T DNA.Plant Cell Rep,1994(14):59-64
    30.De Jong J,Jongsma M A,Peters J,D Jan,Rademaker W,Bosch H J,De Maagd R,Van Dijken F R,Gebala B,Koehorst-van Putten H J J.Classical and molecular approaches in breeding for resistance to insects in ornamentals.Acta Hort,1995(420):46-51
    31.Dubouzet JG,Sakuma Y,Ito Y,Kasuga M,Dubouzet EG,Miura S,Scki M,Shinozaki K,Yamaguchi-Shinozaki K.OsDREB genes in rice,Oryza sativa L,encode transcription activators that function in drought-,high-salt- and cold-responsive gene expression.Plant J,2003(33):751-763
    32.Enrico M,Kimmen S,Sarah H.From endonucleases to transcription factors:evolution of the AP2DNA binding domain in plants.Plant Cell,2004(16):2265-2277
    33.Eulgen T,Rushton PJ,Robatzek S,Somssich E.The WRKY superfamily of plant transcription factors.Trends Plant Sci,2000,5(5):199-206
    34.Felsentein,J.Phylip(phylogeny Inference Package) version 3.63.University of Washington Seattle.1995
    35.Feltus F A,Wan J,Schulze S R,Estill J C,Jiang N,Paterson A H.A SNP resourcxes for rice genetics and breeding based on subspecies Indica and Japonica genome alignment Genome Res.,2004(14):1812-1819
    36.Flavell A J,Bolshakov V N,Booth A,Jing R,Ellis T H,Isaac P.A microarray-based high throughput molecular marker genotyping method:the tagged microarray marker(TAM) approach. Nucleic Acids Res, 2003,31 (19): e115
    37. Flint-Garcia S A, Thornsbeny J M, Buckler E S. Structure of linkage disequilibrium in plants. Annu Rev Plant Biol, 2003(54): 357-374
    38. Fowler S, Thomashow M F. Arabidopsis transcript one profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell, 2002(14): 1675-1690
    39. Fowler S G, Cook D, Thomashow M F. Low temperature induction of Arabidopsis CBF1, 2, and 3 is gated by the circadian lock. Plant Physiol, 2005,137(3): 961-968
    40. Fujimoto S Y, Ohta M, Usui A, Shinshi H and Ohme-Takagi M. Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. Plant cell, 2000(12): 393-404
    41. Fujita M, Fujita Y, Maruyama K, Seki M, Hiratsu K, Ohme-Takagi M, Tran L S, Yamaguchi-Shinozaki K, Shinozaki K. A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. Plant J., 2004(39): 863-876
    42. Fukai S, Dc Jong J. Rademaker W. Efficient genetic transformation of chrysanthemum (Dendranthema grandiflora Ramat. Kitamura) using stem segments. Breeding Science, 1995(45): 179-184
    43. Fukai S, Nagria T and Go M, Cross compa-bility between chrysanthemum and dendranthema species native to Japan, proc 19th Int' 1 Symposium Improvement ornamental plants Ed. A. Cadic, Acta Hort. 2000,508, ISHS
    44. Fukai S, Kamigaichi Y, Yamasaki N, Zhang W, Goi M. Distribution, morphological variations and cpDNA PCR—RFLP analysis of Dendranthema yoshinaganthum. J Jap Soc Hort Sci, 2002(71): 114-122
    45. Gilmour S J, Zarka D G, Stockinger E J, Salazar M P, Houghton J M, Thomashow M F. Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant Journal, 1998,16 (4): 433-442
    46. Goff S A, Ricke D, Lan T H, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchison D, Martin C, Katagiri F, Lange B M, Moughamer T, Xia Y, Budworth P, Zhong J, Miguel T, Paszkowski U, Zhang S, Colbert M, Sun W L, Chen L, Cooper B, Park S, Wood T C, Mao L, Quail P, Wing R, Dean R, Yu Y, Zharkikh A, Shen R, Sahasrabudhe S, Thomas A, Cannings R, Gutin A, Pruss D, Reid J, Tavtigian S, Mitchell J, Eldredge G, Scholl T, Miller R M, Bhatnagar S, Adey N, Rubano T, Tusneem N, Robinson R, Feldhaus J, Macalma T, Oliphant A, Briggs S. A draft sequence of the rice genome (Oryza sativa L ssp. japonica). Science, 2002(296):92 -100
    47.Gu Y Q,Wildermuth M C,Chakravarthy S,Loh Y T,Yang C,He X,Han Y,Martin G B.Tomato transcription factors pti4,pti5,and pti6 activate defense responses when expressed in Arabidopsis.Plant Cell,2002(14):817-831
    48.Haake V,Cook D,Riechmann J L,Pineda O,Thomashow M F,Zhang J Z.Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis.Plant Physiol,2002(130):639-648
    49.Hadrys A,Balick M,Schierwater B.Applications of random amplified polymorphic DNA(RAPD)in molecular ecology.Molecular Ecology,1992(1):55-63
    50.Hahlbrock K,Bednarek P,Ciolkowski I,Hamberger B,Heise A,Liedgens H,Logemann E,Numberger T,Schmelzer E,Somssich I E,Tan T.Non-self recognition,transcriptional reprogramming,and secondary metabolite accumulation during plant/pathogen interactions.Proc Natl Acad Sci USA,2003,100(supp.12):14569-14576
    51.Hao D,Ohme-Takagi M,Sarai A.Unique mode of GCC box recognition by the DNA-binding domain of ethylene-responsive element-binding factor(ERF domain) in plants.Biol Chem,1998(273):26857-26861
    52.Hao D,Yamasaki K,Sand A and Ohme-Takagi M Determinants in the sequence specific binding of two plant transcription factors,CBF1 and NtERF2,to the DRE and GCC motifs.Biochemistry,2002(41):4202-4208
    53.Harmer S L,Hogenesch J B,Straume M,Chang H S,Han B,Zhn T,Wang X,Kreps J A,Kay S A.Orchestrated transcription of key pathways in Arabidopsis by the circadian clock.Science,2000(290):2110-2113
    54.Hill W Q,Robertson A.Linkage disequilibrium in finite populations.Theor Appl Genet,1968(38):226-231
    55.Hofstetter,Weissmann A,Vanden J B,Weissmann C.Specific excision of the inserted DNA segment from hybrid plasmids constructed by the ploy(dA).Poly(dT) methods.Biochim Biophys Acta.1976(454):587-591
    56.Hoovers J M N,Mannens M,John R,Bliek J,van Heyningen V,Porteous D J,Leschot N J,Westerveld A.High-resolution localization of 69 poteinl human zinc finger protein genes:a number are clustered.Genomics 1992(120:254-263
    57.Hu Y X,Wang Y H,Liu X F,Li J Y,Arabidopsis RAV1 is down regulated by brassino steroid and may act as a negative regulator during plant development,Cell Res.2004(14):8-15
    58.Huala E,Sussex L M.LEAFY interacts with floral homeotic genes to regulate Arabidopsis floral development.Plant Cell,1992(4):901-913
    59.Huang S C,Tsai C C,Sheu C S.Genetiv analysis of chrysanthemum hybrids based on RAPD molecular makers.Bot Bull Acad Sin,2000(41):257-262
    60.Huhel A,Schoffl F.Arabidopsis heat shock factor:isolation and characterization of the gene and the recombinant protein.Plant Mol.Biol.1994(26):353-362
    61.Ian C.Gray,David A.Campbell,Nigel K.Single nucleotide polymorphisms as tools in human genetics Hum.Mol.Genet.2000,9:2403-2408
    62.Irish V F,Sussex I M.Floral development in Arabidopsis.Plant Physiol.Biochem.1990,36(1-2):61-68
    63.Ishiguro S,Nakamura K.Characterization of a cDNA encoding a novel DNA-binding protein,SPF1,that recognizes SP8 sequences in the 5′ up stream regions of genes coding for sporamin and beta-amylase from sweet potato.Mol Gen Genet,1994,244(6):563-571
    64.Ito M.Factors controlling cyclin B expression.Plant Mol Biol,2000(43):677-690
    65.Jaglo K R,Kleff S,Amundsen K L,Zhang X,Haake V,Zhang J Z,Deits T,Thomashow M F.Component of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-responsive pathway are conserved in Brassica napus and other plant species.Plant Physiol,2001,127(3):910-917
    66.Jaglo-Ottosen K R,Gilmour S J,Zarka D G,Schabenberger O,Thomashow M F.Arabidopsis CBF1overexpression induces COR genes and enhances freezing tolerance.Science,1998(280):104-106
    67.Jakoby M,Weisshaar B,Droge-laser W,Vicente-Carbajosa J,Tiedemann J,Kroj T,Parcy F.bZIP transcription factors in Arabidopsis.Trends Plant Sci,2002(7):106-111
    68.Jander G,Norris S R,Rounsley S D,Bush D F,Levin I M,Last R L.Arabidopsisi map-based cloning in the post-genome era.Plant Physiol,2002(129):440-450
    69.Jofuku K D,den Boer B G W,Van Montagn M,Okamuro J K.Control of Arabidopsis flower and seed development by the homeotic gene APETALA2.Plant Cell 1994(6):1221-1225
    70.Johnson C,Boden E,Desai M,Pascuzzi P,Arias J.In vivo trarget promoter-binding activities of a xenobiotic stress-activated TGA factor.Plant J,2001(28):237-243
    71.Kagaya Y,Ohmiya K,Hattori T.RAV1,a novel DNA-binding protein,binds to bipartite recognition sequence through two distinct DNA-binding domains uniquely found in higher plants,Nucleic Acids.Res.1999(27):470- 478
    72.Kalde M,Barth M,Somssich I E,Lippok B.Members of the Arabidopsis WRKY group Ⅲtranscription factors are part of different plant defense sighaling pathways.Mol Plant Microbe Interact.2003,16(4):295-305
    73.Kanazin V,Talbert H,See D,Decamp P,Nero E,Blake T.Discovery and assay of single nucleotide polymorphisms in barley(Hordeum vulgare L).Plant Mol Biol,2002,48(56):529-537
    74.Kasuga M,Liu Q,Miura S,Yamaguchi-Shinozaki K,Shinozaki K.Improving plant drought,salt,and freezing tolerance by gene transfer of a single stress-inducible transcription factor.Nat.Biotechnol.1999(17):287-291
    75.Kato R,Varshney R K,Thiel T,Dehmer K J,Granar A.Generation and comparison of EST-derived SSRs and SNPs in barley(Hordeum vulgare L).Herediates,2001,135(23):145-151
    76.Kim H J,Kim Y K,Park J Y,Kim J.Light signaling mediated by phytochrome plays an important role in cold-induced gene expression through the C-repeat/dehydration responsive element(C/DRE)in Arabidopsis thaliana.Plant J,2002(29):693-704
    77.Kim J C,Lee S H,Cheong Y H,Yoo C M,Lee S I,Chun H J,Yun D J,Hong J C,Lee SY,Lim C O,Cho M J.A novel cold-inducible zinc finger protein from soybean,SCOF-1,enhances cold tolerance in transgenic plants.Plant J,2001(25):247-259
    78.Kitajima S,Koyama T,Yamada Y,Sato F.Constitutive expression of the neutral IPR-5(OLP,PR-5d) gene in roots and culture cell of tobacco is mediated by ethylene-responsive cis-element AGCCGCC sequence.Plant Cell Reports,1998(18):173-179
    79.Kim S Y,Kim Y C,Lee J H,Oh S K,Chung E,Lee S,Lee Y H,Choi D,Park J M.Identification of a CaRAV1 possessing an AP2/ERF and B3 DNA-binding domain from pepper leaves infected with Xan-thomonas axonopodis pv.Glycines 8ra by differential display.Biochimicaet Biophysica Acta,2005(1729):141-146
    80.Kizis D,Pagès M.Maize DRE binding proteins DBF1 and DBF2 are involved in rab17 regulation through the drought-responsive element in an ABA dependent pathway.Plant J,2002(30):679-689
    81.Knight H,Zarka D G,Okamoto H,Thomashow M F,Knight M R.Abscisic acid induces CBF gene transcription and subsequent induction of cold-regulated genes via the CRT promoter element.Plant Physiol,2004(135):1710-1717
    82.Kota R,Rudd S,Facius A,Kolesov G,Thiel T,Zhang H,stein N,Mayer K,Graner A.Graner snipping polymorphisms from large EST collections in barley(Hordeum vulgare L.).Mol Genet Genomics,2003,270(1):24-33
    83.Kota R,Varshney R K,Thiel E S T,Dehmer K J,Graner A.Generation and comparison of derived SSRs and SNPs in barley(Hordeum vulgare L.).Hereditas,2001(135):145-151
    84.Kotak S,Port M,Ganguli A,Bicker F,von Koskull-Doring P.Characterization of C-terminal domains of Arabidopsis heat stress transcription factors(Hsfs) and identification of a new signature combination of plant class A Hsfs with AHA and NES motifs essential for activator function and intracellular localization 2004(39):98-112
    85.Kranz H,Scholz K,weisshaar B.cMYB oncogene-like genes encoding three MYB repeats occur in all major plant lineages.Plant J,2000,21:231-235
    86.Krizek,B A.AINTEGUMENTA utilizes a mode of DNA recognition distinct from that used by proteins containing a single AP2 domain.Nucleic Acids Res.2003(31):1859-1868
    87.Kuvshinov V,Koivu K,Kanerva A,Pehu E.Molecular control of transgene escape from genetically modified plants.Plant Science,2001(160):517-522
    88.Ledger S E,Deroles S C,Given N K.Regeneration and Agrobacterium mediated transformation of chrysanthemum.Plant Cell Rep,1991(10):195-199
    89.Lema-Ruminska,Zalewska J,Sadoch M.Radiomutants of chrysanthemum(Dendranthema grandiflora Tzvelev) of the Lady group:RAPD analysis of the genetic diversity.2004,123(3):290-293
    90.Léon-Kloosterziel K M,Keijzer C J,Koornneef M.A seed shape mutant of Arabidopsis that is affected in integument development.Plant Cell 1994(6):285-392
    91.Lewontin R C.The interaction of selection and linkage I.General considerations:heterotic models.Genetics,1964(49):49-67
    92.Li J,Brander G,Palva E T.The WRKY70 transcription factor sanode of convergence for jasmonate and salicylate-mediated signals in plant defense.Plant Cell,2004(16):319-331
    93.Lichten M,Goldman A S H.Meiotic recombination hotspots.Annu Rev Genetics,1995(29):423-444
    94.Lindblad-Toh K,Winchester E,Daly M J,Wang D G,Hirschhorn J N,Laviolette J P,Ardlie K,Reich D E,Robinson E,Sklar P,Shah N,Thomas D,Fan J B,Gingeras T,Warrington J,Patil N,Hudson T J,Lander E S.Large scale discovery and genotyping of single nucleotide polymorphisms in the mouse.Nature Genet,2000,24(4):381-386
    95.Lippuner V,Cyert M S,Gasser C S.Two classes of plant cDNA clones differentially complement yeast calcineurin mutants and increase salt tolerance of wild-type yeast.J biol Chem,1996(271):12859-12866
    96.Liu Q,Kasuga M,Sakuma Y,Abe H,Misura S,Shinozaki K Y,Shinozaki K.Two transcription factors,DREB1 and DREB2,with an EREBP/AP2 DNA-binding domain separate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expression in Arabidopsis.Plant Cell,1998(10):1391-1406
    97.Liu L,White M J,MacRae T H.Transcription factors and their genes in higher plants functional domains,evolution and regulation,Eur J Biochem,1999(262):247-257
    98.Luz Marcela yaps,Mittak V.Biolistc transformation of chrysanthemum with the nucleo capsid gene of tomato spotted wilt virus,Plant Cell Reports,1995(14):694-698
    99.Magnani E,Sjolander K,Hake S.From endonucleases to transcription factors:evolution of the AP2DNA binding domain in plants.Plant Cell,2004(16):2265-2277
    100.Mahalingam R,Gomez-Buitrago A,Eckardt N,Shah N,Guevara-Garcia A,Day P,Raina R,Fedoroff N V.Characterizing the stress/defense transcriptome of Arabidopsis.Genome Biol,2003(4):20
    101.Martin C,Uberhuaga E,Perez C.Application of RAPD markers in the characterization of chrysanthemum varieties and assessment of somaclonai variation.Euphytica,2002(27):247-253
    102.Meyers B C,Tingey S V,Morgante M.Abundance,distribution and transcriptional activity of repetitive elements in the maizegenome.Genome Res,2001(11):1660-1676
    103.Menke F L H,Champion A,Kijne J W.Memelink J.A novel jasmonate-and elicitor-responsive element in the periwinkle secondary metabohte biosynthetic gene Str interacts with a jasmonate-and elicitor-inducible AP2-domain transcription factor,ORCA2.EMBO J,1999(18):4455-4463
    104.Miller J,McLachlan A D,Klug A.repetitive zinc-binding domains in the protein transcription factor ⅢA from Xenopus oocytes.EMBO J,1985(4):1609-1614
    105.Mitsuda N,Seki M,Shinozaki K,Ohme-Takagi M.The NAC transcription factors Nstland Nst2of Arabidopsis regulate secondary wall thickenings and are required for anther dehiscence.Plant cell,2005(17):2993-3006
    106.Mitiouchkina T Y,Ivanova E P.Chalcone synthase gene from Antirrhinum majus in antisense orientation successfully suppressed the petals pigmentation of chrysanthemum.Acta Horticulture,2000(508):215-218
    107.Mitiouchkina T Y,Dolgov S V.Modification of chrysanthemum plant and flower architecture by ro1C gene from Agrobacterium Rhzogenes introduction,Proc 19th International Symposium Improvement Ornamental Plant Ed.A.Cadic.Acta Hort.ISHS,2000,508
    108.Morales M,Roig E,Monforte A J,Arǘs P,Garcia-Mas J.Single nucleotide polymorphisms detected in expressed sequence tags of melon(Cucumis melo L.).Genome,2004,47(2):352-360
    109.Nasu S,Suzuki J,Ohta R,Hasegawa K,Yui R,Kitazawa N,Monna L,Minobe Y.Search for and analysis of single nucleotide polymorphisms(SNPs) in rice(Oryza sativa,Oryza rufipogon) and establishment of SNP markers.DNA Res,2002,9(5):163-171
    110.Narusaka Y,Nakashima K,Shinwari Z K,Sakuma Y,Furihata T,Abe H,Narusaka M,Shinozaki K,Yamamaguchi-Shinozaki K.Interaction between two cis-acting elements,ABRE and DRE,in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses.Plant J,2003(34):137-148
    111.Neal Courtney-Gutterson,Carolyn N,Christine L,Alison M.BIO/Technology,1994(12):Match
    112.Neal G.Anthocyanin Biosynthetic genes and their application to flower color modification through sense suppression.Hort Sci,1995,30(5):August
    113.Nicherson D A,Tobe V O,Taylor S L.PolyPhred:Automating the detection and genotyping of single nucleotide substitutions using fluorescence-based resequencing.Nucleic Acids Res,1997(25):2745-2751
    114.Nogueira F T S,Schlogl P S,Camargo S R,Fernandez J H,De Rosa V E J,Pompermayer Patrícia,Arruda PSsNAC23,amember of the NAC domain protein family,is assiociated with cold,herbivory andwater stress in sugarcane.Plant Sci,2005(169):93-106
    115.Nover L,Scharf K D,Gagliardi D,Vergne P,Czamecka-Verner E,Gurley W B.The Hsf world:classification and properties of plant heat stress transcription factors.Cell Stress Chap,1996(1):215-223
    116.Novillo F,Alonso J M,Ecker J R,Salinas J.CBF2/DREB1C is a negative regular and plays a central role in stress tolerance in Arabidopsis.Proc.Natt.Acad.Csi.2004,101(11):3985-3990
    117.Ohme-Takagi M and Shinshi H.Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element.Plant cell 1995(7):173-182
    118.Ohta M,Ohme-Takagi M,Shinshi H.Three ethylene-responsive transcription factors in tobacco with distinct transactivation functions.Plant J,2000,22(1):29-38
    119.Ohta M,Matsui K,Hiratsu K,Shinshi H,Ohme-Takagi Masaru.Repression domains of class ⅡERF transcriptional repressors share an essential motif for active repression.Plant Cell,2001(13):1959-1968
    120.Ooka H,Satoh K,Doi K,Nagata T,Otomo Y,Murakami K,Osato N,Kawai J,Carninci P,Hayashizaki Y,Suzuki K,Kojima K,Takahara Y,Yamamoto K,Kikuchi S.Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis Thaliana.DNA Res.2003(10):239-247
    121.Olsen A N,Ernst H A,Leggio L,Skriker K.NAC transcription factors:structurally distinct,functionally dicerse.Trends Plant Sci,2005,10(2):79-87
    122.Oud J S N,Schneiders H,Kool A J,Grinsven A Q J M V.Breeding of transgenic orange petunia hybrida varieties.Euphytica 1995,84(3):175-181
    123.Ovadis M,Zuker A,Tzfira T,Aharoni A,Shklarman E,Scovel G,Itzhaki H,Ben-Meir H,Vainstein A.Generation of transgenic carnation plants with novel characteristics by combining microprojectile bombardment with Agrobacterium tumefaciens transformation.Plant biotechnology and In Vitro biology in the 21 st Century. Izhar S., Altman A. and Ziv M. eds. 1999, 189-192.
    124. Ovadis M, Zuker A, Tzfira T, Shklarman E, Scovel G, Itzhaki H, Ahroni A, Ben-Meir H, Vainstein A. A highly efficient procedure for generating carnation plants with novel traits. Acta Hort, 2000(508): 49-51
    125. Park J M, Park C J, Lee S B, Ham B K, Shin R, Paek K H. Overexpression of the tobacco Tsil gene encoding an EREBP/AP2-type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco. Plant Cell, 2001(13): 1035-1046
    126. Patterson N, Hattangadi N, Lane B, Lohmueller K E, Hafler D A, Oksenberg J R, Hauser S L, Smith M W, Stephen J, Brien O', Altshuler D, Daly M J, Reich D. Methods for high density admixture mapping of disease genes. Am J Hum Genet, 2004(74): 979-1000
    127. Paz-Ares J, Ghosal D, wienand U, Peterson P A, Saedler H. The regulatory CI locus of zea mays endocdes a protein with homology to myb protooncogene products and with structs and with structural similarities to transcritptional activators. EMBO J, 1987(6): 3553-3558
    128. Pritchard J K. Deconstructing maize population structure. Nat Genet, 2001,28(3): 203-204
    129. Rabindran S K, Giorgi G, Clos J, Wu C. Molecular cloning and expression of a human heat stress factor. Proc. Natl. Acad. Sci. USA. 1991(88): 6906-6910
    130. Reich D E, Cargil M, Bolk S, Sabeti P C, Richter D J, Lavery T, Kouyou M R, Farhadian S F, Ward R. Linkage disequilibrium in the human genome. Nature, 2001(411): 199-204
    131. Reich D E, Schaffner S F, Daly M J, McVen G, Mullikin J C, Higgins J M, Richter D J, Lander E S, Altshuler D. Human genome sequence variation and. the influence of gene history, mutation and recombination. Nat Genet, 2002,32 (1): 135-142
    132. Renou J, Brochard P, Jalouzot R. Recovery of transgenic chrysanthemum (Dendranthema grandiflora Tzvelev) after hygromycin resistance selection. Plant Sci, 1993(89): 185-197
    133. Riechmann J L, Meyerowitz E M, The AP2/EREBP family of plant transcription factors. Biol Chem, 1998,379:633-646
    134. Riechmann J L, Ratcliffe O. A genomic perspective on plant transcription factors. Curr Opin in Plant Biol, 2000,423-434
    135. Riechmann J L, Heard J, Martin G, Reuber L, Jiang Z C, Keddie J, Adam L, Pineda O, Ratcliffe Samaha R R, Creelman R, Pligrim M, Broun P, Zhang J Z, Ghandehari D, Sherman B K, Yu G L. Arabidopsis transcription factors: Genome-wide comparative analysis among eukaryotes. Science, 2000(290): 2105-2110
    136. Risch N, Merikangas. The future of genetic studies of complex human diseases. Science 1996(273):1516-1517
    137.Robinson K,Firoozabady E.Transformation of floriculture crops.Sci.Hort,1993(55):83-99
    138.Sablowski R W,Meyerowitz E M.Ahomolog of NOAPICAL MERISTEM is an immediate target of the floral homeotic genes APETALA3/PISTILLATA.Cell,1998(92):93-103
    139.Sachidanandam R,Weissman D,Schmidt S C,Kakol J M,Stein L D,Marth G,Sherry S,Mrllikin J C,Mortimore B J,Willey D L,Hunt S E,Cole C G,Coggill P C,Face C M,Ning Z,Rogers J,Bentley D R,Kwok P Y,Mardis E R,Yeh R T,Schrltz B,Cook L,Davenport R,Dante M,Fulton L,Hillier L,Waterston R H,McPherson J D,Gilman B,Schaffner S,Van Etten W J,Reich D,Higgins J,Daly M J,Blumenstiel B,Baldwin J,Stange Thomann N,Zody M C,Linton L,Lander E S,Altshrler D.International SNP Map Working Group.A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms.Nature,2001(409):928-933
    140.Sakuma Y,Liu Q,Dubouzet J G,Abe H,Shinozaki K,Yamaguchi-Shinozaki K.DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs,transcription factors involved in dehydration- and cold-inducible gene expression.Bioche and Biophys Res Commun.2002(290):998-1009
    141.Sakamoto H,Araki T,Meshi T,Iwabuchi M.Expression of a subset of the Arabidopsis Cys2/His2-type zinc-finger protein gene family under water stress.Gene,2000(248):23-32
    142.Sarge K D,Zimarino V,Holm K,Wu C,Morimoto R I.Cloning and characterization of two mouse heat stress factors with distinct inducible and constitutive DNA binding ability.Genes Dev.1991(5):1902-1911
    143.Scharf K D,Rose S,Zott W,Schoffl F,Nover L.Three tomato genes code for heat stress transcription factors with a region of remarkable homology to the DNA-binding domain of the yeast HSF.EMBO J.1990(9):4495-4501
    144.Schltz E A,Gaughn G W.Genetic analysis of the floral initination process(FLIP) in Arabidopsis.Development 1993(119):745-765
    145.Schmitt T,Giessl A,Seitz A.Postglacial colonization of western Central Europe by Polyommatus coridon:evidence from population genetics.Heredity,2002,88(1):26-34
    146.Schoffl F,Prandl R,Reindla A.Regulation of the heat-shock response.Plant Physiol,1998(117):1135-1141
    147.Seki M,Narusaka M,Abe H,Kasuga M,Yamaguchi-Shinozak K,Carninci P,Hayashizaki Y,Shinozaki K.Monitoring the expression pattern of 1300 Arabidopsis genes under drought an cold stresses by using a full-length cDNA microarray.Plant Cell,2001,13(1):61-72
    148.Seki M,Narusaka M,Yamaguchi-Shinozakj K,Carninci P,Kaw J,Hayashizaki Y,Shinozaki K.Arabidopsis encyclopedia using full length cDNAs and its application.Plant Physiology and Biochemistry,2001(39):211-220
    149.Shannon S,Meeks-Wagner D R.Genetic interactions that regulate inflorescence development in Aradopsis.Plant Cell,1993(5):639-655
    150.Shastry B S,SNP alleles in human disease and evolution.J Hum Genet,2002(47):561-566
    151.Shchennikova A V,Shulga O A,Immink R,Skryabin K G,and Angencnt G C.Identification and characterization of four Chrysanthemum MADS-Box genes,belonging to the APETALA1/FRUITFULL and SEPALLATA3 subfamilies.Plant Physiol,2004(134):1632-1641
    152.Shifman S,Kuypers J,Kokoris M,Yakir B and Darvasi A.Linkage disequilibrium patterns of the human genome across populations.2003,12(7):771-776
    153.Shen Y G,Zhang W K,He S J,Zhang Q,Chen S Y.An EREBP/AP2-type protein in Triticum aestivum was a DRE-binding transcription factor induced by cold,dehydration and ABA stress,Theor Appl Genet,2003(106):923-930
    154.Shen Y J,Jiang H,Jin J P,Zhang Z B,Xi B,He Y Y,Wang G,Wang C,Qian L L,Li X,Yu Q B,Liu H J,Chen D H,Gao J H,Huang H,Shi T L,Yang Z N.Development of genome-wide DNA polymorphism database for map-based clonging of rice genes,Plant Physiol,2004(135):1198-1205
    155.Shinozaki K,Yamaguchi-Shinozaki K.Molecular responses to dehydration and low temperature:differences and cross-talk between two stress signaling pathways.Current Opinion in Plant Biology,2000(3):217-223
    156.Shinozaki K,Yamaguchi-Shinozaki K,Seki M.Regulatory network of gene expression in the drought and cold stress responses.Curr Opin Plant Biol,2003(6):410-417
    157.Shiwari Z K,Nakashima K,Miura S,Kasuga M,Seki M,Yamakushi-Shinozaki K,Shinozaki K.An Arabidopsis gene family encoding DRE/CRT binding proteins involed in low-temperature-responsive gene expression.Biochem Biophys Res Commun.1998,250(1):161-170
    158.Singh K B.Transcriptional regulation in plants:the importance of combinatorial control.Plant Physiol,1998(118):1111-1120
    159.Skamoto,A,Omirulleh S,Nakayama T,Iwabuchi M.A Zinc-finger-type transcription factor WZF-1 that binds to a novel cis-acting element of histone gene promoters represses its own promoter.Plant Cell Physiol.1996(37):557-562
    160.Staci N W.DNA binding properties of the Arabidopsis floral development protein AINTEGUMENTAA.2000,4076-4082
    161.Stockinger E J,Gilmour,Thomashow M F.Arabidopsis thaliana CBF1 encodes an AP2 domain element transcriptional activator that binds to the C-repeat/DRE,a cis-acting DNA regulatory element that stimulates transcription in response to low temprerature and water defict.Proc Natl Acad Sci USA,1997(94):1035-1040
    162.Takada S,Hibara K,Ishida T Tasaka M.The CUPSHAPED COTYLEDON1 gene of Arabidopsis regulates shoot apical meristem formation,Development 2001(128):1127-1135
    163.Takako N,Yoshiaki K,Masahiko S,Sanae K,Akemi O,Shigeru S.Cloning of a cDNA encoding an ethylene receptor(DG-ERS1) from chrysanthemum and comparison of its mRNA level in ethylene-sensitive and -insensitive cultivars.Post harvest Biology and Technology,2005(36):21-30
    164.Takatsu Y,Tomotsune H,Kasumi M,Sakuma F.Differences in adventitious shoot regeneration capacity among Japanese(Dendranthema grandiflomum Ramat.Kitamura) cultivars and the improved protocol for Agrobacterium-mediated genetic transformation.J.Jan.Soc.Hort Sci,1998(67):958-964
    165.Takatsu Y,Nishizawa Y.Transgenic chrysanthemum(Dendrantheraa grandiflorum(ramat.)kitamura) expressing a rice chitinsse gene shows enhanced resistance to fungal diseases.Sci Hort,1999,82(1-2):113-123
    166.Takatsuji H,Ori M,Benfey P N,Ren L,Chua N H.Characterization of a zinc finger DNA-binding protein expressed specifically in petunia petals and seedlings.EMBO J,1992(11):241-249
    167.Tenaillon M I,Sawkins M C,Long A D,Gaut R L,Doebley J F,Gaut B S.Patterns of DNA sequence polymorphisms along chromosome Ⅰ of maize(Zea mays ssp.May L).PNAS,2001,98(16):9161-9166
    168.Tepperman J M,Zhu T,Chang H S,Wang X,Quail P H.Multiple transcription-factor genes are early targets of phytochrome a signaling.Proc Natl Acad Sci USA,2001(98):9437-9442
    169.Thompson J D,Gibson T J,Plewniak F,Jeanmougin F,Higgins D G.The Clustal_X windows interface:flexible strategies for multiple sequence alignment aided by quality analysis tools.Nucl.Acids Res.1997(24):4876-4882
    170.Tishkoff S A,Varkonyi R,Cahinhinan N,Abbes S,Argyropoulos G,Destro-Bisol G,Drousiotou A,Dangerfield B,Lefranc G,Loiselet J,Piro A,Stoneking M,Tagarelli A,Tagarelli G,Touma E H,Williams S M,Clark A G,Haplotype diversity and linkage disequilibrium at human G6PD:recent origin of alleles that confer malarial resistance.Science,2001,293(5529):455-462
    171.Urban L A,Sherman J M,Moyer J W,Daub M E.High frequency shoot regeneration and Agrobacterium-mediated transformation of chrysanthemum(Dendrantherna grandiflora).Plant Sci,1994(98):69-79
    172.Uno Y,Furihata T,Abe H,Yoshida R,Shinozaki Y,Yamaguchi-shinozaki K.Arabidopsis basic leaucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions.Proc Nail Acad Sci USA,2000(97):11632-11637
    173.Van Der Krol A R,van Poecke R M,Vorst O F,Voogt C,van Leeuwen W,Borst-Vrensen TW,Takatsuji H,van Der Plas L H.Development and would-,cold-,desiccation-,ultraviolet-B-stress-induced modulations in the expression of the petunia zinc finger transcription factor gene ZPT2-2.Plant Physiol,1999(121):1153-1162
    174.van der Fits,L,Memelink,J.ORCA3,a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism.Science,2000(289):295-297
    175.van der Fits,L,Memelink,J.The jasmonate-inducible AP2/ERF-domain transcription factor ORCA3 activates gene expression via interaction with a jasmonate-responsive promoter element.Plant J.2001(25):43-53
    176.Van Wordagen M F,De Jong J,Schornagel M J.Rapid screening for host bacterium interactions in Agrobacterium-mediated gene transfer to chrysanthemum,by using the GUS-introngene.Plant Sci,1992(81):207-214
    177.Van der Leedge Plegt L M,van der Kronenburg Uen B C E,Franken J,van Tuyl,J M,van Tunen,A J,Dons,H J M.Transgenic lilies via pollen mediated transformation.Acta Horticulturae,1997(430):529-530
    178.Vandesompele J,A De Paepe,F Speleman,Elimination of primer-dimer artifacts and genomic coamplification using a two-step SYBR green Ⅰ real-time RT-PCR.Anal Biochem,2002,303(1):95-98
    179.Vierling E.Annu Rev Plant Physiol Plant Mol Biol,1991,42:579-620
    180.Vroemen C W,Mordhorst A P,Albrecht C,Kwaaitaal M A,de Vries S C.The CUP-SHAPED COTYLEDON3 gene is required for boundary and shoot meristem formation in Arabidopsis.Plant Cell,2003(15):1563-1577
    181.Wang C Y.Evaluation of genetic diversity of Chrysanthemum using AFLP markers.Dutch-Chinese Life Science Forum.Wagenningen,The Netherlands,2003
    182.Wang D G,Fan J B,Siao C J,AnBerno,young P,Ron S,Ghassan Q Nancy P,Young P,Winchester E,Spencer J,Kruglyak L,Stein L,Hsie L Topalogllou T,Hubbell E,Robinson E, Mittmann M, Morris M S, Shen N, Kilbum D, Rioux J, Nusbaum C, Rozen S, Hudson T J, Lipshutz R, Chee M, Lander E S. Large-scale identification mapping and genotyping of single-nucleotide polymorphisms in the human genome. Science, 1998(280): 1077-1082
    183. Wang Y, Theriault J R, He H, Gong J, Calderwood S K. Expression of a dominant negative heat shock factor-1 construct inhibits aneuploidy in prostate carcinoma cells. J Biol Chem, 2004, 279(31): 32651-32659
    184. Ware D, Jaiswal P, Ni J, Pan X, Chang K, Clark K. Teytelman L Schmidts, Zhao W, Cartinhour S, Mc Couch S, Stein L. Gramene: a resource for comparative grass genomics, Nucl Acid Res, 2002, 30 (1): 103-105
    185. Weising K, Atkinson R G, Gardner R C. Genomic finger-printing by microsatellite-primed PCR: a critical evaluation. PCR Methods App, 199504): 249-255
    186. Welsh M, Clelland M. Fingerprinting genome using PCR with arbitrary primers. Uncl Acids Res, 1990(18): 7213-7218
    187. Wessler SR. Homing into the origin of the AP2 DNA binding domain. Trends Plant Science, 2005(10): 54-56
    188. Wheeler D L, Barrett T, Benson D A, Bryant S H, Canese K, Church D M, D Cuccio M, Edgar R, Federchen S, Hemberg W, Kenton D L, Khovayko O, Lipman D J, Madden T M, Maglott D R, Ostell J, Pontius J U, Pruitt K D, Schuler G D, Shriml L M, Sequeira E, Sherry S T, Sirotkin K, Starchenko G, Suzek T O, Tatusov R, Tatusova T A, Wagner L Yaschenko E. Database resources of the national center for biotechnology information. Nucl Acid Res Res, 2005,3339-3345
    189. White S E, Doebley J F. The molecular evolution of terminal earl, a regulatory gene in the genus Zea. Proc Natl Acad Sci. USA, 1999(153): 1455-1462
    190. Wiederrecht G, Seto D, Parker CS. Isolation of the gene encoding the S. cerevisiae heat stress transcription factor. Cell, 1988(54): 841-853
    191. Williams JG.K, Kubelik AR, Livak KJ, Rafalski JA and Tingey SV. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 1990(18): 6531-6535
    192. Wolff K and Peters-Van Rijn J. Rapid detection of genetic variability in Chrysanthemum (Dendranthema grandiflora Tzvelev) using random primers. Heredity 1993(71): 335-341
    193. Wolff K, Peters-Van Rijn J and Hofstra H. RFLP analysis in chrysanthemum I Probe and primer development. Theor Appl Genet, 1994(88): 472-478
    194. Wuitschick J D, Lindstrom P R, Meyer A E, Karrer, K M. Homing endonulease sencoded by germ line-limited genes in Tetrahymena thermophila have APETELA2 DNA binding domains. Eukaryotic Cell,2004(3):685-694
    195.Xie Q,Frugis G,Colgan D,Chua N H.Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development.Genes Dev.2000(14):3024-3036
    196.Xiong L,Schumaker K S,Zhu J K.Cell signaling during cold,drought,and salt stress.Plant Cell.2002,Suppl:S165-S183
    197.Xue G P.An AP2 domain transcription factor HvCBF1 activates expression of cold-responsive genes in barley through interaction with a(G/a)(C/t) CGAC motif.Biochim Biophys Acta,2002,1577(1):63-72
    198.Yamaguchi-Shinozaki K,Shinozaki K.A novel eis-acting element in an Arabidopsis gene is involved in responsiveness to drought,low-temperature,or high-salt stress.Plant Cell,1994(6):251-264
    199.Yamanouchi U,Yano M,Lin H,Ashikari M,Yamada K.A rice spotted leaf gene,Sp 17,encodes a heat stress transcription factor protein.Proc.Natl.Acad.Sci.USA.2002(99):7530 -7535
    200.Yang D H,Yun P Y,Park S Y,plaha P,Lee D S,Lee I S,Hwang Y S,Kim Y A,Lee J S,Han B H,Lee S Y,Suh E J,Lim Y P.Cloning,characterization and expression of a Lateral suppressor-like gene from chrysanthemum(Dendranthema grandiflorum Kitamura).Plant Physiology and Biochemistry 2005(43):1044-1051
    201.Yang T W,Zhang L J,Zhang T G,Zhang H,Xu S J,An L Z.Transcriptional regulation net work of cold-responsive genes in higher plants.Plant Scicence 2005(169):987-995
    202.Yuan Q,Ouyang S,Liu J,Suh B,Cheung F,Sultana R,Lee D,Ouackenbush J,Buell C R.The TIGR rice genome annotation resource:annotating the rice genome and creating resources for plant biologist.Nucl Acid Res,2003(31):229-233
    203.Zabeau M,Selective restriction fragment amplification:a general method for DNA fingerprinting,European Patent Application.1993,Publication No.EP 0534858 A1
    204.Zarka D G,Vogel J T,Cook D,Thomashow M F.Cold induction of Arabidopsis CBF genes involves multiple ICE(inducer of CBF expression) promoter elements and a coldregulatory circuit that is desensitized by low temperature.Plant Physiol,2003,133(2):910-918
    205.Zhang J Z,Creelman R A,Zhu J K.From laboratory to field,using information from Arabidopsis to engineer salt,cold,and drought tolerance in crops.Plant Physiol.2004(135):1-7
    206.Zhang J Z,Creelman R A,Zhu J K.From Laboratory to Field,Using Arabidopsis to engineer salt,cold,tolerance in crops.Plant Physiology,2004(135):615-621
    207.Zhang W,Collins A,Maniatis N,Tapper,W,Morton,N E.Properties of linkage disequilibrium (LD) maps.Proc Natl Acad Sci USA,2002(99):17004-17007
    208.Zhang Z L,Xie Z,Zou X,Casaretto J,Ho T H,Shen Q J.A rice WRKY gene encodes a transcriptional repressor of the gibberellin signaling pathway in aleurone cells.Plant Physiol,2004,134(4):1500-1513
    209.Zhao W,wang J,He X,Huang X,Jiao Y,Dai M,Wei S,Fu J,Chen Y,Ren X,Zhang Y,Ni P,Zhang J,Li S,Wang J,Wong G K,Zhao H,Yu I,Yang H,Wang J.BGI- RIS:an integrated information resource and comparative analysis workbench for rice genom ics,Nucl Acid Res,2004(32):377-382
    210.Zhou J,Tang X,Martin G B.The Pto Kinase conferring resistance to tomato bacterial speck disease interacts with proteins that binding a cis-element of pathogenesis-related genes.EMBO J.1997(16):3207-3218
    211.Zhu T,Nicholas J P.Transcriptional responses to low temperature and their regulation in Arabidopsis.Can J Bot,2003(81):1168-1174
    212.Zhu Y L,Song Q J,Hyten D L,Van Tossell C P,Matukumalli L K,Grimm D R,Hyatt,S M,Fickus E W,Yong N D,Cregan P B.Single nucleotide polymorphisms in soybean.Genetics,2003,163(3):1123-1134
    213.Zukei A,Tzfira T,Uainstein A.Genetic engineering for cut flower improvment.Biotechnol.Adv,1998(16):33-79
    214.Zuker A,Ahroni A,Tzfira T,Ben-Meir H and Vainstein,A.Wounding by bombardment yields highly efficient Agrobacterium- mediated transformation of carnation(Dianthus caryophyllus L)Nblecular Breeding,1999,5(4):367-375
    215.曹志方,李洁,刘强.植物转录因子的结构和功能.植物科学进展,2000(3):95-108
    216.陈发棣,陈佩度,李鸿渐.几种中国野生菊的染色体组分析及亲缘关系初步研究.园艺学报,1996,23(1):67-72
    217.陈发棣,陈佩度,房伟民,李鸿渐.栽培小菊与野生菊间杂交一代的细胞遗传学初步研究.园艺学报,1998,25(3):308-309
    218.陈发棣,陈佩度,房伟民,李鸿渐.三个药用菊品种的细胞学研究.南京农业大学学报,1997(2):28-31
    219.陈吉宝,景蕊莲,员海燕,卫波,昌小平.小麦TaDREB1基因的单核苷酸多态性分析.中国农业科学,2005,8(12):2387-2394
    220.陈俊愉,梁振强.菊花探源--关于菊花起源的科学试验.科学画报,1964,9(7):363-36
    221.陈英,曹毅,蒋彦,乔代蓉.转基因玉米的遗传转化方法研究.四川草原,2000(1):51-55
    222.陈祯.高等植物转基因研究.生物学通报,2002,37(8):6-8
    223.崔欣,陈庆山,杨庆凯,曹越平.大豆转基因的研究进展.生物技术通报,2002(4):16-20
    224.戴思兰.中国栽培菊花起源的综合研究(学位论文).北京林业大学,1994
    225.戴思兰.菊属7个种的人工种间杂交试验.北京林业大学学报,1996,18(4):16-22
    226.戴思兰,钟扬,张晓艳.中国菊属植物部分种的数量分类研究.北京林业大学学报,1995,17(4):9-15
    227.戴思兰,陈俊愉,李文彬.菊花起源的RAPD分析.植物学报,1998,40(11):1053-1059
    228.戴思兰,王文奎,黄家平.菊属系统学和菊花起源的研究进展.北京林业大学学报,2002,24(56):230-234
    229.杜娟,季静,王罡,胡汉桥.基因枪在植物遗传转化中的应用.吉林农业科学,2000,25(2):38-40
    230.冯冬霞,施生锦.叶面积测定方法的研究效果初报.农业基础科学,2005,121(6):150-152
    231.傅荣昭,孙勇如,贾士荣.植物遗传转化技术手册.北京:中国科学技术出版社,1994:42-50
    232.傅荣昭,马江生,曹光诚,李文彬,孙如.观赏植物色香形基因工程研究进展-文献综述.园艺学报,1995,22(40):381-385
    233.郭新红,姜孝成,陈良碧.基因枪技术在植物基因转化中的应用.世界农业,2001(9):45
    234.葛莘,高级植物分子生物学,2004,科学出版社.
    235.巩振辉,Milncr J J,何玉科.拟南芥基因转移新法--真空渗入法的研究.西北植物学报,1996,16(3):277-283
    236.郝岗平,杨清,吴忠义,曹鸣庆,黄丛林.植物的单核苷酸多态性及其在作物遗传育种中的应用.2004,21(5):618-624
    237.韩志萍,安利佳,侯和胜.AP2/EREBP转录因子的结构和功能.中国农学通报,2006,22(2):33-38
    238.何新建.乙烯信号途径参与盐胁迫.中国科学院遗传与发育研究所博士论文.2003
    239.黄骥,王建飞,张红生.植物C2H2型锌指蛋白的结构与功能,遗传,2004,26(3):414-418
    240.黄骥,南京农业大学学位论文.水稻非生物胁迫相关锌指蛋白基因的克隆与功能分析.2005
    241.黄祥富,黄上志,傅家瑞.植物热激蛋白的功能及其基因表达的调控.植物学通报 1999,16(5):530-536
    242.洪波,仝征,马男,李建科,Kasuga M,Yamaguchi-Shinozaki K,高俊平.AtDREB1A基因在菊花中的异源表达提高了植株对干旱和盐渍胁迫的耐性.中国科学C辑,2006,36(3):223-231
    243.贾继增.分子标记种质资源鉴定和分子标记育种.中国农业科学,1996,29(4):1-10
    244.康育义.生命起源与进化.南京大学出版社,1997
    245.毛新国,王爱萍,景蕊莲,昌小平,贾继增.小麦抗旱相关基因TaGSTF6的多态性.中国农业科学,2007,40(2):225-233
    246.孟庆长,南京农业大学学位论文.大豆GmNAC和GmLFY转录因子编码基因的克隆、鉴定 和种子性状的QTL定位研究.2006
    247.李鸿渐.中国菊花.南京:江苏科技出版社,1993
    248.李书粉,孙富丛,肖理慧,高武军.卢龙斗植物对非生物胁迫应答的转录因子及调控机制.西北植物学报.2006,26(6):1295-1300
    249.李炜.广义菊属远缘杂交的初步研究.北京林业大学学位论文.2006
    250.李辛雷,陈发棣.菊属野生种、栽培菊花及种间的RAPD分析.南京农业大学学报,2004,27(3):29-33
    251.李辛雷,陈发棣,崔娜欣.菊属种间杂种的鉴定.南京农业大学学报,200,28(1):24-28
    252.李子银,胡会庆.农杆菌介导的植物遗传转化进展.生物工程进展,1998,18(1):22-26
    253.刘方,王坤波.宋国立.中国棉花转基因研究与应用.棉花学报,2002,14(4):249-253
    254.刘黎卿.南京农业大学学位论文,毛华菊 DREB2同源基因的克隆和功能分析.2007
    255.刘万清,贺林.利用SNP进行遗传病致病基因搜寻的策略.生命科学,1999,11(5):197-200
    256.刘金勇.菊花品种遗传改良的研究进展.湖南林业科技,2004,31(1):49-52
    257.刘强,赵南明,K.Yamaguchi-Shinozaki K.Shinozaki.DREB转录因子在提高植物抗逆性中的作用.科学通报,2000(45):11-16
    258.刘振林,冯慧,戴思兰.北京及周边地区菊科野生花卉资源调查与分析.中国观赏园艺研究进展,2005,69-73
    259.刘振林,尹伟伦,戴思兰.新的BADH同源基因:甘菊BADH基因.分子植物育种,2005,3(4):591-593
    260.路子显,常团结,刘翔,朱祯.植物碱性亮氨酸拉链(bZIP)蛋白的研究进展(一).遗传,2001(23):564-570
    261.罗怀容,施鹏,张亚平.单核苷酸多态性的研究技术.遗传,2001,23(5):471-476
    262.钱海丰,薛庆中.草坪草生物技术研究进展.生物技术通报,2002(4):26-29
    263.秦前锦,李桂菊,宋发菊,徐晓燕.野生稻资源的特异性状与超高产育种.湖北农业科学,2000(6):16-18
    264.仇玉萍,荆邵娟,付坚,李璐,余迪求.13个水稻WRKY基因的克隆及其表达谱分析.科学通报,2004,49(18):1860-1869
    265.任春梅,高必达,何迎春.基因枪转化技术及其在禾谷类作物遗传转化中的应用.生物学杂志,2001,18(4):29-32
    266.邵寒霜,李继红,郑学勤,陈守才.拟南LFY cDNA的克隆及转化菊花的研究.植物学报,1999,41(3):268-271
    267.孙自然,刘青林.园林植物遗传育种学(菊花育种).北京:中国林业出版社,2000:240-241
    268.王彩云,陈俊愉,Maarten AJ.菊花及其近缘种的分子进化于系统发于研究.北京林业大学 学报,2004(26):91-96.
    269.王春能,张启翔,高亦柯.菊花转基因研究进展.河南林业科技,2002,22(2):19-21
    270.王东,杨金水.棉花类耐盐锌指蛋白基因的克隆与结构分析.复旦学报(自然科学版),2002,41(4):42-46
    271.王计平,史华平,毛雪,李润植.转录因子网络与植物对环境胁迫的响应.应用生态学报,2006,17(9):1740-1746
    272.王静.新中国成立后的北京菊花.中国菊花研究论文集.北京市园林局、中国菊花研究会合编,2001,20-29
    273.王永勤,肖兴国,张爱民.农杆菌介导的小麦遗传转化几个影响因素的研究.遗传学报,2002,29(3):260-265
    274.王旭,龚向群.植物基因转移方法.生物学通报,1995,30(12):1-4
    275.翁锦周,洪月云.植物热激转录因子在非生物逆境中的作用.分子植物育种,2006,4(1):88-94
    276.吴莹,徐香玲.植物热激转录因子的研究进展.哈尔滨师范大学自然科学学报.2005,21(3):73-78
    277.奚亚军,路明.小麦转基因技术的研究现状及在育种上的应用.中国农学通报,2002,18(3):55-57
    278.谢永丽.一类植物中特有的转录因子--AP2/EREBP转录因子家族.青海师范大学学报(自然科学版),2006(3):80-83
    279.徐子勤.重要禾谷类植物转基因研究.生物工程进展,2001,21(1):59-74
    280.徐文斌,郭巧生,王长林.药用菊花遗传多样性的RAPD分析.中国中药杂志,2006(31):18-21
    281.杨致荣,王兴春,李西明,杨长登.高等植物转录因子的研究进展.遗传,2004,26(3):403-408
    282.杨致荣,毛雪,李润植.植物次生代谢基因工程研究进展.植物生理与分子生物学学报,2005,31(1):11-18
    283.叶健明,唐克轩,沈大棱.植物转基因方法概述.生命科学,1999,11(2):58-60
    284.钟小仙,顾洪如,丁成龙,白淑娟,向阳海,刘朝晖.苏丹草与拟高粱远缘杂交初报.草地学报,2002,10(1):24-27
    285.赵惠恩,汪小全,陈俊愉,洪德元.基于核糖体DNA的ITS序列和叶绿体TrnT-trnL及trnL-trnF基因间区的菊花起源与中国菊属植物分子系统学研究.分子植物育种,2003,1(5/6):597-604
    286.赵久然,郭景伦,滕海涛,尉德铭,郭强.玉米转基因研究进展.玉米科学,2000,8(3):14-17
    287.周春玲,戴思兰.菊属部分植物的AFLP分析.北京林业大学学报,2002,24(5/6):71-75
    288.朱凯.南京农业大学学位论文,甘菊NAC同源基因的克隆和功能分析.2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700