四倍体棉花纤维品质相关性状QTL定位及元分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棉花是全世界重要的经济作物。随着纺织技术的革新,改良棉花纤维品质性状就显得极其重要。本研究目的在于筛选不同来源的纤维品质性状相关QTL或者在不同遗传背景中能共同表达的QTL,并通过图谱映射和元分析为挖掘、寻找一致性QTL或真实性QTL,为图位克隆和分子标记辅助育种提供理论依据。主要包含三方面的研究内容:(1)以陆地棉标准系“TM-1”和具有陆地棉三元杂种血缘的“渝棉l号”组配高代回交自交群体BC4F2为研究材料,进行纤维品质性状的QTL筛选。并通过以陆地棉标准系“TM-1”为轮回亲本,“Acala SJ”为供体亲本同样组配BC4F2群体,此群体为验证相同受体亲本定位获得的QTL在不同遗传背景下的表现;(2)以SSR标记和具有差异表达TDFs转录标记,加密BC1[(中棉所8号×Pima90-53)×中棉所8号]遗传图谱,通过复合区间作图法(CIM)重新分析上半部平均长度、整齐度指数、马克隆值、伸长率和断裂比强度等5个纤维品质性状的QTL;(3)以本实验室加密后的[(中棉所8号×Pima90-53)×中棉所8号] BC1遗传图谱为参考图谱,对本实验室已构建的F2和BC1F2图谱进行标记整合,并将已定位的与纤维品质性状相关的QTL采用图谱映射寻找一致性QTL或QTL热点区。主要结果如下:
     1、以3980对SSR引物、238对SRAP组合引物和85对TRAP组合引物对亲本TM-1和渝棉1号进行多态性筛选,共获得288对多态性引物,多态性比例为6.69%。本研究最终用于陆地棉种内图谱构建的SSR标记位点数为103个,SRAP和TRAP标记位点34个。图谱构建的连锁测验标准LOD值大于等于8.0,最大连锁距离设为50cM。119个多态性标记位点定位到26个连锁群上,标记间平均遗传距离为5.50cM,连锁图谱覆盖654.1cM,约占棉花基因组的14.70%。所得连锁群可以定位到14条染色体和3条未知连锁群上。通过复合区间作图法(CIM)对Pop1群体纤维品质性状进行QTL定位,共获得31个与纤维品质性状相关的QTL,其中纤维伸长率相关6个、纤维长度7个、马克隆值4个、纤维比强度5个、纤维整齐度1个、成熟度指数3个、短纤维指数5个,贡献率分别为17.77%-24.70%、14.01%-24.67%、22.57%-24.19%、20.43%-36.66%、22.9%、23.65%-24.65%、22.32%-24.37%。利用Pop2群体验证Pop1定位获得的QTL,研究结果表明,在染色体24上发现1个与比强度相关的QTL与Pop1中相同位置的QTL具有相同的标记区间(NAU5379-NAU1125),贡献率为20.14%。
     2、基于本实验室前期构建的[(中棉所8号×Pima90-53)×中棉所8号] BC1遗传图谱,标记位点209个。在此基础上增加了370个标记位点,通过作图软件MAPMAKER3.0对标记进行连锁分析,连锁图谱包含579个标记位点(LOD=4.0,最大遗传距离为50cM),56个连锁群,标记间平均距离为7.2cM,覆盖全基因组4168.72cM。43个连锁群通过204个锚定标记被分配到26条染色体上,13个连锁群未被定位在特定染色体上,暂时命名为unknown1~13。采用卡方(χ2)测验判断标记是否偏离(1:1)孟德尔分离比例。结果表明:579个标记位点中包含120个偏分离标记,占总标记数的20.72%。45个TDFs被定位在14条染色体和7条未知连锁群中。通过复合区间作图法(CIM)对纤维品质性状的重新定位,共获得47个与纤维品质相关的QTL,分布在18条染色体上。其中6个与纤维伸长率相关的QTL,可解释的表型变异为8.91%-23.73%;8个与纤维长度相关的QTL,可解释的表型变异为9.33%-22.58%;14个与马克隆值相关的QTL,可解释的表型变异为7.72%-20.94%;10个与纤维比强度相关的QTL,可解释的表型变异为10.44%-16.55%;9个与纤维整齐度相关的QTL,可解释的表型变异为8.35%-20.85%。染色体9上在不同环境(2007BD和2008XJ)同时定位获得两个与纤维比强度相关的QTL(qFS9-1和qFS9-2),加性效应均为正值,可解释的表型变异达显著水平,分别为15.71%和14.42%。染色体14上定位获得1个QTL,临近标记为TCG/GTT-272(TDF位点),加性效应为2.3324,可解释的表型变异为14.32%。qFU5-1和qFU5-2位于染色体5上,享有共同标记NAU3828,在2008年河北保定和辛集两个环境分别被检测到。47个与纤维品质性状相关的QTL,其中16个QTL的加性效应均为正值,4个均为负值,增效基因来源于海岛棉Pima90-53,起到提高纤维品质的作用;27个QTL的增效基因来自陆地棉中棉所8号。利用邯郸208和Pima90-53组配的176个单株的F2和350个单株的BC1群体验证[(中棉所8号×Pima90-53)×中棉所8号] BC1群体定位获得的纤维比强度QTL (qFS9-1和qFS9-2),结果发现分别在邯郸208和Pima90-53的F2和BC1群体中定位获得1个纤维比强度QTL,与qFS9-1和qFS9-2具有相同的标记区间(NAU2395-NAU1092)。
     3、通过整合本试验室由陆地棉中棉所8号和海岛棉Pima90-53组配的BC1和BC1F2两个群体的92个纤维品质性状相关的QTL,构建了1张只包含BC1和BC1F2两个群体63个纤维品质相关性状QTL的整合图谱。整合图谱包含599个标记位点,覆盖全基因组3571.9cM,标记间平均距离为5.96cM,包含26条染色体。其中12个与纤维长度相关,分别整合于染色体1、7、11、14、16、21和22上;19与马克隆值相关,分别整合于染色体1、5、7、12、14、16和24上;7个与纤维伸长率相关,分别整合于染色体1、9、13、19和24上;14与纤维比强度相关,分别整合于染色体3、5、9、14、16、18、20和22上;11个与整齐度相关,分别整合于染色体5、9、11、16、18、20和21上。通过软件BioMercator2.1的meta-analysis功能分析,在15条染色体上共获得30个与纤维品质相关的MQTL。其中染色体9上的MQTL9-1整合了2个研究的6个QTL,位于62.16cM处,以5个纤维比强度性状为主,置信区间为17.43cM (45.7-63.1),贡献率为17.16%;在染色体16上控制纤维品质性状的MQTL16-1位于29.92cM处,置信区间为14.1cM(22.87-36.97),平均贡献率为12.28%,分别整合了来自2个研究的10个QTL;染色体18、24中的MQTL18-1和MQTL24-2,分别整合了来自同一研究结果的QTL,置信区间均小于10cM,且贡献率均大于10%。其他染色体获得的MQTL由于置信区间大于20cM暂定为微效QTL。
Cotton is an important cash crop in the world. The improvement of cotton fiberquality is becoming extremely significant with the innovation of spinning technology.Although more and more QTL for fiber quality related traits have been developed, theaccuracy and validity of these QTL are not always effective in different populations, fordifferent traits, or by different method of data analysis. It is very important to obtain thereal and effective QTL, which would provide great significance for map cloning andmolecular marker assisted selection. In the present study, the main concepts were shown asfollows:(1) QTL for fiber quality related traits were tested by the first advance backcrossBC4F2segregating population derived from the cross of TM-1, a genetic standard line ofupland cotton, and Yumian1, a high quality cotton cultivar. Subsequently, these QTL forfiber quality traits were identified by the second BC4F2segregating population derivedfrom the cross of TM-1and Acala SJ.(2) BC1population with95plants from a crossbetween Gossypium hirsutum cv. CRI8and G. barbadense cv. Pima90-53was employed toreconstruct genetic linkage map by519SSRs,2CISPs and156Apo I/Taq I selectiveprimer combinations. Then, QTL for fiber quality traits was recalculated by compositeinterval mapping (CIM).(3) In order to excavate the “consensus” QTL and QTL “hotregion” in these independent experiments, QTLQTL for fiber quality traits in cotton,collected from different publications,were used to construct new QTL integrated map usingbioinformation and meta-analysis methods with BC1map as refrence.
     The main results were summarized as follows:
     1. In total,3,980SSR primers,238pairs SRAP and85pairs TRAP were used to screenthe polymorphism among Yumian1and T586,and288polymorphic primer pairs wereobtained, acconting for5.32%of the tatal primer pairs. The polymorphic primer pairsproduced119loci when they were used to genotype the158BC4F2individuals of[(TM-1×Yumian1)×TM-1]. One hundred ninteen loci were used to construct geneticlinkage groups with LOD value of8.0and maximum distance of50.0cM. The mapcomprised of119marker loci mapped into26linkage groups withan average distancebetween adjacent markers of5.5cM and covered654.1cM. Twenty-three of26linkage groups were assigned to14chromosomes and3unknown linkage groups.Based on the newly constructed genetic map of tetraploid cotton, QTL for fiber qualitytraits were identified to use composite interval mapping (CIM) method by phenotypic data from BC4F2population, BC4F2:3and BC4F2:4family lines. Thirty-one QTL forfiber quality traits were detected on5chromosomes. Six QTL for fiber elongationwere identified, explaining17.77%-24.70%of the phenotypic variance. Seven QTLfor fiber length were identified, explaining14.01%-24.67%of the phenotypic variance.One QTL for length uniformity were identified, explaining22.9%of the phenotypicvariance. Four QTL for micronaire were identified, explaining22.57%-24.19%of thephenotypic variance. Five QTL for strength were identified explaining20.43%-36.66%of the phenotypic variance. Three QTL for maturity were identifiedexplaining23.65%-24.65%of the phenotypic variance. Five QTL for short fiber indexwere identified explaining22.32%-24.37%of the phenotypic variance. These QTLwere validated by BC4F2segregating population derived from the cross of TM-1, andAcala SJ. The QTL mapped results indicated:1QTL for fiber strength as major QTLwas tested with a same interval (NAU5379-NAU1125) on chromosome24, explaining20.14%of the phenotypic variance.
     2. A total of358of1980SSR primers scaned polymorphism between CRI8andPima90-53, acconting for18.08%of the tatal primers. The rest358polymorphicprimer pairs amplified370loci. A total of579loci were used to reconstruct geneticlinkage groups with LOD value of4.0and maximum distance of50.0cM. A χ2-test forthe579SSR loci shown120loci (20.72%) deviated from the Mendel ratio (1:1).579marker loci mapped into56linkage groups with an average distance between adjacentmarkers of7.2cM and covered4168.72cM. The length of linkage groups rangedfrom1.25to255.79cM and the markers on the groups ranged from two to44.Forty-three of56linkage groups were assigned to26chromosomes and13unknownlinkage groups. Based on the reconstructed genetic map of tetraploid cotton, QTL forfiber quality traits were tested to employ composite interval mapping (CIM) methodby phenotypic data from BC1population and BC1F2family lines. Forty-seven QTL forfiber quality traits were detected on18chromosomes. Six QTL for fiber elongationwere identified, explaining8.91%-23.73%%of the phenotypic variance. Eight QTLfor fiber length were identified, explaining9.33%-22.58%of the phenotypic variance.Nine QTL for length uniformity were identified, explaining8.35-20.85%of thephenotypic variance. Fourteen QTL for micronaire were identified, explaining7.72%-20.94%of the phenotypic variance. Ten QTL for strength were identifiedexplaining10.44%-16.55%of the phenotypic variance. qFS9-1and qFS9-2weredetected with a same marker interval on A9chromosome in two environments (atBaoding and Xinji in2008),explaining15.71%and14.42%of the phenotypicvariance. qFU5-1and qFU5-2were detected with a same marker (NAU3828) on A5chromosome in two environments (at Baoding and Xinji in2008). qFS14-1were detected with a TDF marker (TCG/GTT-272). Among the47QTLdetected,27alleles additive effects that decreased fiber quality traits were offered byCRI8, and furthermore,16alleles with positive additive effects and4alleles withnegative additive effects that increased fiber quality traits were offered by Pima90-53.These QTL were validated by BC1and F2segregating population derived from thecross of Han208, and Pima90-53. The QTL mapped results indicated: one QTL forfiber strength as major QTL was tested with a same interval (NAU2395-NAU1092) onchromosome9.
     3. The ninty-two QTL for fiber quality traits in cotton, collected from differentpopulations (BC1and BC1F2), were used to construct QTL integrated map usingbioinformation and meta-analysis methods with BC1map as refrence. The fivehundred ninty-nine marker loci mapped into26chromosomes with an average distancebetween adjacent markers of5.96cM and covered3571.9cM. Sixty-three QTL wereintegrated into refrence map. The twelve QTL for fiber length were detected on1,7,11,14,16,21and22chromosomes, respectively. The ninteen QTL for micronairewere detected on1,5,7,12,14,16and24chromosomes, respectively. The seven QTLfor fiber elongation were detected on1,9,13,19and24chromosomes, respectively.The fourteen QTL for fiber strength were detected on3,5,9,14,16,18,20and22chromosomes, respectively. The eleven QTL for fiber uniformity were detected on5,9,11,16,18,20and21chromosomes, respectively. The thirty MQTL were mapped on15chromosomes by meta-analysis method. The major MQTL9-1, located at62.16cMon chromosome9could explain17.16%of phenotypic variance to5fiber strengthtraits derived from two populations, confidence interval from45.7cM to63.1cM. Themajor MQTL16-1, located at29.92cM on c16could average explain12.28%ofphenotypic variance to10fiber traits derived from two populations, confidenceinterval from45.7cM to63.1cM. Two major MQTL18-1and MQTL24-2weremapped on chromosome18and24, respectively. The integration of research resultsfrom the same QTL, confidence interval was less than10cM, and the contribution rateis greater than10%. The other MQTL called minor-effect QTL, because confidenceinterval was more than20cM.
引文
[1] Wendel J F, Albert V A. Phylogenetics of the cotton genus (Gossypium): Character-state weightedparsimony analysis of chloroplast-DNA restriction site data and its systemic and biogeographicimplication[J]. Syst. Bot,1992,17:115-143.
    [2]项时康,余楠,胡育昌,等.论我国棉花质量现状[J].棉花学报,1999,11(1):1-10.
    [3]中华人民共和国国家统计局.中国统计年鉴2011[M].北京:中国统计出版社.2011.
    [4]中华人民共和国国家统计局.中国统计年鉴2012[M].北京:中国统计出版社.2012.
    [5] Faerber C.Future demands on cotton fiber quality in the textile industry[R].1995Beltwide cottonconferences, p1449.
    [6] May J M. New strategies to improve cotton yield and quality[J].棉花学报,2001,13(1):54-58.
    [7]方宣钧,吴为人,唐纪良.作物DNA标记辅助育种[M].北京:科学出版社,2001,1-9.
    [8] Bostein D, White R L, Skolnick M, et al. Construction of a genetic linkage map in man usingrestriction fragment length polymorphisms[J]. Am. J. Hum. Genet,1980,32:314-331.
    [9] Tanksley S P, Hewitt J. Use of molecular markers in breeding for soluble solids content in tomatoreexamination[J]. Theor Appl Genet,1988,75:811-823.
    [10] Powe11W, Morgante M, Andre C, et al. The comparison of RFLP, RAPD, AFLP and SSR markersfor germplasm analysis[J]. Mol Breed,1996,2:225-238.
    [11]李悦有,尹学德.细胞质雄性不育彩色棉杂种优势的表现[J].浙江大学学报(农业与生命科学版),2002,28(1):7-10.
    [12] Reinisch A J, Dong J M, Brubaker C L, et al. A detailed RFLP map of cotton Gossypiumhirsutum×Gossypium barbadense chromosome organization and evolution in a disomic polyploidgenome [J]. Genetics,1994,138(3):829-847.
    [13] Shappley Z W, Jenkins J K, Watson C E, et al. Establishment of molecular markers and linkagegroups in tow F2population of upland cotton[J]. Theor Appl Genet,1996,92:915-919.
    [14] Brubaker C L, Paterson A H, Wendel J F. Comparative genetic mapping of alloteloid cotton and itsdiploid progenitors[J]. Genome,1999,42:184-203.
    [15] Ullao M, Meredith WR Jr. Genetic linkage map and QTL analysis agronomic and fiber qualitytraits in an intraspecific population[J]. Cotton,2000,4:161-170.
    [16] Ullao M, Meredith W R, Shappley Z W, et al. RFLP genetic linkage maps from F2:3populationsand a joinmap of Gossypium hirsutum[J]. Theor Appl Genet,2002,104:200-208.
    [17] Williams J G, Kuhelik A R,1ivak K J, et al. DNA polymorphisms amplified by arbitrary primersare useful as genetic markers[J]. Nucl. Acids Res,1990,18:6531-6535.
    [18] Multani D S, Lyon B R. Genetic fingerprinting of Australian cotton cultivars with RAPDmarkers[J]. Genome,1995,38:1005-1008.
    [19] Tatineni V, Cantrell R G, Davis D D. Genetic diversity in elite cotton germplasm determined bymorphological characteristics and RAPDs[J]. Crop Sci,1996,36:186-192.
    [20] Iqbal M J, Aziz N, Saeed N A, et al. Genetic diversity evaluation of some elite cotton varieties byRAPD analysis[J]. Theor. Appl. Genet,1997,94:139-144.
    [21]王新宇,郭旺珍,张天真,等.我国短季棉品种的RAPD指纹图谱分析[J].作物学报,1997,23(6):669-676.
    [22]宋国立,崔荣霞,王坤波,等.澳洲棉种的遗传多样性的RAPD分析[J].棉花学报,1999,11(2):65-69.
    [23]郭旺珍,张天真,何金龙.我国棉花主要品种的RAPD指纹图谱研究[J].农业生物技术学报,1996,4(2):129-134.
    [24] Guo W Z, Zhang T Z, Pan J J, et al. Identifiacation of RAPD marker linked with fertility-restoringgene of cytoplasmic male sterile lines in upland cotton[J]. Chinese Sci. Bull,1998,43:52-54.
    [25]易成新,张天真.分子标记用于棉花杂交种纯度检测的初步研究(英文)[J].棉花学报,1999,11(6):318-320.
    [26]郭旺珍,张天真,潘家驹,等.我国陆地棉品种的遗传多样性研究初报[J].棉花学报,1997,9(5):242-247.
    [27]袁有禄,张天真,郭旺珍,等.棉花高强纤维性状QTL的分子标记筛选及其定位[J].遗传学报,2001,28(12):1151-1161.
    [28] Litt M, Luty J A. A hypervariable microsatellite revealed by in vitro amplification of a dinucleotiderepeat within the cardiac muscle actin gene[J]. Am. Hum. Genet,1989,44:397-401.
    [29] Edwards A, Civitello A, Hammond H A, et al. DNA typing and genetic mapping with trimeric andtetrameric tandem repeats[J]. The American Journal Human Genetics,1991,49:746-756.
    [30]左开井,孙济中,张献龙,等.利用RFLP、SSR和RAPD标记构建陆地棉分子标记连锁图[J].华中农业大学学报,2000,19(3):190-193.
    [31] Zhang J, Guo W Z, Zhang T Z. Molecular linkage map of allotetraploid (Gossypium hirsutum L.×Gossypium barbadense L.) with a haploid population[J]. Theor Appl Genet,2002,105:1166-1174.
    [32] Lacape J M, Nguyen T B, Thibivilliers S, et al. A combined RFLP-SSR-AFLP map of tetraploidcotton based on a Gossypium hirsutum×Gossypium barbadense backcross population[J]. Genome,2003,46:612-626.
    [33] Mei M, Syed N H, Gao W, et al. Genetic mapping and QTL analysis of fiber-related traits in cotton(Gossypium)[J]. Theor. Appl. Genet,2004,108:280-291.
    [34] Nguyen T B, Giband M, Brottier P, et al. Wide coverage of the tetraploid cotton genome usingnewly developed microsatellite markers [J]. Theor Appl Genet,2004,109:167-175.
    [35] Rong J K, Abbey C, Bowers J E, et al. A3347-locus genetic recombination map ofsequence-tagged sites reveals features of genome organization, transmission and evolution ofcotton (Gossypium)[J]. Genetics,2004,166:389-417.
    [36]沈新莲,袁有禄,郭旺珍,等.棉花高强纤维主效QTL的遗传稳定性及它的分子标记辅助远择效果[J].高技术通讯,2001,10:13-16.
    [37]殷剑美,武耀廷,张军,等.陆地棉产量性状的QTL的分子标记定位[J].生物工程学报,2002,18(2):162-166.
    [38] Ren L H, Guo W Z, Zhang T Z. Identification of quantitative trait (QTL) affecting yield and fiberproperties in chromosome16in cotton using substitution line[J]. Acta Botanica Sinica,2002,44(7):815-820.
    [39] Zhang T Z, Yuan Y L, Yu J, et al. Molecular tagging of a major QTL for fiber strength in Uplandcotton and its marker-assisted selection[J]. Theor Appl Genet,2003,106:262-268.
    [40] Liu L, Guo W, Zhu X, et al. Inheritance and fine mapping of fertility restoration for cytoplasmicmale sterility in Gossypium hirsutum L[J]. Theor Appl Genet,2003,106:461-469.
    [41] Zabeau M, Vos P. European Patent Application, publication number[EB]1993, EP0534858.
    [42] Vos P, Hogers R, Bleeker M. AFLP: a new technique for DNA fingerprinting[J]. Nucleic Acids Res,1995,23:4407-4414.
    [43]赵宏,王省芬,张桂寅,等.棉花AFLP技术体系的摸索与建立[J].河北农业大学学报,2002,25(1):1-4.
    [44] Iqbal M J, Reddy OUK, EI-Zik K M, et al. A genetic bottleneck in the evolution underdomestication of upland cotton Gossypium hirsutum L. examined using DNA fingerprinting[J].Theor Appl Genet,2001,103:547-554.
    [45]宋国立,张春庆,贾继曾,等.棉花AFLP银染技术及品种指纹图谱应用初探[J].棉花学报,1999,11(6):281-283.
    [46]方卫国,张正圣,李先碧,等.棉花铃重的AFLP标记初步研究[J].棉花学报,2000,12(4):76-179.
    [47] Li G, Quiros C F. Sequence-related amplified polymorphism (SRAP) a new marker system basedon a simple PCR reaction: its application to mapping and gene tagging in Brassica[J]. Theor ApplGenet,2001,103:455-464.
    [48]林忠旭,张献龙,聂以春,等.棉花SRAP遗传连锁图构建[J].科学通报,2003,48(5):1676-1679.
    [49] Han Z G, Wang C B, Song X L, et al. Characteristics development and mapping of Gossypiumhirsutum derived EST-SSRs in allotetraploid cotton[J]. Theor Appl Genet,2006,112:430-439.
    [50] Yu J W, Yu S X, Lu C R, et al. High-density linkage map of cultivated allotetraploid cotton basedon SSR, TRAP, SRAP and AFLP markers[J]. Journal of Integrative Plant Biology,2007,49(5):716-724.
    [51]林刚,张坷,张建,等. ET-ISJ标记的开发及陆地棉遗传图谱构建[J].作物学报,2011,37(l):87-94.
    [52]王泽立,王鲁听,戴景瑞,等.运用近等基因系(NIL)、AFLP, RFLP和SCAR标记对玉米S组育性恢复基因肠的研究[J].遗传学报,2001,28(5):465-470.
    [53] Prasad M, Kumar N, Kulwal P L, et al. QTL analysis for grain protein content using SSR markersand validation studies using NILs in bread wheat[J]. Theor Appl Genet,2003,106:659-667.
    [54]万建林,翟虎渠,万建民,等.利用粳稻染色体片段置换系群体检测水稻抗亚铁毒胁迫有关性状QTL[J].遗传学报,2003,30(10):893-898.
    [55] Kubo T, Aida Y, Nakamura K, et al. Reciprocal chromosome segment substitution series derivedfrom japonica and indica cross of rice (Oryza sativa L)[J]. Breeding Sci,2002,52:319-325.
    [56] Chetelat R T and Meglic V. Molecular mapping of introgressed from Solanum lycopersicoides intocultivated tomato (Lycopersicon esculentum)[J]. Theor Appl Genet,2000,100:232-241.
    [57] Jeuken M J W and Lindhout P. The development of lettuce backcross inbred lines(BILs)forexploitation of the Lactuca saligna (wild lettuce) germplasm[J]. Theor Appl Genet,2004,109:394-401.
    [58] Endrizzi J E, Turcotte E L, Kohel R J. Genetics, cytology, and evolution of Gossypium [J].Adv Agron,1985,23:271-375.
    [59] Reinisch A J, Dong J M, Brubaker C L, et al. A detailed RFLP map of cotton Gossypiumhirsutum×Gossypium barbadense chromosome organization and evolution in a disomic polyploidgenome [J]. Genetics,1994,138(3):829-847.
    [60] Shappley Z W, Jenkins J K, Watson C E, et al. Establishment of molecular markers and linkagegroups in tow F2population of upland cotton[J]. Theor Appl Genet,1996,92:915-919.
    [61] Brubaker C L, Paterson A H, Wendel J F. Comparative genetic mapping of alloteloid cotton and itsdiploid progenitors[J]. Genome,1999,42:184-203.
    [62] Ullao M, Meredith WR Jr. Genetic linkage map and QTL analysis agronomic and fiber qualitytraits in an intraspecific population[J]. Cotton,2000,4:161-170.
    [63] Ullao M, Meredith W R, Shappley Z W, et al. RFLP genetic linkage maps from F2:3populationsand a joinmap of Gossypium hirsutum[J]. Theor Appl Genet,2002,104:200-208.
    [64] Lin Z X, He D H, Zhang X L, et al. Linkage map construction and mapping QTL for cotton fiberquality using SRAP, SSR and RAPD[J]. Plant Breeding,2005,124:180-187.
    [65] Yu J W, Yu S X, Lu C R, et al. High-density linkage map of cultivated allotetraploid cotton basedon SSR, TRAP, SRAP and AFLP markers[J].Journal of Integrative Plant Biology,2007,49(5):716724
    [66] Guo W Z, Cai C P, Wang C B, et al. A microsatellite-based, gene-rich linkage map reveals genomestructure, function, and evolution in Gossypium[J]. Genetics,2007, Vol.176.527-541
    [67] Guo W Z, Cai C P, Wang C B, et al. A preliminary analysis of genome structure and composition inGossypium hirsutum[J]. BMC Genomics,2008,9:314
    [68] Paterson A H, Lander E S, Hewitt J D, et al. Resolution of quantitative traits into mendelian factorsby using a complete linkage map of restriction fragment length polymorphisms[J]. Nature,1988,335:721-726.
    [69] Thoday J M. Location of polygenes[J]. Nature,1961,191:368-370.
    [70] Soller M, Beckmann J S. Marker-based mapping of quantitative trait loci using replicatedprogenies[J]. Theor Apll Genet,1990,67:25-33.
    [71] Darvasi A, Soller M. Selective DNA pooling for determination of linkage between a marker and aquantitative trait locus[J]. Genetics,1994,138:1365-1373.
    [72] Lander E S, Botstein D. Mapping Mendelian factors underlying quantitative traits using RFLPlinkage maps [J]. Genetics,1989,121:185-199.
    [73] Zeng Z B. Precision mapping of quantitative trait loci [J]. Genetics,1994,136:1457-1466.
    [74] Jansen R C, Stam P. High resolution of quantitative traits into multiple loci via interval mapping [J].Genetics,1994,136:1447-1455.
    [75] Kao C H, Zeng Z B. General formulae for obtaining the MLEs and the asymptoticvariance-covariance matrix in mapping quantitative trait loci when using the EM algorithm[J].Biometrics,1997,53:653-665.
    [76] Kao C H, Zeng Z B, Teasdale R D. Multiple interval mapping for quantitative trait loci[J]. Genetics,1999,152:1203-1216.
    [77] Zeng ZB, Kao CH, Basten CJ. Estimating the genetic architecture of quantitative traits[J]. GenetRes,1999,74:279-289.
    [78] Jiang C X, Wright R J, Et-Zik K M, et al. Polyploid formation created unique avenues for responseto selection in Gossypium (cotton)[J]. Pro.Natl.Acad: Sci.USA,1998,95:4419-4424.
    [79] Kohel R J, Yu J, Park Y H, et al. Molecular mapping and characterization of traits controlling fiberquality in cotton[J]. Euphytica,2001,121:163-172.
    [80] Shappley Z W, Jenkins J N, Zhu J, et al. Quantitative trait loci associated with agronomic and fibertraits of upland cotton[J]. Cotton Science,1998,2:153-163.
    [81] Paterson A H, Saranga Y, Menz M, et al. QTL analysis of genotyp environment interactionaffecting cotton fiber quality[J]. Theor Appl Genet,2003,106:384-396.
    [82] Lacape J M, Nguyen T B, Brottier P, et al. QTL analysis of cotton fiber quality using multipleGossypium hirsutum×Gossypium barbadense backcross generation[J]. Crop Science,2005,45:123-140.
    [83] Shen X L, Guo W Z, Zhu X F, et al. Molecular mapping of QTL for fiber qualities in three diverselines in Upland cotton using SSR markers[J]. Molecular Breeding,2005,15:169-181.
    [84] Lin Z X, He D H, Zhang X L, et al. Linkage map construction and mapping QTL for cotton fiberquality using SRAP, SSR and RAPD[J]. Plant Breeding,2005,124:180-187.
    [85] Shen X L, Guo W Z, Lu Q X, et al. Genetic mapping of quantitative trait loci for fiber quality andyield trait by RIL approach in Upland cotton[J].. Euphytica,2007,155:371-380.
    [86] Wang B H, Wu Y T, Guo W Z, et al. QTL analysis and epistasis effects dissection of fiberqualities in an elite cotton hybrid grown in second generation[J]. Crop science,2007,47:1384-1392.
    [87]胡文静,张晓阳,张天真,等.陆地棉优质纤维QTL的分子标记筛选及优质来源分析[J].作物学报,2008,34(4):578-586
    [88]陈利,张正圣,胡美纯,等.陆地棉遗传图谱构建及产量和纤维品质性状QTL定位[J].作物学报,2008,34(7):1199-1205
    [89] Zhang Z S, Hu M C, Zhang J, et al. Construction of a comprehensive PCR-based marker linkagemap and QTL mapping for fiber quality traits in upland cotton (Gossypium hirsutum L.)[J]. MolBreeding,2009,24:49-61.
    [90] Wu J X, Osman Ariel Gutierrez, Johnie N. Jenkins, et al. Quantitative analysis and QTLmapping for agronomic and fiber traits in an RI population of upland cotton[J]. Euphytica,2009,165:231-245.
    [91] Qin H D, Guo W Z, Zhang Y M, et al. QTL mapping of yield and fiber traits based on afour-way cross pupulation in Gossypium hirsutum L[J]. Theor Appl Genet,2008,117:883-894.
    [92]孔广超,秦利,徐海明,等.棉花IF2群体构建及其在纤维品质遗传和杂种优势研究中的应用[J].作物学报,2010,36(6):940-944.
    [93]杨鑫雷,王志伟,张桂寅,等.棉花分子遗传图谱构建和纤维品质性状QTL分析[J].作物学报,2009,35(12):2159-2166.
    [94]秦永生,叶文雪,刘任重,等.陆地棉纤维品质相关QTL定位研究[J].中国农业科学,2009,42(12):4145-4154.
    [95]陈笑.利用复合杂交群体定位陆地棉纤维品质性状QTL[D].西南大学,2009.
    [96]马靖.利用三亲本杂交群体定位陆地棉纤维品质性状QTL[D].西南大学,2010.
    [97] Paterson A H, Lander E S, Hewitt J D, et al. Resolution of quantitative traits into mendelian factorsby using a complete linkage map of restriction fragment length polymorphisms[J]. Nature,1988,335:721-726.
    [98] Goffinet B, Gerber S. Quantitative Trait Loci: A Meta-analysis[J]. Genetics,2000,155:463-473.
    [99] Belknap J K, Atkins A L. The replicability of QTL for murine alcohol preference drinking behavioracross eight independent studies[J]. Mamm Genome,2001,12:893-899.
    [100]Arcade A, Labourdette A, Falque M, et al. Biomercator: integrating genetic maps and QTLtowards discovery of candidate genes[J]. Bioinformatics,2004,20:2324-2326.
    [101]Chardon F, Virlon B, Moreau L, et al. Genetic architecture of flowering time in maize as inferredfrom quantitative trait loci meta-analysis and synteny conservation with the rice genome[J].Genetics,2004,168:2169-2185.
    [102]Hanocq E, Laperche A, Jaminon O, et al. Most significant genome regions involved in the controlof earliness traits in bread wheat, as revealed by QTL meta-analysis[J]. Theor Appl Genet,2007,114:569-584.
    [103]齐照明,孙亚男,陈立君,等.基于Meta分析的大豆百粒重的QTL定位[J].中国农业科学,2009,42(11):3795-3803.
    [104]吴琼,齐照明,刘春燕,等.基于元分析的大豆生育期QTL的整合[J].作物学报,2009,35(8):1418-1424.
    [105]王帮太,吴建宇,丁俊强,等.玉米产量及产量相关性状QTL的图谱整合[J].作物学报,2009,35(10):1836-1843.
    [106]毛双林.小麦重要性状QTL元分析及光和功能与耐湿性QTL定位[D].四川农业大学,2010.
    [107]Rong J K, Feltus F A, Waghmare V N, et al. Meta-analysis of polyploid cotton QTL showsunequal contributions of subgenomes to a complex network of genes and gene cluseters implicatedin lint fiber development[J]. Genetics,2007,176(4):2577-2588.
    [108]Lacape J M, Liewellyn D, Jacobs J, et al. Meta-analysis of cotton fiber qullity QTL acrossdiverse environments in a Gossypium hisutum×G. Barbadense RIL population[J]. BMC PlantBiology,2010,10:132-156.
    [109]Paterson A H, Brubaker C L, Wendel J F. A rapid method for extraction of cotton (Gossypium spp.)genomic DNA suitable for RFLP and PCR analysis[J]. Plant Mol Biol Rep,1993,11:112-127.
    [110]温小杰.我国陆地棉抗枯黄萎病品种遗传多样性分析[D].河北农业大学硕士学位论文,2004.
    [111]Hu J G, Vick B A. Target Region Amplification Polymorphism: A Novel Marker Technique forPlant Genotyping[J]. Plant Molecular Biology Reporter,2003,21:289-294.
    [112]Lander E S,Green S P,Abrabmson J,et al. MAPMAKER: an interactive computer package forconstructing primary linkage map of experimental and natural population[J]. Genonmics,1987,1:174~181.
    [113]Voorrips R E. MapChart2.1: Software for the graphical presentation of linkage maps and QTL[CP].Plant Research International, Wageningen, The Netherlands,2002.
    [114]Wang S C,Bastes C J,Zeng Z B. Windows QTL cartographer2.5[CP]. Department of Statistics,North Carolina State University, Raleigh, N C,2005.
    [115]McCouch S R, Cho Y G, Yano M. Report on QTL nomenclature[J]. Rice Genet Newsl,1997,14:11-13
    [116]Darvasi A, Soller M. A simple method to calculate resolving power and confidence interval ofQTL map location[J]. Behav Genet,1997,27:125-132.
    [117]Goffinet B, Gerber S. Quantitative trait loci: A meta-analysis[J]. Genetics,2000,155:463-473.
    [118]Ji H L, Li X H, Xie C X, et al. Comparative QTL mapping of resistance to Sporisorium reilianainmaize based on meta-analysis of QTL locations[J]. J Plant Genet Resour,2007,8(2):132-139.
    [119]Reddy O U K,Pepper A E,Abdurakimonov I,et al. New dinucleotion and trinucleotidemicrosatelite maker resourse for cotton genome research[J]. The journal of cotton science,2001,5:103-113.
    [120]Yu Y,Yuan D J, Liang S G, et al. Genome structure of cotton revealed by a genome-wide SSRgenetic map constructed from a BC1population between gossypium hirsutum and G. barbadense[J].BMC Genomics,2011,12:15.
    [121]Zhang K, Zhang J, Ma J, et al. Genetic mapping and quantitative trait locus analysis of fiberquality traits using a three-parent composite population in upland cotton (Gossypium hirsutum L.)[J]. Mol Breeding,2012,29:335-348.
    [122]Devicente M C, Tanksley S D. QTL analysis of transgressive segregation in an interspecifictomato crooss[J]. Genetics,1993,134:585-596.
    [123]Song W Y, Wang G L, Chen L L. A receptor kinase-like protein encoded by the rice dieasesresistance gene Xa21[J]. Science,1995,270:1804-1806.
    [124]Chen H, Qian N, Guo W Z, et al. Using three overlapped RILs to dissect genetically clusteredQTL for fiber stregth on Chro.D8in Upland cotton[J]. Theor Appl Genet,2009,119,605-612.
    [125]Meredith W R. Minimum Number of Genes Controlling Cotton Fiber Strength in a BackcrossPopulation. Crop Sci,2005,45:1114-1119.
    [126]Zhang J F. Improving upland cotton by introducing desirable gene from Pima cotton[C].2007.
    [127]刘恒蔚.基于转录组分析的棉纤维品质候选基因筛选与克隆[D].河北农业大学博士学位论文,2009.
    [128]Chardon F, Virlon B, Moreau L, et al. Genetic architecture of flowering time in maize as inferredfrom quantitative trait loci meta-analysis and synteny conservation with the rice genome[J].Genetics,2004,168(4):2169-2185.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700