棉花海陆杂交—回交后代群体纤维长度性状的遗传分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究采用DNA分子标记技术(如SSR、SRAP等),以新疆“自育”的海岛棉和陆地棉为亲本及其衍生的F2群体等为材料,绘制结合分子标记的遗传连锁图谱。结合考查的F_2和F_(2:3)群体的农艺性状及纤维特性,在已构建的遗传连锁图谱上分析数量性状基因位点、检测并得到相应的QTL;利用种间杂交-回交高世代群体(BC_4F_2/BC_4F_(2:3))剖析数量性状基因位点遗传变异的分子机制,旨在寻找到与棉花纤维长度性状相关的遗传基因位点,为分子标记辅助和分子水平上的遗传改良提供依据。获得了如下的结果。
     1.对丰产性优良、抗性强的系9和纤维品质性状优良的新海16及其所产生的后代群体进行比较分析。结果表明,系9和新海16的纤维长度性状的遗传特性符合杂交育种的亲本选配原则;且纤维长度性状呈现正态分布,能进行QTL检测。
     2.以陆地棉和海岛棉为材料,利用本实验建立和优化的分子标记体系,对48份棉花资源进行分析和基于本实验新开发的棉花纤维序列的93对EST-SSR适用性检测。结果表明,系9具有可以作为陆地棉基础种质的特性;新海16具有海岛棉的代表性。本实验优化的分子标记技术体系是可行的。
     3.以系9作母本,新海16作父本,构建了F2分离群体(297个单株),结合SSRs,SRAPs和EST-SSRs技术,构建连锁图谱。用800多对SSR引物,93对EST-SSR引物、300多个SRAP引物组合分析系9和新海16间的多态性,获得了245对(占67.1%)多态性SSR引物,EST-SSR引物88条(占24.1%)及32对(占8.8%)SRAP引物的组合。
     4.利用有多态性的引物对F_2群体扩增,结合QTL分析,获得了229对SSR引物,29个SRAP引物组合,88对EST-SSR引物。用QTL-IciMapping对多态性标记进行连锁分析。得到一张含346个标记的22个连锁群。图谱总长为4307.73cM,占棉花总基因组(5000cM)的86.15%;平均标记间距为12.45cM。
     5.对F_2群体的每个植株及其衍生的F_2:3家系(设置两重复)的纤维长度性状进行考查,用完备区间作图法进行QTL检测,LOD域值为3.0,共定位了34个QTLs:分析得到在第四连锁群上检测到的QTL有两个显著标记,解释表型变异分别为17.3072%(NAU3207/me4em5)和13.7922%(me3em10/B3171)
     6.以系9作母本,纤维品质优良的海岛棉新海16作父本,杂交后回交4代,通过单籽粒传法最终构建了一个种间杂交-回交高世代的渗入系群体,含有234个BC_4F_(2:3)株系。
     7.田间种植BC4F2:3家系,随机区组三次重复,考查纤维品质性状,各性状的频率分布显示:纤维长度性状频率分布图的峰偏向新海16;相关性分析表明:大多数性状之间均存在差异显著,但相关关系不等。以利用系9与新海16杂交的F2代所构建的连锁图谱的引物为参照,结合查询的与纤维长度有关的标记,用相关引物对BC4F2群体进行分析,用QTL-IciMapping对利用的标记产生的数据实施遗传作图。绘制了一张19个连锁群,包含278个标记。其总长为4351.65cM,占棉花总基因组(5000cM)的87.03%;标记间平均间距为15.65cM。
     8.利用标记数据与性状数据进行QTL检测分析,共检测到74个纤维长度性状相关的QTL,检测到的QTL有7个显著标记,解释表型变异在9.1078%和13.6005%之间。且都为显性增益占主导,说明海陆杂交后代的纤维长度性状具有较强的优势,应在育种中加强应用。
In this study, genetic linkage maps for tetraploid cotton were constructed by means of DNA-basedmarkers based on two segregation populations. Cotton agronomic trait and fiber quality were investigatedin the population of F_2individuals and corresponding F_(2:3)families and High backcross generations(BC_4F_2and BC_4F_(2:3)). On the basis of genetic map constructed; quantitative traits analysis and QTLs detection wasperformed. The purpose of this study was to find the genetic loci associated significantly with fiber length,so the further research and application (such as marker-aided selection, map-based cloning) could beconducted. The results obtained in this study were as follows.
     1. The high yielding fine, strong resistance of xi9and good fiber quality traits of xinhai16and itsoffspring produced by group a comparative study. Results showed that fiber length between xi9andxinhai16is fit for cross breeding parent matching principle; And fiber length properties presented normaldistribution, can detect QTL.
     2. Upland cotton and island cotton as material, the use of the experimental set up and optimizedmolecular marker system, analysis of48cotton resources and based on this experiment is a newdevelopment of cotton fiber series of applicability of93EST-SSR detection, the results show that thesystem can have as a foundation for upland cotton germplasm characteristics; New sea16representativewith sea island cotton. This experiment optimized molecular marker technology system is feasible.
     3.An interspecific F2population consisted of297plants, which was developed from the cross betweenXi9(characterized as high fiber yield) and Xinhai16(characterized as excellent fiber quality), wasgenotyped with SSR, SRAP and EST-SSR markers. Over1200(pairs of) primers (combinations) were usedto survey the polymorphism between the parents, and the result showed that245pairs of SSR primers(67.1%),88EST-SSR primers (24.1.3%),32SRAP primer combinations (8.8%) could amplifypolymorphic bands.
     4.The marker data were subsequently analyzed using QTL-IcIMapping2.3. Among the229pairs ofSSR primers,88EST-SSR primers,29SRAP primer were arranged into22linkage groups. The linkagemap covered4307.73cM with an average distance of12.45cM between two markers.
     5.The F_2plants and corresponding F_(2:3)families (arranged in2replicates in a random block design)were used for scoring the phenotypes of fiber length. The present genetic linkage map and traits data wasused to identify and map the quantitative trait loci (QTLs) affecting fiber length traits in297F_(2:3)familylines. The method of composite interval mapping was applied to search for QTLs by QTL-ICIMappingV2.3. The log odds-ratio threshold of QTL detection was3.0, on the basis of which this analysis yielded34QTLs: two QTLs controlling fiber length are significant marks in linkage4th,explained17.30729%(NAU3207/me4em5)and13.7922%(me3em10/B3171) of phenotypic variation (PVE).
     6.An advanced-generation population was developed by first crossing G. hirsutum cv.xi9and G.barbadense cv. Xinhai16(characterized as excellent fiber quality),then single seed descent to BC_4F_2generation. This population consisted of234BC_4F_2lines, which containing chromatin segmentintrogressived from xinhai16to xi9background.
     7.Field experiment was carried out for234BC_4F_(2:3)families in2009(arranged in3replicates in arandom block design), and the phenotypes of fiber quality were scored. The phenotypic distribution of theindividual introgression lines for five traits indicated the trend of regression of individual lines to xinhai16and the wide variance for each trait. The result from correlation analysis among the five traits showed that:trait combinations were significantly correlated except the combinations of micronaire and elongation, butthe coefficients were different.Following the order and primers of a linkage map developed from the F_2populationfrom the same cross, several hundred of SSR markers were used in this study to detect genotypes.278primers were arranged into19linkage groups. The linkage map covered4351.65cM with an averagedistance of15.65cM between two markers.
     8.The method of composite interval mapping was applied to search for QTLs by QTL-ICIMappingV2.3. The log odds-ratio threshold of QTL detection was3.0, on the basis of which this analysis yielded74QTLs: seven QTLs controlling fiber length are significant marks in linkage all,explained from9.1078%to13.6005%of phenotypic variation (PVE).And there are the dominant gain dominant, That said thesea-land fiber length of the hybrid offspring traits has a strong advantage, enhancing the use in breeding
引文
[1]白建荣,郭季荣,侯变英.分子标记的类型、特点及在育种中的作用[J].山西农业科学,1999,27:33-38.
    [2]别墅,王坤波,孔繁玲,周有耀,邹美娟,王春英.棉花基因组重复序列研究进展[J].分子植物育种,2003,1:373-379.
    [3]别墅.棉花基因组研究进展[J].湖北农业科学,1999,6:18-22.
    [4]陈旭升,狄佳春,许乃银,刘剑光,肖松华.海陆杂种棉研究现状及发展趋势[J].江西棉花,2002,24:3-6.
    [5]郭旺珍,孙敬,张天真.棉花纤维品质基因的克隆与分子育种[J].科学通报,2003,48:410-417.
    [6]林忠旭,张献龙,聂以春,贺道华,吴茂清.棉花SRAP遗传连锁图构建[J].科学通报,2003,48:1676-1679.
    [7]林忠旭,张献龙,聂以春.新型标记SRAP在棉花F2分离群体及遗传多样性评价中的适应性分析[J].遗传学报,2004,31:622-626.
    [8]林忠旭.棉花分子标记遗传连锁图构建和产量、纤维品质相关性状定位[D].武汉:华中农业大学图书馆,2005.
    [9]刘定富等译.《生统遗传学》,MatherK Jinks J L著,第二版,科学出版社,1988.
    [10]刘东峰.数量遗传应走多学科合作之路[N].科学时报,2002-12-25.
    [11]毛树春.中国棉花可持续发展研究[M].北京,中国农业出版社,1999.
    [12]王坤波,崔荣霞,宋国立.棉花DNA主要分析技术及其应用研究[J].棉花学报,1999,11:326-332.
    [13]王淑民.提高我国原棉内在品质的紧迫性与途径[J].纤维标准与检验,1993,11:17-21.
    [14]吴为人,唐定中,李维明.数量性状的遗传剖析和分子剖析[J].作物学报,2000,26:501-507.
    [15]香山科学会议,2003. http://www.xssc.ac.cn/Web/AttachFile/FileDetail.asp?infono=412.
    [16]邢永忠,徐才国.作物数量性状基因研究进展[J].遗传,2001,23:498-502.
    [17]徐云碧,申宗坦,朱立煌,陈英.水稻形态性状与分子标记的相互关联及其检测[J].浙江农业学报,1994,6:1-6.
    [18]徐云碧,朱立煌.分子数量遗传学[M].北京,中国农业科技出版社,1994,86-88.
    [19]易成新,潘泽义,刘文秀.棉花纤维品质指标及其提高问题[J].安徽农学通报,2001,7:36-38.
    [20]张凤鑫.发展高品质棉迎接加入WTO新挑战—棉花纤维品质改良的进展[J].安徽农学通报,2002,6:6-8.
    [21]张军,武耀廷,郭旺珍,张天真.棉花微卫星标记的PAGE/银染快速检测[J].棉花学报,2000,12:267-269.
    [22]张天真,靖深蓉.棉花雄性不育杂交种选育的理论与实践[M].北京:中国农业出版社,1998.
    [23]张天真,袁有禄,郭旺珍.棉花高强纤维QTLs的微卫星标记筛选[J].中国农业科学,2001,34:363-366.
    [24]张天真.棉花纤维品质分子育种的现状及展望[J].棉花学报,2000,12:321-326.
    [25]朱军.数量性状遗传分析的新方法及其在育种中的应用[J].浙江大学学报,2000,26:1-5.
    [26]左开井,孙济中,张献龙,聂以春,刘金兰,冯纯大.利用RFLP,SSR和RAPD标记构建陆地棉分子标记连锁图[J].华中农业大学学报,2000,19:190-193.
    [27] Abdel Ghany A G A, Zaki E A. Cloning and sequencing of an envelope-like gene inGossypium[J].Planta,2002,216:351-353.
    [28] Abdel Ghany A G A,Zaki E A. Sequence heterogeneity of the envelope-like domain in the Egyptiancotton Gossypium barbadense[J]. African Journal of Biotechnology,2003,2:341-344.
    [29] Alberola T M,de Frutos R. Molecular structure of a gypsy element of Drosophila subobscura (gypsyDs) constituting a degenerate form of insect retroviruses[J]. Nucl Acids Res,1996,24:914-923.
    [30] Apuya N R, Frazier B L, Keim P, Roth E J, Lark K G Restriction fragment length polymorphisms asgenetic markers in soybean, Glycine max (L.) Merrill[J]. Theor Appl Genet,1988,75:889-901.
    [31] Arcade A,Falque M,Charcosset A,Joets J. BioMercator: a Java software for genetic maps displayand QTL meta-analysis. UMR INRA UPS XI INAPG CNRS Genetique Vegetale,Ferme du Moulon,91190Gif-sur-Yvette一France name@moulon.inra.fr.
    [32] Arumuganathan K,Earle E D. Nuclear DNA content of some important plant species[J]. Mol. Biol.Rep.,1991,9,208-218.
    [33] Baker R J,Longmire J L,Van den Bussche R A. Organization of repetitive dements in the uplandcotton genome (Gossypium hirsutum)[J]. J. Hered.,1995,86:178-185
    [34] Barton N H,Keightley P D. Understanding quantitative genetic variation[J]. Nature ReviewsGenetics,2002,3:11-21.
    [35] Basten C J,Weir B S,Zeng Z B. QTL Cartographer: Reference manual and tutorial for QTLmapping. Department Of Statistics,North Carolina State University,Raleigh,1997.
    [36] Basten C J,Weir B S,Zeng Z B. Zmap--a QTL Cartographer. In: Smith C, Gavora J S, Chesnais B BJ, Fairfull W, Gibson J P, Kennedy B W, Burnside E B eds. Proceedings of the5th world congresson genetics applied to livestock production.Vol.2. Computing strateres and software. University ofGuelph,Guelph,Ontario,Canada,1994:65-66.
    [37] Bernacchi D,Beck-Bunn T,Emmatty D,Eshed Y,Inai S,Lopez J,Petiard V,Sayama H,Uhlig J,Zamir D,Tanksley S. Advanced backcross QTL analysis of tomato. II. Evaluation ofnear-isogenic lines carrying single-donor introgressions for desirable wild QTL-alleles derived fromLycopersicon hirsuturn and L. pimpinellifolium[J]. Theor Appl Genet,1998,97:170-180.
    [38] Bohn M,Kheirallah M M,Gonzalez-De-Leon,Hoisimgton D,Utz D A,Deutsch H F,Jewell JA,Minhon D C,Melchinger J A. QTL mapping in tropical maize:2. comparison of genomicregions for resistance to Diatraea spp[J]. Crop Sci,1997,37:314-331.
    [39] Borevitz J O,Chory J. Genomics tools for QTL analysis and gene discovery[J]. Curr. Opin. PlantBiol.,2004,7:132-136.
    [40] Botstein B,White R L,Skolnick M,Davis R W. Construction of a genetic linkage map usingrestriction fragment length polymorphisms[J]. Am J Hum Genet,1980,32:314-331.
    [41] Brubaker C L,Bourland F M,Wendel J F. The origin and domestication of cotton. In: Smith C W,Cothren J T eds., Cotton. Wiley, New York,1992:3-31.
    [42] Burr B,Burr F A,Thompson K H,Albertson M C,Stuber C W. Gene mapping with recombinantinbreds in maizes[J]. Genetics,1988,118:519-526.
    [43] Cantrell R G,Pederson J,Liu S L. Mapping of introgressed cotton populations with DNA markers[J].Abstract, Plant&Animal Genome VII,1999:56.
    [44] Castilho A,Vershinin A,Heslop-Harrison J S. Repetitive DNA and the chromosomes in the genomeof oil palm (Elaeis guineensis)[J]. Annals of Botany,2000,85:837-844.
    [45] Causse M A,Fulton T M,Cho Y Q,Ahn S N,Chunwongse J,Wu K,Xiao J,Yu Z H,RonaldP C,Harrington S E,Second G,McCouch S R,Tanksley S D. Saturated molecular map of the ricegenome based on an interspecific backcross population[J]. Genetics,1994,138:1251-1274.
    [46] Charmet G. Power and accuracy of QTL detection: simulation studies of one-QTL models[J].Agronomie,2000,20:309-323.
    [47] Chee P W,Rong J K,Williams-Coplin Dawn,Schulze S R,Paterson A H. EST derived PCR-basedmarkers for functional gene homologues in cotton[J]. Genome,2004,47:449-462.
    [48] Chen X,Temnykh S,Xu Y,Development of a microstellite framework map providing genome-widecoverage in rice[J]. Theor Appl Genet,1997,95:558-567.
    [49] Chittenden L M,Schertz K F,Lin Y,Wing R A,Paterson A H. RFLP mapping of a cross betweensorghum bicolor and S. propinquum, suitable for high density mapping, suggests ancestralduplication of sorghum chromosomes[J]. Theor Appl Genet,1994,87:925-930.
    [50] Chunwongse J,Martin G,Tanksley S D. Pre-germination genotypic screening using PCRamplification of half seeds[J]. Theor Appl Genet,1993,6:694-698.
    [51] Connell J P,Pammi S,Iqbal M J,Huizinga T,Reddy A S. A High Through-put Procedure forCapturingvMicrosatellites from Complex Plant Genomes[J].Plant Molecular Biology Reporter,1998,16:341-349.
    [52] CTC (Members of the Complex Trait Consortium),The nature and identification of quantitative traitloci: a community`s view[J]. Nat.Rev. Genet.,2003,4:911-916.
    [53] Darvasi A,Weinreb A,Minke V,Weller J I,Soller M. Detecting marker-QTL linkage and estimatingQTL gene effect and map location using a saturated genetic map[J]. Genetics,1993,134:943-951.
    [54] Delmer D P. Cellulose biosynthesis in developing cotton fibers. In: Basra A S eds.,Cotton Fibers:developmental biology, quality improvement, and textile processing.New york: Food ProductsPress,1999:85-112.
    [55] Dodds K G,Ball R,Djorovic N,Carson S D. The effect of an imprecise map oninterval mappingQTLs[J]. Genet Res.,2004,84:47-55.
    [56] Doebley J,Stoc A,Gustus C. Teosinte branched L and the origin of maize evidence for epistasis andthe evolution of dominance[J]. Genetics,1995,141:333-346.
    [57] Donis-Keller H,Green P,Helms C,Cartinghour S,Weiffendach B,Stephena K,KeithT P,BowdenD W,Smith D R,Lander E S,Botstein D,Akots Q,Rediker K S,Gravius T,Brown V A,Rising M B,Parker C,Powers J A,Watt D E,Karffman E R,Bricker A,Phippes P,Muller-KahleH,Fulton T R,Ng S,Schumrn J W,Braman J C,Knowlton R Q,Barker D F,Crooks S M,Lincoln S E,Daly M J,Abrahamson J. Agenetic linkage map of the human genome[J]. Cell,1987,51:319-377.
    [58] Edwards M D,Stuber C W,Wendel J F. Molecular marker facilitated investigations of quantitativetrait loci in maize. I. Numbers, genomic distribution and types of gene action[J]. Genetics,1987,116:113-125.
    [59] Endrizzi J E,Turcotte E L,Kohel R J. Genetic, cytology, and evolution of Gossypium.Adv[J]. Genet,1985,23:271-375.
    [60] Faerber C. Future demands on cotton fiber quality in the textile industry[J]. Proc Beltwide CottonConf.,1995:1449-1454.
    [61] Fang Z,Polacco M,Chen S,Schroeder S,Hancock D,Sanchez H,Coe E. cMap: the comparativegenetic map viewer[J]. Bioinformatics Applications Note,2003,19:416-417.
    [62] Flint J.,Valdar W.,Shifman S. and Mott R. Strategies for mapping and cloning quantitative traitgenes in rodents[J]. Nature Reviews Genetics,2005,6:271-286.
    [63] Flint-Garcia S A,Thornsberry J M,Buckler E S. Structure of linkage disequilibrium in plants[J].Annu. Rev. Plant Biol.,2003,54:357-374.
    [64] Forabosco P,Falchi M,Devoto M. Statistical tools for linkage analysis and genetic associationstudies[J]. Expert Review of Molecular Diagnostics,2005,5:781-796.
    [65] Fulton T M,Berk-Bunn T,Emmatty D,Eshed Y,Lope Z J,Petiard V,Uhlig J,Zamir D,TanksleyS D. QTL analysis of an advanced backcross of lycoperslcan peruvianum to the cultivated tomatoand comparisons with QTLs found in other elite species[J]. Theor Appl Genet,1997,95:881-894.
    [66] Gao W X,Chen Z J,Yu J Z,Kohel R J,Womack J E,Stelly D M. Wide-cross whole-genomeradiation hybrid mapping of the cotton (Gossypium barbadense L.) genome[J]. Mol Genet.Genomics,2006,275:105-113.
    [67] Gu W K,Weeden N F,Yu J,Wallace D H. Large-scale, cost-effective screening of PCR products inmarker-assisted selection applications[J]. Theor Appl Genet,1995,91:465-470.
    [68] Guo W Z,Zhang T Z,Pan J J,Kohel R J. Identification of RAPD marker linked withfertility-restoring gene of cytoplasmic male sterile lines in upland cotton[J]. Chinese Sci, Bul.,1998,43:52-54.
    [69] Hackett,C A,Pande B,Bryan G J. Constructing linkage maps in autotetraploid species usingsimulated annealing[J]. Theor Appl. Genet.,2003,106:1107-1115.
    [70] Haley C. Advances in quantitative trait locus mapping. In: Dekkers J C M,Lamont S J, RothschildM F eds., From Jay Lush to Genomics: Visions for Animal Breeding and Genetics. Iowa StateUniversity,1999May16-18:47-59.
    [71] Han Z G,Guo W Z,Song X L,Zhang T Z. Genetic mapping of EST-derived microsatellites from thediploid Gossypium arboreum in allotetraploid cotton[J]. Mol. Genet. Genomics,2004,272:308-327.
    [72] Hanson R E,Jackson L E,Zwick M S,Crane C F,Islam-Faridi M N,McKnight T D,Wendel JF,Stelly D M,Price H J. The chromosomal distribution of a copia-like retrotransposon in cotton(Gossypium hirsutum L.)[J]. Chrom. Res.,2000,8:73-76.
    [73] He D H,Lin Z X,Zhang X L,Nie Y C,Guo X P,Feng C D,Stewart J McD. Mapping QTLs oftraits contributing to yield and analysis of genetic effects in tetraploid cotton[J]. Euphytica,2005,144:141-149.
    [74] Hinchliffe D J,Lu Y Z,Potenza C,Segupta-Gopalan C,Cantrell R G,Zhang J F. Resistance geneanalogue markers are mapped to homeologous chromosomes in cultivated tetraploid cotton[J].Theor Appl Genet,2005,110:1074-1085.
    [75] Hyne V,Kearsey M J,Pike D J,Snape J W. QTL analysis: unreliability and bias in estimationprocedures[J]. Mol. Breed.,1995,1:273-282.
    [76] Iqbal M J,Aziz N,Saeed N A,Zafar Y,Malik K A. Genetic diversity evaluation of some elite cottonvarieties by RAPD analysis[J]. Theor Appl Genet,1997,94:139-144.
    [77] Jansen R C,Stam P. High resolution of quantitative traits into multiple loci via interval mapping[J].Genetics,1994,136:1447-1455.
    [78] Jenkins J N,Wu J,Mccarty Jr J C,Reddy U,Zhu J. A recombinant inbred population of cotton forQTL and DNA marker association[J]. World Cotton Research Conference Proceedings,2004:352.
    [79] Jiang C X,Chee P W,Draye X,Morrell P Y,Smith C W,Paterson A H. Multilocus interactionsrestrict gene introgression in interspecific populations of polyploid Gossypium (cotton)[J].Evolution Int. J. Org. Evolution,2000,54:798-814.
    [80] Jiang C X,Wright R J,El-Zik K,Paterson A H. Polyploid formation created unique avenues forresponse to selection in Gossypium (cotton)[J]. Proc Natl Acad Sci USA,1998,95:4419-4424.
    [81] Jiang C X,Wright R J,WOOS S,DelMonte TA,Paterson A H. QTL analysis of leaf morphologyin tetraploid Gossypium (cotton)[J]. Theor Appl Genet,2000,100:409-418.
    [82] Jiang C X,Zeng Z B. Multiple trait analysis of genetic mapping for quantitative trait loci[J].Genetics,1995,140:1111-1117.
    [83] John M E,Crow L J. Gene expression in cotton (Gossypium hirsutum L.) fiber: cloning of themRNAs[J]. Proc Natl Acad Sci USA,1992,89:5769-5773.
    [84] John M E. Genetic engineering strategies for cotton fiber modification. In: Basra A S eds., CottonFibers: Developmental biology, quality improvement, and textile processing[J]. New York: FoodProducts Press,1999:271-292.
    [85] Kao C H,Zeng Z B,Toasdale R D. Multiple interval mapping for quantitative trait loci[J]. Genetics,1999,152:1203-1216.
    [86] Kao C H,Zeng Z B. Modeling epistasis of quantitative trait loci using Cockerham's model[J].Genetics,2002,160:1243-1261.
    [87] Kohel R J, Richmond T R. Isolines in cotton, Effects of nine dominant genes[J]. Crop. Sci.,1971,11:287-289.
    [88] Kohel R J,Yu J,Park Y H,Lazo G R. Molecular mapping and characterization of traits controllingfiber quality in cotton[J]. Euphytica,2001,121,163-172.
    [89] Kohel R J. Cotton germplasm resources and the potential for improved fiber production and quality.In: Basra A S eds., Cotton Fibers[J]. The Haworth Press Inc,New York,1999:167-182.
    [90] Korstanje R,Paigen B. From QTL to gene: the harvest begins[J]. Nature Genetics,2002,31:235-236.
    [91] Kosambi D D. The estimation of map distances from recombination values[J]. Ann Eugen,1944,12:172-175
    [92] Kurata N,Nagamura Y,Yamamoto K,Harushima Y,Sue N,Wu J,Antoni B A,Shomura A,Shimizu T,Lin SY,Inoue T,Fukuta A,Shimano T,Kuboki Y, Toyama T,Miyamoto Y,Kirihara T,Hayasaka K,Miyao A,Monna L.300kilobase interval genetic map of rice including883expressed sequences[J]. Nature Genet,1994,8:365-376.
    [93] Lacape J M,Nguyen T B,Courtois B,Belot J L,Giband M,Gourlot J P,Gawryziak Q,RoquesS,Hau B. QTL analysis of cotton fiber quality using multiple Gossypium hirsutum x Gossypiumbarbadense backcross generations[J]. Crop Sci.,2005,45:123-140.
    [94] Lacape J M,Nguyen T B,Thibivilliers S,Bojinov B,Courtois B,Cantrell R G,Burr B,Hau B.A combined RFLP-SSR-AFLP map of tetraploid cotton based on a Gossypium hirsutum xGossypium barbadense backcross population[J]. Genome,2003,46:612-626.
    [95] Lacape J M,Nguyen T B. Mapping quantitative trait loci associated with leaf and stem pubescencein cotton[J]. J. Hered,2005,96:441-444.
    [96] Lander E S,Botstein D. Mapping mendelian factors underlying quantitative traits using RFLPlinkage maps[J]. Genetics,1989,121:185-199.
    [97] Lander E S,Green P,Abrahamson J,Barlow A,Daly M J,Lincoln S E,Newburg I. MAPMAKER:an interactive computer package for constructing primary genetic linkage maps of experimental andnatural populations[J]. Genomics,1987,1:174-181.
    [98] Lange D A,Penuela S,Denny R L,Mudge J,Concibido V C,Orf J H,Young N D. A plant DNAisolation protocol suitable for polymerase chain reaction based marker-assisted breeding[J]. CropSci,1998,38:217-220.
    [99] Lemieux B. Overview of DNA chip technology[J]. Mol Breed,1998,4:277-289.
    [100] Li G,Quiros C F. Sequence-related amplified polymorphisim (SRAP), a new marker system basedon a simple PCR reaction: its application to mapping and gene tagging in Brassica[J]. Theor ApplGenet,2001,103:455-461.
    [101] Li Y,Jin J Z,Wang T Y. Type of molecular markers and their development[J]. BictechnologyItormation,1999,4:19-22.
    [102] Lin J,Kuo J,Ma J,Saunders J A,Beard H S. Identification of molecular markers in Soybeancomparing RFLP, RAPD and AFLP DNA mapping techniques[J]. Plant Molecular BiologyReporter,1996,14:156-169.
    [103] Lin Z X,He D H,Zhang X L,Nie Y C,Guo X P,Feng C D,Stewart J McD. Linkage mapconstruction and mapping QTLs for cotton fiber quality using SRAP, SSR and RAPD[J].PlantBreeding,2005,124:180-187.
    [104] Lincoln S,Daly M,Lander E S. Constructing genetic maps with MAPMAKER/EXP3.0.Whitehead Institute Technical Report,2nd ed. Whitehead Institute,Cambridge,Mass,1992.
    [105] Litt M,Luty J A. Hypervariable microsatellite revealed by in vitro amplification of a dinucleotiderepeat within the cardiac muscle action gene[J]. Am J Hum Genet,1989,44:399-401.
    [106] Liu S,Saha S,Stelly D,Burr B,Cantrell R G. Chromosomal assignment of microsatellite loci incotton[J]. J Hered,2000,91:326-332.
    [107] Luo Z W,Zhang R M.,Kearsey M J. Theoretical basis for genetic linkage analysis inautotetraploid species[J]. Proc Natl Acad Sci USA,2004,101:7040-7045.
    [108] Manninen O,Kalendar R,Robinson J,Schulman A H. Application of BARE-1retrotransposonmarkers to map a major resistance gene for net blotch in barley[J]. Mol Gen Genet,2001,264:325-34.
    [109] Masojc P. The application of molecular markers in the process of selection[J]. Cell Mol. Biol.Lett.,2002,7:499-509.
    [110] May O L. New strategies to improve cotton yield and quality[J]. Acta Gossypium Sinica CottonScience,2001,13:54-58.
    [111] McCouch,S R,Kochert Q,Yu Z H,Wang Z Y,Khush G S,Coffman W R,Tanksley S D.Molecular mapping of rice chromosomes[J]. TheorAppl Genet,1988,76:815-829.
    [112] Mei M,Syed N H,Gao W,Thaxton P M,Smith C W,Stelly D M,Chen Z J. Genetic mappingand QTL analysis of fiber-related traits in cotton (Gossypium)[J]. Theor Appl Genet,2004,108:280-291.
    [113] Meredith Jr W R. Qualitative genetics. In: Kohel R J, Lewis C F eds. Cotton[M]. Am Society ofAgronomy,1984:131-150.
    [114] Meredith W R. Cotton yield progress-Why has it reached a plateaur?[J]. Better Crops,2000,84:6-9.
    [115] Morgante M,Salamini F. From plant genomics to breeding practice. Curr. Opin[J]. Biotechnol.,2003,14:214-219.
    [116] Nadeau J H,Frankel W N. The roads from phenotypic variation to gene discovery: mutagenesisversus QTLs[J]. Nature Genetics,2000,25:381-384.
    [117] Nguyen T B,Giband M,Brottier P,Risterucci A M,Lacape J M. Wide coverage of thetetraploid cotton genome using newly developed microsatellite markers[J]. Theor Appl Genet,2004,109:167-175.
    [118] Orford S J,Camey T J,Oleanicky N S,Timmis J N. Characterization of a cotton gene expressedlate in fiber cell elongation. Theor Appl Genet,1999,98:757-764.
    [119] Pan A,Hayes P M,Chen F,Chen T H H,Blake T,Wright S,Karsai I,Bedo Z. Genetic analysisof the componenets of winter hardiness in barley (Hordeum vulgare)[J].Theor Appl Genet,1994,89:900-910.
    [120] Panaud O,Chen X,McCouch S R. Development of microsatellite markers and characterizationof simple sequence length polymorphism (SSLP) in rice (Oryza sativa L.)[J]. Mol Gen Genet,1996,252:597-607.
    [121] Paran I,Kesseli R,Michelmore R. Identification of restriction fragment length polymorphism andrandom amplified polymorphic DNA markers linked to downy mildew resistance genes inlettuce using near-isogenic lines[J]. Genetics,1997,34:1021-1027.
    [122] Paran I,Zamir D. Quantitative traits in plants: beyond the QTL[J]. Trends Genet.,2003,19:303-306.
    [123] Park Y H,Alabady M S,Sickler B,Wilkins T A,Yu J,Stelly D M, Kohel R J,El-Shihy O M,Cantrell R G,Ulloa M. Genetic Mapping of New Cotton Fiber Loci using EST derivedMicrosatellites in an Interspecific Recombinant Inbred Line (RIL) Cotton Population[J]. Mol GenGenomics,2005,274:428-441.
    [124] Paterson A H,Brubaker C L,Wendel J F. A rapid method for extraction of cotton (Gossypium spp.)genomic DNA suitable for RFLP and PCR analysis[J]. Plant Mol Biol Rep,1993,11:112-127.
    [125] Paterson A H,Damon S,Hewitt J D,Zamir D,Rabinowitch H D,Lincoln S E,ander E S andTanksley S D. Mendelian factors underlying quantitative traits in tomato: Comparison acrossspecies, generations, and environments[J]. Genetics,1991,127:181-197.
    [126] Paterson A H,Damon S,Hewitt J D,Zamir D,Rabinowitch H D,Lincoln S E,Lander E S,Tanksley S D. Mendelian factors underlying quantitative traits in tomato: Comparison acrossspecies, generations, and environments[J]. Genetics,1991,127:181-197.
    [127] Paterson A H,DeVerna J D,Lanini B,Tanksley S D. Fine mapping of quantitative trait loci usinga selected overlapping recombinant chromosome in an interspecies cross of tomato[J]. Genetics,1990,124:715-724.
    [128] Paterson A H,Saranga Y,Menz M,Jiang C X,Wright R J. QTL analysis of genotype xenvironment interactions affecting cotton fiber quality[J]. Theor Appl Genet,2003,106:384-396.
    [129] Paterson A H. Molecular dissection of complex traits[J]. Boca Raton,New York,CRC Press,1988
    [130] Paterson A H. Molecular dissection of quantitative traits: progress and prospects[J]. Genome Res.,1995,5:321-333.
    [131] Pillen K,Zacharias A,Leon J. Advanced backcross QTL analysis in barley (Hordeum vulgare L.)[J]. TheorAppl Genet,2003,107:340-352.
    [132] Qureshi S N,Saha S,Kantety R V,Jenkins J N. EST-SSR: A New Class of Genetic Markers inCotton[J]. The Journal of Cotton Science,2004,8:112-123.
    [133] Reddy A S,Connell J,et al. Genetic Mapping of Cotton: Isolation and Polymorphism ofMicrosatellites. Abstract, Proc. Beltwide Cotton Conf.,1998,San Diego,CA.
    [134] Reddy O U K.,Pepper A E.,Abdurakhmonov I,Saha S,Jenkins J N.,Brooks T,Bolek Y,El-Zik K M. New dinucleotide and trinucleotide microsatellite marker resources for cotton genomeresearch[J]. The Journal of Cotton Science,2001,5:114.
    [135] Reinisch A J,Dong J M,Brubaker C L,Stelly D M,Wendel J F,Paterson A H. A detailed RFLPmap of cotton Gossypium hirsutum x Gossypium barbadense: chromosome organization andevolution in a disomic polyploid genome[J]. Genetics,1994,138:829-847.
    [136] Rong J,Abbey C,Bowers J E,Brubaker C L,Chang C,Chee P W,Delmonte T A,Ding X,Garza J J,Marler B S,Park C,Pierce G J,Rainey K M,Rastogi V K,Schulze S R,TrolinderN L,Wendel J F,Wilkins T A,Williams-Coplin T D,Wing R A,Wright R J,Zhao X,Zhu L,Paterson A H. A3347-locus genetic recombination map of sequence-tagged sites reveals featuresof genome organization, transmission and evolution of cotton (Gossypium)[J]. Genetics,2004,166:389-417.
    [137] Saha S,Jenkins J N,Wu J,McCarty J C,Gutierrez O A,Percy R G,Cantrell R G,Stelly D M.Effects of chromosome-specific introgression in upland cotton on fiber and agronomic traits[J].Genetics,2006,172:1927-1938.
    [138] Saha S,Karaca M,Jenkins J N,Zipf A E,Ramesh O U,Kantety R V. Simple sequence repeatsas useful resources to study transcribed genes of cotton[J]. Euphytica,2003,130:355-364.
    [139] Saha S,Raska D A,Jenkins J N,Mccarty Jr,J C,Gutierrez O A,Percy R G,Cantrell R G,Wu J,Zhu J,Stelly D M. Effect of chromosome on important quantitative traits of agronomic andfiber traits using Gossypium Barbadense chromosome-specific recombinant lines of GossypiumHirsutum. World Cotton Research Conference Proceedings,2004,P.170-174.
    [140] Salvi S,Tuberosa R. To clone or not to clone plant QTLs: present and future challenges[J]. TrendsPlant Sci.,2005,10:297-304.
    [141] Sankar A A,Moore G A. Evaluation of inter-simple sequence repeat analysis for mapping in Citrusand extension of the genetic linkage map[J]. Theor Appl Genet,2001,102:206-214.
    [142] Saranga Y,Menz M,Jiang C X,Wright R J,Yakir D,Paterson A H. Genomic dissection ofgenotype x environment interactions conferring adaptation of cotton to arid conditions[J]. GenomeRes,2001,11:1988-1995.
    [143] SAS Institute Inc. SAS user's Guide. Release8.01Edition. SAS Institute,Cary,NC.,1999.
    [144] Sawkins M C,Farmer A D,Hoisington D,Sullivan J,Tolopko A,Jiang Z,Ribaut J M. ComparativeMap and Trait Viewer (CMTV): an integrated bioinformatic tool to construct consensus maps andcompare QTL and functional genomics data across genomes and experiments[J].Plant MolecularBiology,2004,56:465-480.
    [145] Sax K. The association of size differences with seed-coat pattern and pigmentation in Phaseolusvulgaris[J]. Genetics,1923,8:552-560.
    [146] Shappley Z W,Jenkins J N,Meredith W R,McCarty Jr. J C. An RFLP linkage map of uplandcotton (Gossypium hirsutum L.)[J]. Theor Appl Genet,1998x,97:756-761.
    [147] Shappley Z W,Jenkins J N,Watson C E Jr.,Kahler A L,Meredith W R Jr. Establishment ofmolecular markers and linkage groups in two FZ populations of upland cotton[J]. Theor ApplGenet,1996b,92:915-919.
    [148] Shappley Z W,Jenkins J N,Zhu J,McCarty J C. Quantitative trait loci associated with agronomicand fiber traits of upland cotton[J]. J Cot Sci,1998b,4:153-163.
    [149] Shappley Z W. Construction of RFLP linkage groups and mapping of quantitative trait loci inupland cotton (Gossypium hirsutum L.)[D]. Mississippi State University,1996a.
    [150] Snape J W. The detection and estimation of linkage using double haploid of single seed descentpopulations[J]. Theor Appl Genet,1988,76:125-128.
    [151] Soller M,Brody T,Genizi A. On the power of experimental designs for the detecton of linkagebetween marker loci and quantitative loci in crosses between inbred lines[J]. Theor Appl Genet,1976,47:35-39.
    [152] Song Q J,Marek L F,Shoemaker R C,Lark K G,Concibido V C,Delannay X,Specht J E,Cregan P B. A new integrated genetic linkage map of the soybean[J]. Theor Appl Genet,2004,109:122-128.
    [153] Song X L,Wang K,Guo W Z,Zhang J,Zhang T Z. A comparison of genetic maps constructed fromhaploid and BC1mapping populations from the same crossing between Gossypium hirsutum L.and Gossypium barbadense L[J]. Genome,2005,48,378-390.
    [154] Spelman R J,Bovenhuis H. Moving from QTL experimental results to the utilization of QTL inbreeding programmes[J]. Anim Genet.,1998,29:77-84.
    [155] Stelly D M,Saha S,Raska D A,Jenkins J N,Mccarty Jr J C,Gutierrez O A. Notice of releaseof17germplasm lines of upland (Gossypium Hirsutum), each with a different pair of G.Barbadense chromosomes or arms substituted for the respective G.Hirsutum chromosomes orarms[J]. Proceedings National Cotton Council Beltwide Cotton Conference,2004:1205-1207.
    [156] Stephens S G. The genetics of Corky. The New World alleles and their possible role as aninterspecific isolating mechanism[J]. J Genet,1946,47:150-161.
    [157] Stuber C W,Edwards M D,Wendel J F. Molecular marker-facilitated investigations of quantitativetrait loci in maize. II. Factors influencing yield and its component traits[J]. Crop Sci,1987,27:639-648.
    [158] Stuber C W,W endel J F,Goodman M M,Smith J S C. Techniques and scoring procedures forstarch gel electrophoresis for maize (Zea mays L.)[J]. Tech Bull,1988:286.
    [159] Tani N,Takahashi T,Iwata H,Mukai Y,Ujino-Ihara T,Matsumoto A,Yoshimura K,YoshimaruH,Murai M,Nagasaka K,Tsumura Y A. consensus linkage map for Sugi (Cryptomeria japonica)from two pedigrees, based on microsatellites and expressed sequence tags[J]. Genetics,2003,165:1551-1568.
    [160] Tanksley S D,Ganai M W,Prince J C,Devicente M C,Bonierbale M W,Brown P,Fulton T M,Giovannoni J J,Grandillo S,Martin G B,Messeguer R,Miller J C,Miller L,Paterson A H,Pinedo O,Roder M S,Wing R A,Wu W,Young N D. High density molecular linkage maps ofthe tomato and potato genomes: biological inferences and practical applications[J]. Genetics,1992,132:1141-1160.
    [161] Tanksley S D,Medina-Filho H,Rick G M. Use of naturally-occurring enzyme variation to detectand map genes controlling quantitative traits in an interspecific backcross of tomato[J]. Heredity,1982,49:11-25.
    [162] Tanksley S D,Nelson C J.Advanced backcross QTL analysis: a method for the simultaneousdiscovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines[J].Theor Appl Genet,1996,92:191-203.
    [163] Tanksley S D,Nelson J C. Advanced backcross QTL analysis: A method for the simultaneousdiscovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines[J].ThoerAppl Genet,1996,92:191-203.
    [164] Thomson M J,Tai T H,McClung A M,Lai X H,Hinga E M,Lobos K B,Xu Y,Martinez CP,McCouch S R. Mapping quantitative trait loci for yield, yield components and morphologicaltraits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivarJefferson[J]. Theor Appl Genet,2003,107:479-493.
    [165] Ulloa M,Cantrell R G,Oercy R,Lu Z,Zeiger E. QTL analysis of stomatal conductance andrelationship tolint yield in intraspecific cotton[J]. J Cot Sci,2000,4:10-18.
    [166] Ulloa M,Meredith W R,Shappley Z W,Kahler A L. RFLP genetic linkage maps from F2:3populations and a joinmap of Gossypium hirsutum[J]. TheorAppl Genet,2002,104:200-208.
    [167] Ulloa M,William R. Genetic linkage map and QTL analysis of agronomic and fiberquality traits inan intraspecific population[J]. J Cot Sci,2000,4:161-170.
    [168] Waghmare V N,Rong J, Rogers C J,Pierce G J,Wendel J F,Paterson A H. Genetic mapping ofa cross between Gossypium hirsutum (cotton) and the Hawaiian endemic, Gossypiumtomentosum[J]. Theor Appl Genet,2005,111:665-676.
    [169] Weber D,Helentjarais. Mapping RFLP loci in maize using B-A translocations[J].Genetics,1989,121:588-590.
    [170] Wendel J F,Albert V A. Phylogenetics of the cotton genus (Gossypium): character-state weightedparsimony analysis of chloroplast-DNA restriction site data and its systematic and biogeographicimplications[J]. Systematic Botany,1992,17:115-143.
    [171] Wendel J F,Brubaker C L,Percival E. Genetic diversity in Gossypim hirsutum and the origin ofUpland cotton[J]. Am J Bot,1992,79:1291-1310.
    [172] Wendel J F,Cronn R C,Johnston J S,Price H J. Feast and famine in plant genomes[J]. Genetica,2002,115:36-47.
    [173] Wendel J F,Cronn R C. Polyploidy and the evolutionary history of cotton[J]. Adv Agron,2003,78:139-186.
    [174] Wendel J F,Schnabel A,Seleman T. An unusual ribosomal DNA sequence from Gossypiumgossypioides reveals ancient, cryptic, intergenomic introgression[J]. Mol Phylogenet Evol,1995,4:298-313.
    [175] Wijk R van,Oeveren J van,Schaik R van,Peleman J. Linkage map integration: An integratedgenetic map of Zea mays L. Key Gene.
    [176] Williams J G K,Kubelic A R,Livak K J,Rafalsci J A,Tingey S V. DNA polyorphisms amplifiedby arbitrary primers are useful as genetic markers[J]. Nucl Acid Res,1990,18:6531-6535.
    [177] Wright R J,Thaxton P M,El-zik K M,Paterson A H. Molecular mapping of genes affectingpubescense of cotton[J]. J. Hered.,1990,,90:215-219.
    [178] Wright R J,Tbaxton P M,El-zik K M,Paterson A H. D-subgenome bias of Xcm resistance genesin tetraploid Gossypium (cotton) suggests that polyploid formation has created novel avenues forevolution[J]. Genetics,1998,149:1987-1996.
    [179] Wu J,Jenkins J N,Zhu J,Mccarty J C,Watson C E. Comparisons of quantitative trait locusmapping properties between two methods of recombinant inbred line development[J]. Euphytica,2003,132:159-166.
    [180] Xiao J H,Li J M,Yuan L P,Tanksley S D. Dominance is the major genetic basis of heterosis in riceas revealed by QTL analysis using molecular markers[J]. Genetics,1995,140:745-754.
    [181] Xu W W,Subudhi P K,Crasta O R,Rosenow D T,Mullet J E,Nguyen H T. Molecular mappingof QTLs conferring stay-green in grain sorghum (Sorghum bicolor L Moench)[J]. Genome,2000,43:461-469.
    [182] Xu Y Quantitative trait loci: separating, pyramiding, and cloning[J]. Plant Breed Rev,1997,15:85-139.
    [183] Xu Z L,Fei Z,Vision T J. Improving QTL mapping resolution in experimental crosses by the useof genotypically selected samples[J]. Genetics,2005,170:401-408.
    [184] Yano M,Harushima Y,Nagamura Y,Kurata N,Minobe Y,Sasaki K. Identification of quantitativetrait loci controlling heading date in rice using a high-density linkage map[J]. Theor Appl Genet,1997,95:1025-1032.
    [185] Yano M, Sasaki T. Genetic and molecular dissection of quantitative traits in rice[J]. Plant Mol Biol,1997,35:145-153.
    [186] Yin T M,DiFazio S P,Gunter L E,Riemenschneider D,Tuskan G A. Large-scale heterospecificsegregation distortion in Populus revealed by a dense genetic map[J]. Theor Appl Genet,2004,109:451-463.
    [187] Young N D,Tanksley S D. Restiction fragment length polymorphism maps and the concept ofgraphical genotypes[J]. Theor Appl Genet,1989,77:95-101.
    [188] Yu J,Kohel R J,et al. Localization and characterization of genes controlling fiber quality propertiesin cotton genomes (G. barbadense and G. hirsutum). Abstracts, Plant&Animal Genome VII,1999:296.
    [189] Yu J,Kohel R J. Cotton genome mapping and applications. Abstract,Plant&Animal Genome VII,1999,60. San Diego,CA.
    [190] Yu J,Park Y H,Lazo G R,Kohel R J. Molecular mapping of the cotton genome: QTL analysis offiber quality characteristics. Abstracts,Plant&Animal Genome VI,January18-22,1998a,SanDiego,CA.
    [191] Yu J,R J Kohol. In: Update of the cotton genome mapping. Proc. Beltwide Cotton Conf.,1999,485,San Diego,CA
    [192] Yu J,Yong P H,Lazo G R,Kohel R J. Molecular mapping of the cotton genome: QTL analysis offiber quality properties. Abstract, In Proc. Beltwide Cotton Conf.,5-9Jan.1998, San Diego,CA.
    [193] Yu J. Development of cotton BAC libraries and associated SSR markers.2004,http://cottondb.ta.mu.edu/genomics/bac-ssr/index.php.
    [194] Yu S B,Li J X,Xu C Q,Tan Y F,Gao Y J,Li X H,Zhang Q R. Importance of epistasis as thegenetic basis of heterosis in an elite rice hybrid[J]. Proc Natl Acad Sci USA,1997,94:9226-9231.
    [195] Zabeau M,Vos P. Selective restriction fragment amplification: a general method for DNAfingerprinting[J]. Patent Application World intellectual Property Organization,WO,1993,93/06239.
    [196] Zaki E A,Abdel Ghany A G A. Molecular distribution of gypsy-like retrotransposons in cottonGossypium Spp[J]. African Journal of Biotechnology,2003,2:124-128.
    [197] Zeng Z B. Precision mapping of quantitative trait loci[J]. Genetics,1994,136:1457-1468.
    [198] Zeng Z B. Theoretical basis of separation of multiple linked gene effects on mapping quantitativetrait loci[J]. Proc Natl Acad Sci USA,1993,90:10972-10976.
    [199] Zhang J F,Lu Y Z,Yu S X. Cleaved AFLP (cAFLP), a modified amplified fragment lengthpolymorphism analysis for cotton[J]. TheorAppl Genet,2005,111:1385-1395.
    [200] Zhang J,Guo W Z,Zhang T Z. Molecular linkage map of allotetraploid cotton (Gossypiumhirsutum L. x Gossypium barbadense L.) with a haploid population[J]. Theor Appl. Genet.,2002,105:1166-1174.
    [201] Zhang T Z. Identification of RAPD marker linked with fertility restoring gene of cytoplasmic malesterile line in upland cotton[J]. Chinese Science Bulletin,1998,43:52-54.
    [202] Zhang T,Yuan Y,Yu J,Guo W,Kohel R J. Molecular tagging of a major QTL for fiber strengthin upland cotton and its marker-assisted selection[J]. Theor Appl Genet,2003,106:262-268.
    [203] Zhang Z S,Xiao Y H,Luo M,Li X B,Luo X Y,Hou L,Li D M,Pei Y. Construction of a geneticlinkage map and QTL analysis of fiber-related traits in upland cotton (Gossypium hirsutum L.)[J].Euphytica,2005,144:91-99.
    [204] Zhao X P,Lin Y R,Paterson A H. Characterization and genetic mapping of DNA microsatellitesfrom cotton. Abstract, Plant Genome II Conference, January1994, Town&Country ConferenceCenter, San Diego, CA.
    [205] Zhao X,Si Y,Hason R E,Crane C F,Price H J,Stelly D M,Wendel J F,Paterson A H. Dispersedrepetitive DNA has spread to new genomes since polyploid formation in cotton[J]. Genome Res,1998,8:479-492.
    [206] Zhao X,Wing R A,Paterson A H. Cloning and characterization of the majority of repititiveDNA in cotton (Gossypium L.)[J]. Genome,1995,38:1177-1188.
    [207] Zhu H,Briceno G,Dovel R,Hayes P M,Liu B H,Liu C T,Ullrich S E. Molecular breeding forgrain yield in barley: An evaluation of QTL effects in a spring barley cross[J]. Theor Appl Genet,1999,98:772-779.
    [208] Zuo K,Sun J.,Zhang X.,Nie Y.,Liu J. and Feng C. Constructing a linkage map of upland cotton(Gossypium hirsutum L.) using RFLP, RAPD and SSR makers[J]. J Huazhong Agric Univ,2000,19:190-193.
    [209]杜雄明,汪若海,刘国强,傅怀勤,潘家驹,张天真.棉花纤维相关性状的主基因-多基因混合遗传分析[J].棉花学报,1999,11(2):73-78.
    [210]吴茂清.棉花产量及纤维品质等性状的QTL分析[D].2002.
    [211]袁有禄,张天真,郭旺珍等.棉花高品质纤维性状的主基因与多基因遗传分析[J].遗传学报,2002,29(9):827-834.
    [212]喻树迅,袁有禄.数量性状遗传研究的新进展[J].棉花学报,2002,14(3):180-184.
    [213]吴茂清,张献龙,聂以春,等.四倍体栽培棉种产量和纤维品质性状的QTL定位[J].遗传学报,2003,30(5):443-452.
    [214]盖钧镒,章元明,王健康.植物数量性状遗传体系[M].北京:科学出版社,2003,169-219.
    [215]郭旺珍,孙敬,张天真.棉花纤维品质基因的克隆与分子育种[J].科学通报,2003,48(5):410-417.
    [216]盖钧镒.植物数量性状遗传体系的分离分析方法研究[J].遗传,2005,27(1):130-136.
    [217]韩春丽,赵瑞海,勾玲,张旺锋.新疆主要棉花品种纤维品质变化及与气象因子关系的研究[J].石河子大学学报(自然科学版),2005,23(1):48-52.
    [218] Peleman J D,Wye C,Zethof J,et al. Quantitative trait loci (QTL) isogenic recombinant analysis:A method for high-resolution mapping of QTL within a single population[J]. Genetics,2005,171:1341-1352.
    [219]周仲华,陈金湘.棉花QTL定位原理、方法及研究进展[J].江西农业学报,2005,17(4):106-111.
    [220]周仲华,陈金湘.棉花数量性状遗传与QTL定位研究进展[J].农业生物技术科学,2005,21(10):36-40.
    [221]曹新川,康志钰.陆地棉纤维品质性状遗传效应的分析[J].西北农业学报,2006,15(4):203-205,216.
    [222]崔秀珍.我国棉花纤维品质存在的问题及解决途径[J].安徽农业科学,2006,34(11):2360-2361,2367.
    [223] Li J Z,Huang X Q,Heinrichs F,et al. Analysis of QTLs for yield components, agronomic traits,and disease resistance in an advanced backcross population of spring barley[J]. Genome,2006,49(5):454-466.
    [224]王淑芳,石玉真,刘爱英,熊宗伟,唐淑荣,李俊文,王玉红,袁有禄.陆地棉纤维品质性状主基因与多基因混合遗传分析[J].中国农学通报,2006,22(2):157-161.
    [225] Yu J M,Pressoir G,Briggs W H,et al. A untied mixed-model method for association mapping thataccounts for multiple levels of relatedness[J]. Nat Genet,2006,38(2):203-208.
    [226]王芙蓉,张传云,刘国栋,王留明,高俊平,宫永超,张军.陆地棉优质纤维渐渗系中外源遗传组分的鉴定与分析[J].植物遗传资源学报,2007,8(3):265-270.
    [227]喻树迅.棉花纤维品质功能基因组学研究与分子改良研究进展[J].中国基础科学,2007,(4):18-21.
    [228]张天真,郭旺珍.棉花分子育种的现状、问题与展望[J].中国农业科技导报,2007,9(2):19-25.
    [229]石玉真,刘爱英,李俊文,王淑芳,袁有禄.陆海种间杂交纤维品质性状的遗传及其F1群体优势分析[J].棉花学报,2008,20(1):56-61.
    [230]贺道华.四倍体棉花分子标记遗传连锁图谱的构建和重要经济性状的QTL定位[D].华中农业大学,2006.
    [231]贺道华,邢宏宜,李婷婷,汤益,曾舟.92份棉花资源遗传多样性的SSR分析[J].西北植物学报,2010,(08):1557-1564.
    [232]王建康.数量性状基因的完备区间作图方法[J].作物学报,2009,35(2):239-245
    [233]尤春源.棉花陆海杂交F2群体连锁图谱构建及纤维品质与产量性状QTL定位[D].新疆农业大学,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700