交叉韧带损伤后滑膜成纤维细胞中赖氨酰氧化酶和基质金属蛋白酶表达的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
膝关节交叉韧带损伤后愈合能力差一直是骨科临床治疗面临的难题。因此从分子水平阐明交叉韧带难以愈合的原因至关重要。
     交叉韧带受到损伤的同时滑膜也会受到不同程度损伤。动物实验发现前交叉韧带(Anterior cruciate ligament, ACL)损伤后,与关节腔内其它组织(如:后交叉韧带(Posterior cruciate ligament, PCL)、半月板和软骨)相比,滑膜向关节液释放了最大量活化形式的基质金属蛋白酶(Matrix metalloproteinases, MMPs),因而被认为是交叉韧带损伤后关节腔内微环境的主要调节者。为了进一步更深入的探讨滑膜的关节腔微环境调控作用,我们体外模拟交叉韧带损伤后关节腔内微环境,在细胞水平上研究力-化学因素刺激下,滑膜成纤维细胞中赖氨酰氧化酶(Lysyl oxidases, LOXs)和MMPs的表达以及MMP-2活性。本文主要研究工作及结果如下:
     ①TNF-α和IL-1β对滑膜成纤维细胞中LOXs和MMPs表达以及MMP-2活性的影响
     炎症因子被认为是炎症反应时期重要的化学调节者。研究结果显示lOng/ml TNF-α抑制了滑膜成纤维细胞中LOXs的表达10ng/ml IL-1β上调了LOX、LOXL-1和LOXL-3的表达,下调了LOXL-2和LOXL-4的表达。TNF-α和IL-1β分别上调了MMP-1,2,3的表达。TNF-α与IL-1β的结合不同程度地抑制了LOXs的表达,却以协同方式大大促进了MMP-1,2,3的表达。明胶酶谱实验指出TNF-α和IL-1β的结合进一步以剂量和时间依赖性形式诱导了MMP-2活性的增加,且MMP-2活性高于TNF-α和IL-1β的单独促进作用。炎症因子刺激下,滑膜成纤维细胞中表达失衡的LOXs和MMPs分泌进入关节液,造成关节腔中交叉韧带重塑过程的失衡,这可能是导致受损交叉韧带无法愈合的一个重要原因。说明受损交叉韧带无法愈合不仅与其自身因素有关,还与韧带损伤后关节腔内微环境的改变有关,其中滑膜对于关节腔内微环境的改变起着重要的调控作用。因此在研究交叉韧带修复工作中,滑膜是不能被忽视的。
     ②损伤性力学拉伸作用下TNF-α对滑膜成纤维细胞中LOXs和MMPs表达以及MMP-2活性的影响
     在正常生理环境下,力学刺激是和关节腔内其它因子共同作用来引发损伤级联反应的。结果显示12%损伤性力学拉伸抑制了LOXs(除LOXL-2)的表达,却上调了MMP-1,2,3的表达。与10ng/ml的TNF-α相似,5ng/ml的TNF-α仍然抑制了LOXs的表达,促进了MMP-1,2,3的表达。在5ng/mlTNF-α存在的情况下,滑膜成纤维细胞受到损伤性力学拉伸的第1,2,3个小时里表现出的LOXs表达量的上调受到
     抑制,之后在6h时,LOXs表达量降到对照组水平以下。相反,损伤性力学拉伸与TNF-α以协同作用方式促进了MMP-1,2,3的表达以及MMP-2的活性。此外,体外划痕实验显示TNF-α抑制了细胞的迁移。在力学损伤和炎症因子共同作用下,滑膜成纤维细胞中表达失衡的LOXs和MMPs释放入滑液中引起关节腔微环境的变化,引起受损交叉韧带细胞外基质合成与降解的失衡,不利于韧带修复。以上结果说明除了交叉韧带自身因素外,关节腔中微环境的改变也影响着韧带的愈合能力。此外,研究结果还指出滑膜成纤维细胞对力学因子和炎症因子非常敏感,并且在调节关节腔微环境中起着重要作用。因此在研究交叉韧带修复工作中,滑膜是不能被忽视的。
     ③损伤性力学拉伸和TGF-β1对滑膜成纤维细胞中LOXs和MMP-1,2,3表达以及MMP-2活性的影响
     在韧带愈合的炎症反应期,不仅炎症因子(TNF-α和IL-1β)而且生长因子(如TGF-β1)也参与了韧带的修复。结果显示损伤性力学拉伸抑制了LOXs(除LOXL-2)的表达,而TGF-β1上调了LOXs的表达。损伤性力学拉伸和’TGF-β1分别上调了MMP-1,2,3的表达。损伤性力学拉伸与TGF-β1共同作用,促进了LOXs(除LOXL-1)和MMP-1,2,3的表达,并且MMPs的上调程度大于LOXs的上调程度。此外,损伤性力学拉伸与TGF-β1结合,以时间依赖性方式大大促进了MMP-2的活性,明显超过了力因子单独对MMP-2的作用。在力学损伤和生长因子共同作用下,相对于LOXs的表达水平,滑膜成纤维细胞中更高的MMPs表达和活性破坏了交叉韧带细胞外基质重塑过程的平衡状态,不利于韧带修复。以上结果除了说明交叉韧带受损后关节腔微环境改变对韧带愈合的不利影响外,也说明滑膜在关节腔微环境调控过程中起着重要作用,并且其作用的发挥受力因子和生长因子的共同影响。因此,滑膜在韧带愈合过程中的作用越来越重要,不能被忽视。
     ④NF-κB信号通路介导了损伤性力学拉伸和TGF-β1对滑膜成纤维细胞中MMP-2活性的调节过程
     利用信号通路抑制剂来研究损伤性力学拉伸和TGF-β1调控滑膜成纤维细胞中MMP-2表达的主要信号通路。结果显示由于NF-κB信号通路抑制剂Bay11-7082和Bay11-7085的加入,损伤性力学拉伸和TGF-β1诱导的滑膜成纤维细胞中MMP-2的活性被抑制。
     ⑤为了更真实的模拟体内环境,实验建立共培养体系,研究共培养环境下,滑膜细胞对PCL细胞中LOXs的直接性的调节作用,结果显示相比单培养而言,共培养促进了PCL细胞中LOXs的表达。这一结果直接表明了滑膜与PCL之间有交流,并且更加说明滑膜作为微环境调节者参与了交叉韧带的愈合。
     综上所述,交叉韧带损伤后关节腔微环境的改变可能是导致其自身修复失败的重要原因,并且滑膜通过对关节腔内微环境的调控参与了交叉韧带的愈合过程。因此通过调节滑膜中LOXs和MMPs的表达来改善关节腔微环境对于提高交叉韧带愈合能力具有重要意义。
Injured knee joint cruciate ligament does not self-heal satisfactorily making it as one of the most challenging and intractable clinical problem today. This raises the necessity to detail the reason why the injured cruciate ligament hardly repair.
     The damage of cruciate ligament is always accompanied by the injury of synovium. Previous ex vivo studies showed that the synovium has the greatest ability for converting the72kDa pro-MMP-2to the62kDa active-MMP-2and releasing MMP-2into the synovial fluids compared with other intraarticular tissues (such as posterior cruciate ligament (PCL), meniscus and cartilage). Therefore the synovium is considered to be the major regulator of the microenvironment in the joint cavity after cruciate ligament injury. In order to further explore the role of synovium in regulating the microenvironment of joint cavity after cruciate ligament injury, we mimicked the microenvironment of joint cavity after cruciate ligament injury and study the effects of mechanical-chemical factors on expressions of LOXs (Lysyl oxidases, LOXs) and MMPs and MMP-2activity in synovial fibroblasts at the cellular level. The main research and results are as follows:
     ①Combined effects of TNF-a and IL-1β on LOXs and MMPs expressions in synovial fibroblasts
     Proinflammatory factors are considered important chemical mediators in the acute inflammatory phase of wound healing. The results showed that lOng/ml TNF-α alone down-regulated the expressions of LOXs. lOng/ml IL-1β up-regulated the expressions of LOX、LOXL-1and LOXL-3, down-regulated the expressions of LOXL-2and LOXL-4. Both TNF-a and IL-1β increased the expressions of MMP-1,2,3. When the two inflammatory factors were mixed, expressions of LOXs were inhibited differently. However, the combination of TNF-a plus IL-1β caused a greater increase in the expressions of MMP-1,-2, and-3relative to TNF-a and IL-1β alone. Zymography assays showed that the combination of TNF-a and IL-1β increased MMP-2activity in a dose and time dependent manner and the MMP-2activity was much higher than MMP-2activity induced by TNF-α and IL-1β alone. In the presence of proinflammatory factors, the LOXs and MMPs showing a state of imbalanced expressions in synovial fibroblasts were released into synovial fluids and alter the balance of cruciate ligament healing, which may be one of the important reasons why cruciate ligament cannot be repaired. These results suggest that besides self-factors of cruciate ligament, microenvironment in knee joint cavity also affect the cruciate ligament's healing ability and synovium plays an important role in regulating the microenvironment in the joint cavity and cannot be ignored in the healing process of cruciate ligament.
     ②Effects of TNF-a on expressions of LOXs and MMPs in synovial fibroblasts under injurious mechanical stretch
     In the real physiological situation, the stretching force may exert its effect together with other factors to induce the injurious cascade. The results showed that12%injurious stretch down-regulated the expressions of LOXs (except LOXL-2) and up-regulated the expressions of MMP-1,2,3. As above lOng/ml TNF-α,5ng/ml TNF-α also down-regulated the expressions of LOXs and up-regulated the expressions of MMP-1,2,3. In the presence of TNF-a, the12%injurious stretch-induced up-regulation of LOXs at1,2and3h was significantly inhibited and decreased further below control after6h. In contrast, injurious stretch had a synergistic effect with TNF-a on increasing expressions of MMP-1,2,3and MMP-2activity. In addition, in vitro wound healing assay revealed that TNF-a inhibited the migration of synovial fibroblasts. Under the stimulation of injurious stretch and TNF-a, the LOXs and MMPs of imbalance in synovial fibroblasts released into synovial fluids and caused the change of microenvironment in knee joint cavity which would promoted the ECM degradation of cruciate ligament and inhibit the ligament repair. These results suggest that besides self-factors of cruciate ligament, microenvironment in knee joint cavity also affect the cruciate ligament's healing ability. In addition, these results further indicate that synovial fibroblasts are very sensitive to mechanical injury and proinflammatory factors and plays an important role in regulating the microenvironment in the joint cavity and cannot be ignored in the healing process of cruciate ligament.
     ③Combined effects of mechanical stretch and TGF-β1on LOXs and MMPs expressions in synovial fibroblasts
     In the inflammatory phase of ligament healing, not only proinflammatory factors (such as TNF-a and IL-1β) but also growth factors (such as TGF-β1) participate in the ligament repair. The results showed that injurious stretch down-regulated the expressions of LOXs (except LOXL-2), however, TGF-β1up-regulated the expressions of LOXs. Both injurious stretch and TGF-β1alone increased the expressions of MMP-1, 2,3. When injurious stretch and TGF-β1were mixed, expressions of LOXs and MMP-1,2,3were up-regulated and the elevated level of MMP-1,2,3was higher than LOXs. In addition, the combination of injurious stretch and TGF-β1increased MMP-2activity in a time dependent manner and the MMP-2activity was much higher than MMP-2activity induced by injurious stretch alone. Under the stimulation of injurious stretch and TGF-β1the much higher expressions of MMPs in synovial fibroblasts compared to LOXs promoted the ECM degradation of cruciate ligament, which would inhibit the ligament repair. These results suggest that change of microenvironment in knee joint cavity after cruciate ligament injury affects the cruciate ligament's healing ability. The synovial fibroblasts are very sensitive to mechanical injury and growth factors, and further indicate that synovium plays an important role in regulating the microenvironment in the joint cavity after cruciate ligament injury must be considered seriously.
     ④NF-κB pathway is involved in the injurious stretch and TGF-β1induction of MMP-2in human synovial fibroblasts
     The signal pathways underlining the injurious stretch and TGF-β1-induced MMP-2activity in synovial fibroblasts were investigated through signal pathway inhibitor. These results suggest that the induced MMP-2by injurious stretch and TGF-β1was inhibited significantly due to the addition of NF-κB pathway inhibitor Bay11-7082and Bay11-7085.
     ⑤In order to mimicked the microenvironment of joint cavity more really, we established coculture system and investigated the direct regulation of synovial fibroblasts on PCL fibroblasts. The results showed that coculture promoted the expressions of LOXs in PCL fibroblasts compared mono-culture.These results suggest that synovial fibroblasts and PCL fibroblasts do exist interaction and crosstalk, and further indicate that synovium participates in the healing process of cruciate ligament as microenvironment regulator in the joint cavity.
     In summary, these results suggest that the change of microenvironment in knee joint cavity after cruciate ligament injury may be one of the important reasons why cruciate ligament cannot be repaired and synovial fibroblasts participate in the healing process of cruciate ligament as microenvironment regulator. Therefore, improving the microenvironment in the joint cavity after cruciate ligament injury through regulating LOXs and MMPs expressions in synovial fibroblasts would has important significance for cruciate ligament repair.
引文
[1]M Odensten, J Gillquist. Functional anatomy of the anterior cruciate ligament and a rationale for Reconstruction [J]. J Bone Joint Surg Am,1985,67:257-62.
    [2]KP Spindler, MM Murray, KB Detwiler, et al. The biomechanical response to doses of TGF-beta 2 in the healing rabbit medial collateral ligament[J]. J Orthop Res,2003, 21:245-9.
    [3]FH Fu, CH Bennett, C Lattermann,et al. Current trends in anterior cruciate ligament reconstruction [J]. Am J Sports Med,1999,27:821-30.
    [4]J Marrale, MC Morrissey, FS Haddad. A literature review of autograft and allograft anterior cruciate ligament reconstruction[J]. Knee Surg Sport Tr A,2007,15:690-704.
    [5]CJ Wang, YS Chan, LH Weng, et al. Comparison of autogenous and allogenous posterior cruciate ligament reconstructions of the knee[J]. Injury,2004,35:1279-85.
    [6]CN Nagineni, D Amiel, MH Green, et al. Characterization of the intrinsic properties of the anterior cruciate and medial collateral ligament cells:an in vitro cell culture study [J]. J Orthop Res,1992,10:465-75.
    [7]KL Sung, L Yang, DE Whittemore, et al. The differential adhesion forces of anterior cruciate and medial collateral ligament fibroblasts:effects of tropomodulin, talin, vinculin, and alpha-actinin[J]. Proc Natl Acad Sci,1996,93:9182-87.
    [8]ME Wiig, D Amiel, M Ivarsson, et al. Type I procollagen gene expression in normal and early healing of the medial collateral and anterior cruciate ligaments in rabbits:an in situ hybridization study [J]. J Orthop Res,1991,9:374-82.
    [9]R Visse, H Nagase. Matrix metalloproteinases and tissue inhibitors of metalloproteinases structure, function, and biochemistry [J]. Circulation research,2003,92:827-39.
    [10]J Molnar, KSK Fong, QP He, et al. Structural and functional diversity of lysyl oxidase and the LOX-like proteins[J]. Bba-Proteins Proteom,2003,1647:220-4.
    [11]张艳君,蒋稼欢,谢静,杨力,宋国立赖氨酰氧化酶与人类疾病[J].生物化学与生物物理进展,2011,38:389-99.
    [12]CA Vater, ED Harris Jr, RC Siegel. Native cross-links in collagen fibrils induce resistance to human synovial collagenase[J]. Biochem J,1979,181:639-45.
    [13]YQ Wang, ZY Tang, RY Xue, et al. TGF-β1 promoted MMP-2 mediated wound healing of anterior cruciate ligament fibroblasts through NF-κB[J]. Connect Tissue Res,2011,52: 218-25.
    [14]D Zhou, HS Lee, F Villarreal, et al. Differential MMP-2 activity of ligament cells under mechanical stretch injury:An in vitro study on human ACL and MCL fibroblasts[J]. J Orthop Res,2005,23:949-57.
    [15]J Xie, JH Jiang, Y Zhang, et al. Up-regulation expressions of lysyl oxidase family in Anterior Cruciate Ligament and Medial Collateral Ligament fibroblasts induced by Transforming Growth Factor-Beta 1[J]. Int Orthop,2012,36:207-213.
    [16]J Xie, J Jiang, W Huang, et al. TNF-α induced down-regulation of lysyl oxidase family in anterior cruciate ligament and medial collateral ligament fibroblasts[J]. The Knee,2013.
    [17]J Xie, C Wang, L Yin, et al. IL-1β influences on lysyl oxidases and matrix metalloproteinases profile of injured anterior cruciate ligament and medial collateral ligament fibroblasts[J]. Int Orthop,2013,37:495-505.
    [18]Z Tang, L Yang, Y Wang, et al. Contributions of different intraarticular tissues to the acute phase elevation of synovial fluid MMP-2 following rat ACL rupture[J]. J Orthop Res,2009, 27:243-48.
    [19]D Amiel, C Frank, F Harwood, et al. Tendons and ligaments:a morphological and biochemical comparison[J]. J Orthop Res,1983,1:257-65.
    [20]AA Amis, CM Gupte, AMJ Bull, et al. Anatomy of the posterior cruciate ligament and the meniscofemoral ligaments[J]. Knee Surg Sport Tr A,2006,14:257-63.
    [21]K Irie, E Uchiyama, H Iwaso. Intraarticular inflammatory cytokines in acute anterior cruciate ligament injured knee[J]. The Knee,2003,10:93-6.
    [22]W Petersen, B Tillmann. Structure and vascularization of the cruciate ligaments of the human knee joint[J]. Anat Embryol,1999,200:325-34.
    [23]JAL Monaco, T Lawrence. Acute wound healing:an overview[J]. Clin Plast Surg,2003,30: 1-12.
    [24]MM Murray, KP Spindler, E Abreu, et al. Collagen-platelet rich plasma hydrogel enhances primary repair of the porcine anterior cruciate ligament[J]. J Orthop Res,2007,25:81-91.
    [25]HA Lucero, HM Kagan. Lysyl oxidase:an oxidative enzyme and effector of cell function[J]. Cell Mol Life S,2006,19-20:2304-16.
    [26]L Thomassin, CC Werneck, TJ Broekelmann, et al. The pro-regions of lysyl oxidase and lysyl oxidase-like 1 are required for deposition onto elastic fibers [J]. J Biol Chem,2005, 280:42848-55.
    [27]SR Vora, Y Guo, DN Stephens, et al. Characterization of recombinant lysyl oxidase propeptide[J]. Biochem,2010,49:2962-72.
    [28]Y Guo, N Pischon, AH Palamakumbura, et al. Intracellular distribution of the lysyl oxidase propeptide in osteoblastic cells[J]. Am J Physiol Cell Physiol,2007,292:C2095-2102.
    [29]M Horiguchi, T Inoue, T Ohbayashi, et al. Fibulin-4 conducts proper elastogenesis via interaction with cross-linking enzyme lysyl oxidase[J]. Proc Natl Acad Sci,2009,106: 19029-34.
    [30]AH Palamakumbura, S Jeay, Y Guo, et al. The propeptide domain of lysyl oxidase induces phenotypic reversion of ras-transformed cells[J]. J Biol Chem,2004,279:40593-600.
    [31]AH Palamakumbura, SR Vora, MA Nugent, et al. Lysyl oxidase propeptide inhibits prostate cancer cell growth by mechanisms that target FGF-2-cell binding and signaling[J]. Oncogene,2009,28:3390-3400.
    [32]PA Hurtado, S Vora, SS Sume, et al. Lysyl oxidase propeptide inhibits smooth muscle cell signaling and proliferation[J]. Biochem Biophys Res Commun,2008,366:156-61.
    [33]F Ryvkin, FT Greenaway. A peptide model of the copper-binding region of lysyl oxidase[J]. J Inorg Biochem,2004,98:1427-35.
    [34]M Akagawa, K Suyama. Characterization of a model compound for the lysine tyrosylquinone cofactor of lysyl oxidase[J]. Biochem Biophys Res Commun,2001,281: 193-9.
    [35]IK Hornstra, S Birge, B Starcher, et al. Lysyl oxidase is required for vascular and diaphragmatic development in Mice[J]. J Biol Chem,2003,278:14387-93.
    [36]JM Maki, R Sormunen, S Lippo, et al. Lysyl oxidase is essential for normal development and function of the respiratory system and for the integrity of elastic and collagen fibers in various tissues [J]. J Am Pathol,2005,167:927-36.
    [37]JM Gansner, BA Mendelsohn, KA Hultman, et al. Essential role of lysyl oxidases in notochord development[J]. Dev Biol,2007,307:202-213.
    [38]C Reynaud, D Baas, C Gleyzal, et al. Morpholino knockdown of lysyl oxidase impairs zebrafish development, and reflects some aspects of copper metabolism disorders[J]. Matrix Biol,2008,27:547-60.
    [39]KM Szauter, T Cao, CD Boyd, et al. Lysyl oxidase in development, aging and pathologies of the skin[J]. Pathologie Biologie,2005,53:448-56.
    [40]H Fushida-Takemura, M Fukuda, N Maekawa, et al. Detection of lysyl oxidase gene expression in rat skin during wound healing [J]. Arch Dermatol Res,1996,288:7-10.
    [41]Y Hou, ZB Mao, XL Wei, et al. The roles of TGF-β1 gene transfer on collagen formation during Achilles tendon healing[J]. Biochem Biophys Res Commun,2009,383:235-9.
    [42]H Oxlund, M Barckman, G (?)rtoft, et al. Reduced concentration of collagen cross links are associated with reduced strength of bone[J]. Bone,1995,17:365-71.
    [43]M Saito, A Shiraishi, M Ito, et al. Comparison of effects of alfacalcidol and alendronate on mechanical properties and bone collagen cross-links of callus in the fracture repair rat model[J]. Bone,2010,46:1170-79.
    [44]H Nagaoka, Y Mochida, P Atsawasuwan, et al.1,25(OH)2D3 regulates collagen quality in an osteoblastic cell culture system[J]. Biochem Biophys Res Commun,2008,377:674-8.
    [45]I Massova, LP Kotra, R Fridman, et al. Matrix metalloproteinases:structures, evolution, and diversification[J]. Faseb J,1998,12:1075-95.
    [46]TE Cawston, AJ Wilson. Understanding the role of tissue degrading enzymes and their inhibitors in development and disease[J]. Best Pract Res Clin Rheumatol,2006,20: 983-1002.
    [47]M Jani, H Tordai, M Trexler, et al. Hydroxamate-based peptide inhibitors of matrix metalloprotease 2[J]. Biochimie,2005,87:385-92.
    [48]K Subramniam, CM Pech, MC Stacey, et al. Induction of MMP-1, MMP-3 and TIMP-1 in normal dermal fibroblasts by chronic venous leg ulcer wound fluid*[J]. Int Wound J,2008, 5:79-86.
    [49]Q Nguyen, G Murphy, PJ Roughley, et al. Degradation of proteoglycan aggregate by a cartilage metalloproteinase. Evidence for the involvement of stromelysin in the generation of link protein heterogeneity in situ[J]. Biochem J,1989,259:61-7.
    [50]SG Louie, B Park, H Yoon. Biological response modifiers in the management of rheumatoid arthritis[J]. Am J Health SystPharm,2003,60:346-55.
    [51]IF Petersson, LT Jacobsson. Osteoarthritis of the peripheral joints[J]. Best Pract Res Clin Rheumatol,2002,16:741-60.
    [52]B Bresnihan. Pathogenesis of joint damage in rheumatoid arthritis[J]. J Rheumatol,1999,26: 17-9.
    [53]B Kurz, AK Lemke, J Fay, et al. Patho mechanisms of cartilage destruction by mechanical injury[J]. Ann Anat,2005,187:473-85.
    [54]SJ Millward-Sadler, MO Wright, LW Davies, et al. Mechanotransduction via integrins and interleukin-4 results in altered aggrecan and matrix metalloproteinase 3 gene expression in normal, but not osteoarthritic, human articular chondrocytes[J]. Arthritis Rheum,2000,43: 2091-99.
    [55]JP Pelletier, J Martel-Pelletier, SB Abramson. Osteoarthritis, an inflammatory disease: potential implication for the selection of new therapeutic targets[J]. Arthritis Rheum,2001, 44:1237-47.
    [56]V Krenn, F Hensel, HJ Kim, et al. Molecular IgVH analysis demonstrates highly somatic mutated B cells in synovialitis of osteoarthritis:a degenerative disease is associated with a specific, not locally generated immune response[J]. Lab Invest,1999,79:1377-84.
    [57]H Nakamura, S Yoshino, T Kato, et al. T-cell mediated inflammatory pathway in osteoarthritis[J]. Osteoarthritis Cartilage,1999,7:401-2.
    [58]JP Caron, JC Fernandes, J Martel-Pelletier, et al. Chondroprotective effect of intraarticular injections of interleukin-1 receptor antagonist in experimental osteoarthritis. Suppression of collagenase-1 expression[J]. Arthritis Rheum,1996,39:1535-44.
    [59]JC Fernandes, J Martel-Pelletier, V Lascau-Coman, et al. Collagenase-1 and collagenase-3 synthesis in normal and early experimental osteo arthritic canine cartilage:an immunohistochemical study [J]. J Rheumatol,1998,25:1585-94.
    [60]F Moldovan, JP Pelletier, J Hambor, et al. Collagenase-3 (matrix metalloprotease 13) is preferentially localized in the deep layer of human arthritic cartilage in situ. In vitro mimicking effect by transforming growth factor β[J]. Arthritis Rheum,1997,40:1653-61.
    [61]PG Mitchell, HA Magna, LM Reeves, et al. Cloning, expression, and type II collagenolytic activity of matrix metalloproteinase-13 from human osteoarthritic cartilage[J]. J Clin Invest, 1996,97:761-8.
    [62]LJ Bonassar, EH Frank, JC Murray, et al. Changes in cartilage composition and physical properties due to stromelysin degradation[J]. Arthritis Rheum,1995,38:173-83.
    [63]KO Suzuki, JJ Enghild, T Morodomi, et al. Mechanisms of activation of tissue procollagenase by matrix metalloproteinase 3 (stromelysin)[J]. Biochemistry,1990,29: 10261-70.
    [64]Y Ogata, JJ Enghild, H Nagase. Matrix metalloproteinase 3 (stromelysin) activates the precursor for the human matrix metalloproteinase 9[J]. J Biol Chem,1992,267:3581-4.
    [65]V Knauper, SM Wilhelm, PK Seperack, et al. Direct activation of human neutrophil procollagenase by recombinant stromelysin[J]. Biochem J,1993,295:581-6.
    [66]T Pap, Y Shigeyama, S Kuchen, et al. Differential expression pattern of membrane-type matrix metalloproteinases in rheumatoid arthritis[J]. Arthritis Rheum,2000,43:1226-32.
    [67]S Honda, K Migita, Y Hirai, et al. Expression of membrane-type 1 matrix metalloproteinase in rheumatoid synovial cells[J]. Clin Exp Immunol,2001,126:131-26.
    [68]V Knauper, H Will, C Lopez-Otin, et al. Cellular mechanisms for human procollagenase-3 (MMP-13) activation Evidence that MT1-MMP (MMP-14) and gelatinase a (MMP-2) are able to generate active enzyme[J]. J Biol Chem,1996,271:17124-31.
    [69]涂国刚,黄惠明,熊芳,等基质金属蛋白酶抑制剂的研究进展[J]中国新药与临床杂志,2008,27:219-26
    [70]李健,柯金,龙星滑膜B型细胞体外培养和纯化分离的研究进展[J]国外医学口腔医学分册,2004,31:177-9
    [71]JCW Edwards. The synovium, in:JH Klippel, PA Dieppe, Eds. Rheumatology. Mosby: London,1997,5/6.1-5/6.8.
    [72]U Muller-Ladner, RE Gay, S Gay. Structure and function of synoviocytes, in:WJ Koopman, Ed. Arthritis and Allied conditions-A Textbook of Rheumatology,14th ed. Philadelphis: Lippincott-Williams and Wilkins,2001,243-51.
    [73]T Iwanaga, M Shikichi, H Kitamura, et al. Morphology and functional roles of synoviocytes in the joint[J]. Arch Histol Cytol,2000,63:17-31.
    [74]U Muller-Ladner, J Kriegsmann, BN Franklin, et al. Synovial fibroblasts of patients with rheumatoid arthritis attach to and invade normal human cartilage when engrafted into SCID mice[J]. Am J Pathol,1996,149:1607-15.
    [75]H Asahara, K Fujisawa, T Kobata, et al. Direct evidence of high DNA binding activity of transcription factor AP-1 in rheumatoid arthritis synovium[J]. Arthritis Rheum,1997,40: 912-18.
    [76]MP Vincenti, CI Coon, CE Brinckerhoff Nuclear factor κB/p50 activates an element in the distal matrix metalloproteinase 1 promoter in interleukin-1β-stimulated synovial fibroblasts[J]. Arthritis Rheum,1998,41:1987-94.
    [77]Y Yamanishi, DL Boyle, S Rosengren, et al. Regional analysis of p53 mutations in rheumatoid arthritis synovium[J]. Proc Natl Acad Sci,2002,99:10025-30.
    [78]F Kullmann, M Judex, I Neudecker, et al. Analysis of the p53 tumor suppressor gene in rheumatoid arthritis synovial fibroblasts[J]. Arthritis Rheum,1999,42:1594-600.
    [79]T Pap, JK Franz, KM Hummel, et al. Activation of synovial fibroblasts in rheumatoid arthritis:lack of expression of the tumour suppressor PTEN at sites of invasive growth and destruction[J]. Arthritis Res,2000,2:59-65.
    [80]A Di Cristofano, P Kotsi, YF Peng, et al. Impaired Fas response and autoimmunity in Pten+/-mice[J]. Science 1999,285:2122-25.
    [81]H Perlman, C Georganas, LJ Pagliari, et al. Bcl-2 expression in synovial fibroblasts is essential for maintaining mitochondrial homeostasis and cell viability[J]. J Immunol,2000, 164:5227-35.
    [82]H Liu, P Eksarko, V Temkin, et al. Mcl-1 is essential for the survival of synovial fibroblasts in rheumatoid arthritis[J]. J Immunol,2005,175:8337-45.
    [83]T Okura, L Gong, T Kamitani, et al. Protection against Fas/APO-1-and tumor necrosis factor-mediated cell death by a novel protein, sentrin[J]. J Immunol,1996,157:4277-81.
    [84]JK Franz, T Pap, KM Hummel, et al. Expression of sentrin, a novel antiapoptotic molecule, at sites of synovial invasion in rheumatoid arthritis[J]. Arthritis Rheum,2000,43:599-607.
    [85]N Rinaldi, M Schwarz-Eywill, D Weis, et al. Increased expression of integrins on fibroblast-like synoviocytes from rheumatoid arthritis in vitro correlates with enhanced binding to extracellular matrix proteins[J]. Ann Rheum Dis,1997,56:45-51.
    [86]U Muller-Ladner, MJ Elices, JB Kriegsmann, et al. Alternatively spliced CS-1 fibronectin isoform and its receptor VLA-4 in rheumatoid arthritis synovium[J]. J Rheumatol,1997,24: 1873-80.
    [87]G Keyszer, A Redlich, T Haupl, et al. Differential expression of cathepsins B and L compared with matrix metalloproteinases and their respective inhibitors in rheumatoid arthritis and osteoarthritis:A parallel investigation by semi quantitative reverse transcriptase-polymerase chain reaction and immunohistochemistry[J]. Arthritis Rheum, 1998,41:1378-87.
    [88]F Brentano, D Kyburz, S Gay. Toll-like receptors and rheumatoid arthritis[J]. Methods Mol Biol,2009,517:329-43.
    [89]J Martel-Pelletier. Pathophysiology of osteoarthritis[J]. Osteoarthr Cartilage,2004,12:31-3.
    [90]刘世清,贺翎,彭昊,刘军秦皮对兔实验性骨关节炎的基质金属蛋白酶-1和一氧化氮及前列腺素E2的作用[J]中国临床康复,2005,9:150-2
    [91]刘丽,李乐乐,何福明体外培养细胞的加力实验装置[J]细胞生物学杂志,2003,25,157-60
    [92]DYM Leung, S Glagov, MB Mathews. A new in vitro system for studying cell response to mechanical stimulation:different effects of cyclic stretching and agitation on smooth muscle cell biosynthesis[J]. Exp Cell Res,1977,109:285-98.
    [93]CL Ives, SG Eskin, LV McIntire. Mechanical effects on endothelial cell morphology:in vitro assessment[J]. In Vitro Cell Dev Biol,1986,22:500-7.
    [94]N Rushton. The effect of strain on bone cell prostaglandin E2 release:a new experimental method[J]. Calcified Tissue Int,1990,47:35-9.
    [95]C Neidlinger-Wilke, HJ Wilke, L Claes. Dynamic stretching of human osteoblasts:an experimental model for in vitro simulation of fracture gap micromotion[J]. J Orthop Res, 1994,12:70-8.
    [96]M Bottlang, M Simnacher, H Schmitt, et al. A cell strain system for small homogeneous strain applications[J]. Biomedical Technic,1997,42:305-9.
    [97]DB Jones, H Nolte, JG Scholubbers, et al. Biochemical signal transduction of mechanical strain in osteoblast-like cells[J]. Biomaterials,1991,12:101-10.
    [98]唐丽灵,王远亮,谷俐,等不同应变水平拉伸对成骨细胞生理功能的影响[J]重庆大学学报,2003,26:67-70
    [99]S Hasegawa, S Sato, S Saito, et al. Mechanical stretching increases the number of cultured bone cells synthesizing DNA and alters their pattern of protein synthesis[J]. Calcified Tissue Int,1985,37:431-6.
    [100]HH Vandenburgh. A computerized mechanical cell stimulator for tissue culture:effects on skeletal muscle organogenesis[J]. In Vitro Cell Dev Biol,1988,24:609-19.
    [101]S Soma, S Matsumoto, T Takano-Yamamoto. Enhancement by conditioned medium of stretched calvarial bone cells of the osteoclast-like cell formation induced by parathyroid hormone in mouse bone marrow cultures[J]. Arch Oral Biol,1997,42:205-11.
    [102]AJBanes, J Gilbert, D Taylor, et al. A new vacuum-operated stress-providing instrument that applies static or variable duration cyclic tension or compression to cells in vitro[J]. J Cell Sci,1985,75:35-42.
    [103]邹淑娟,胡静机械张力对人成骨样细胞TGF-β表达的影响[J]现代口腔医学杂志,2002,16:214-5
    [104]FK Winston, EJ Macarak, SF Gorfien, et al. A system to reproduce and quantify the biomechanical environment of the cell[J]. J Appl Physiol,1989,67:397-405.
    [105]CT Brighton, B Strafford, SB Gross, et al. The proliferative and synthetic response of isolated calvarial bone cells of rats to cyclic biaxial mechanical strain[J]. J Bone Joint Surg, 1991,73:320-31.
    [106]JL Williams, JH Chen, DM Belloli. Strain fields on cell stressing devices employing clamped circular elastic diaphragms as substrates[J]. J Biomech Eng,1992,114:377-84.
    [107]JL Balestrini, KL Billiar. Equibiaxial cyclic stretch stimulates fibroblasts to rapidly remodel fibrin[J]. J Biomech,2006,39:2983-90.
    [108]JL Schaffer, M Rizen, GJ L'Italien, et al. Device for the application of a dynamic biaxially uniform and isotropic strain to a flexible cell culture membrane[J]. J Orthop Res,1994,12: 709-19.
    [109]CT Hung, JL Williams. A method for inducing equi-biaxial and uniform strains in elastomeric membranes used as cell substrates[J]. J Biomech,1994,27:227-32.
    [110]M Sotoudeh, S Jalali, S Usami. A strain device imposing dynamic and uniform equi-biaxial strain to cultured cells[J]. Ann Biomed Eng,1998,26:181-9.
    [111][111] AA Lee, T Delhaas, L Waldman, et al. An equibiaxial strain system for cultured cells[J]. Am J Physiol-Cell Ph,1996,271:1400-8.
    [112]RC Bray, CA Leonard, PT Salo. Vascular physiology and long-term healing of partial ligament tears[J]. J Orthop Res,2002,20:984-9.
    [113]CL Hill, GS Seo, D Gale, et al. Cruciate ligament integrity in osteoarthritis of the knee[J]. Arthritis Rheum,2005,52:794-9.
    [114]J Marrale, MC Morrissey, FS Haddad. A literature review of autograft and allograft anterior cruciate ligament reconstruction[J]. Knee Surg Sport Tr A,2007,15:690-704.
    [115]刘静.人工合成材料在膝交叉韧带损伤修复中的应用[J].中国组织工程研究与临床康复,2010,14:1451-4
    [116]魏海峰,刘儒森.膝关节后交叉韧带重建的研究进展[J].中国矫形外科杂志,2004,12:934-5.
    [117]T Aigner, A Sachse, PM Gebhard, et al. Osteoarthritis: pathobiology-targets and ways for therapeutic intervention[J]. Adv Drug Delivery Rev,2006,58:128-149.
    [118]Y Wang, L Yang, J Zhang, et al. Differential MMP-2 activity induced by mechanical compression and inflammatory factors in human synoviocytes[J]. Mol Cell Biomech,2010, 7:105-14.
    [119]P Wang, L Yang, X You, et al. Mechanical stretch regulates the expression of matrix metalloproteinase in rheumatoid arthritis fibroblast-like synoviocytes[J]. Connect Tissue Res,2009,50:98-109.
    [120]AA Lee, T Delhaas, AD McCulloch.Differential Responses of Adult Cardiac Fibroblasts to in vitro Biaxial Strain Patterns[J]. J Mol Cell Cardiol,31:1833-43.
    [121]AH Hsieh, CMH Tsai, QJ Ma, et al.Time-dependent increases in type-Ⅲ collagen gene expression in medial collateral ligament fibroblasts under cyclic strains [J]. J Orthop Res, 2000,18:220-7.
    [122]AH Hsieh, RL Sah, KL Paul Sung. Biomechanical regulation of type Ⅰ collagen gene expression in ACLs in organ culture[J]. J Orthop Res, 2002,20:325-31.
    [123]BC Fleming, BD Beynnon In vivo measurement of ligament/tendon strains and forces:a review[J]. Ann Biomed Eng,2004,32:318-28.
    [124]KR Asundi, DM Rempel. Cyclic loading inhibits expression of MMP-3 but not MMP-1 in an in vitro rabbit flexor tendon model[J]. Clin Biomech,2008,23; 117-21.
    [125]H Yokota, MB Goldring, HB Sun. CITED2-mediated regulation of MMP-1 and MMP-13 in human chondrocytes under flow shear[J]. J Biol Chem,2003,278:47275-80.
    [126]HB Sun, H Yokota. Messenger-RNA expression of matrix metalloproteinases, tissue inhibitors of metalloproteinases, and transcription factors in rheumatic synovial cells under mechanical stimuli[J]. Bone,2001,28:303-9.
    [127]R Lafyatis, EF Remmers, AB Roberts, et al.Anchorage-independent growth of synoviocytes from arthritic and normal joints. Stimulation by exogenous platelet-derived growth factor and inhibition by transforming growth factor-beta and retinoids[J]. J Clin Invest,1989,83: 1267-76.
    [128]GS Firestein, M Yeo, NJ Zvaifler. Apoptosis in rheumatoid arthritis synovium[J]. J Clin Invest,1995,96:1631-38.
    [129]B Grimbacher, WK Aicher, HH Peter, et al. Measurement of transcription factor c-fos and EGR-1 mRNA transcription levels in synovial tissue by quantitative RT-PCR[J]. Rheumatol Int,1997,17:109-12.
    [130]LA Breshears, JL Cook, AM Stoker, et al. The effect of uniaxial cyclic tensile load on gene expression in canine cranial cruciate ligamentocytes[J]. Vet Surg,2010,39:433-43.
    [131]RHJ Das, H Jahr, JAN Verhaar, et al. In vitro expansion affects the response of chondrocytes to mechanical stimulation[J]. Osteo Cart,2008,16:385-91.
    [132]KP Spindler, SW Clark, LB Nanney, et al. Expression of collagen and matrix metalloproteinases in ruptured human anterior cruciate ligament:an in situ hybridization study [J]. J Orthop Res,1996,14:857-61.
    [133]JJ Kerrigan, JP Mansell, JR Sandy. Matrix turnover [J]. J Orthod,2000,27:227-33.
    [134]JF Fisher, S Mobashery. Recent advances in MMP inhibitor design[J]. Cancer Metast Rev, 2006,25:115-36.
    [135]SP Arnoczky, M Lavagnino, M Egerbacher, et al. Matrix metalloproteinase inhibitors prevent a decrease in the mechanical properties of stress-deprived tendons an In vitro experimental study[J]. Am J Sport Med,2007,35:763-9.
    [136]C Yan, DD Boyd. Regulation of matrix metalloproteinase gene expression[J]. J Cell Physiol, 2007,211:19-26.
    [137]A Liacini, J Sylvester, WQ Li, et al. Inhibition of interleukin-1-stimulated MAP kinases, activating protein-1 (AP-1) and nuclear factor kappa B (NF-κB) transcription factors down-regulates matrix metalloproteinase gene expression in articular chondrocytes[J]. Matrix Biol,2002,21:251-62.
    [138]N Reunanen, SP Li, M Ahonen, et al. Activation of p38a MAPK enhances collagenase-1 (matrix metalloproteinase (MMP)-1) and stromelysin-1 (MMP-3) expression by mRNA stabilization[J]. J Biol Chem,2002,277:32360-8.
    [139]EA Desrosiers, LH Yahia, CH Rivard. Proliferative and matrix synthesis response of canine anterior cruciate ligament fibroblasts submitted to combined growth factors[J]. J Orthop Res, 1996,14:200-8.
    [140]J Witkowski, L Yang, DJ Wood, et al. Migration and healing of ligament cells under inflammatory conditions[J]. J Orthop Res,1997,15:269-77.
    [141]P Greenwel, S Tanaka, D Penkov, et al. Tumor necrosis factor alpha inhibits type I collagen synthesis through repressive CCAAT/enhancer-binding proteins[J]. Mol Cell Biol,2000,20: 912-8.
    [142]H Murakami, N Shinomiya, T Kikuchi, et al. Upregulated expression of inducible nitric oxide synthase plays a key role in early apoptosis after anterior cruciate ligament injury [J]. J Orthop Res,2006,24:1521-34.
    [143]Y Wang, Z Tang, R Xue, et al. Combined effects of TNF-α, IL-1β, and HIF-1α on MMP-2 production in ACL fibroblasts under mechanical stretch:an in vitro study[J]. J Orthop Res, 2011,29:1008-14.
    [144]陈方军,叶丽,胡伟,等青藤碱对佐剂性关节炎大鼠炎症免疫功能的影响[J]广州中医药大学学报,2008,25:421-4
    [145]P Martin. Wound healing--aiming for perfect skin regeneration[J]. Science,1997,276: 75-81.
    [146]JT Soller, H Murua-Escobar, S Willenbrock, et al. Comparison of the human and canine cytokines IL-1(α/β) and TNF-α to orthologous other mammalians[J]. J Hered,2007,98: 485-90.
    [147]S Werner S, R Grose. Regulation of wound healing by growth factors and cytokines[J]. Physiol Rev,2003:83:835-70.
    [148]FS Di Giovine, G Nuki, GW Duff. Tumour necrosis factor in synovial exudates[J]. Ann Rheum Dis,1988,47:768-72.
    [149]ML Cameron, FH Fu, HH Paessler, et al. Synovial fluid cytokine concentrations as possible prognostic indicators in the ACL-deficient knee[J]. Knee Surg Sport Tr A,1994,2:38-44.
    [150]D Rodriguez, CJ Morrison, CM Overall. Matrix metalloproteinases:what do they not do? New substrates and biological roles identified by murine models and proteomics[J]. BBA-Mol Cell Res,2010,1803:39-54.
    [151]PC Trackman, RJ Graham, HK Bittner, et al. Inflammation-associated lysyl oxidase protein expression in vivo, and modulation by FGF-2 plus IGF-1[J]. Histochem Cell Biol,1998,110: 9-14.
    [152]V Cenizo, V Andre, C Reymermier, et al. LOXL as a target to increase the elastin content in adult skin:a dill extract induces the LOXL gene expression[J]. Exp Dermatol,2006, 15:574-81.
    [153]R Roy, P Polgar, YY Wang, et al. Regulation of lysyl oxidase and cyclooxygenase expression in human lung fibroblast:interaction among TGF-beta, IL-1 beta, and prostaglandin[J]. J Cell Biochem,1996,62:411-17.
    [154]CS Chamberlain, EM Leiferman, KE Frisch, et al.The influence of interleukin-4 on ligament healing[J]. Wound Rep Reg,2011,19:426-35.
    [155]RL Hawwa, MA Hokenson, Y Wang, et al. IL-10 inhibits inflammatory cytokines released by fetal mouse lung fibroblasts exposed to mechanical stretch[J]. Pediatr Pulmonol,2011, 46:640-49.
    [156]CH Hannum, CJ Wilcox, WP Arend, et al. Interleukin-1 receptor antagonist activity of a human interleukin-1 inhibitor[J]. Nature,1990,343:336-40.
    [157]JA Symons, JA Eastgate, GW Duff. A soluble binding protein specific for interleukin 1(3 is produced by activated mononuclear cells[J]. Cytokine,1990,2:190-8.
    [158]H Engelmann, D Aderka, M Rubinstein, et al. A tumor necrosis factor-binding protein purified to homogeneity from human urine protects cells from tumor necrosis factor toxicity[J]. J Biol Chem,1989,264:11974-80.
    [159]孙巍,林珩,花芳,等治疗性抗体:炎性免疫性疾病治疗的新选择[J]药学学报,2012,47:1306-16
    [160]NJ Trengove, MC Stacey, S Macauley, et al. Analysis of the acute and chronic wound environments:the role of proteases and their inhibitors [J]. Wound Repair Regen,1999,7: 442-52.
    [161]K Migita, K Eguchi, Y Kawabe, et al. TNF-a-mediated expression of membrane-type matrix metalloproteinase in rheumatoid synovial fibroblasts[J]. Immunology,1996,89: 553-7.
    [162]EA Kelly, NN Jarjour. Role of matrix metalloproteinases in asthma[J]. Curr Opin Pulm Med, 2003,9:28-33.
    [163]MS Kim, YK Kim, KH Cho, et al. Regulation of type I procollagen and MMP-1 expression after single or repeated exposure to infrared radiation in human skin[J]. Mech Ageing Dev, 2006,127:875-82.
    [164]E Anitua, M Sanchez, M de la Fuente, et al. Relationship between investigative biomarkers and radiographic grading in patients with knee osteoarthritis[J]. Int J Rheumatol,2009; 2009: 747432-5.
    [165]JF Schlaak, I Pfers, KH Meyer Zum Buschenfelde, et al. Different cytokine profiles in the synovial fluid of patients with osteoarthritis, rheumatoid arthritis and seronegative spondylarthropathies[J]. Clin Exp Rheumatol,1996,14:155-62.
    [166]刘纯杰,张兆山转化生长因子β的生物学特性、功能及其临床应用前景[J]生物技术通讯,2001,12:297-99
    [167]吴学玲,王先酉转化生长因子β的研究进展[J]南华大学学报·医学版,2002,30:179-180
    [168]D Amiel, CN Nagineni, J Lee. Intrinsic properties of ACL and MCL cells and their responses to growth factors[J]. Med Sci Sports Exerc,1995,27:844-51.
    [169]MS Pepper, JD Vassalli, LOrci, et al. Biphasic effect of transforming growth factor-β1 on in vitro angiogenesis[J]. Exp Cell Res,1993,204:356-63.
    [170]EJ Feres-Filho, YJ Choi, X Han, et al. Pre-and Post-translational Regulation of Lysyl Oxidase by Transforming Growth Factor-betal in Osteoblastic MC3T3-E1 Cells[J]. J Biol Chem,1995,270:30797-803.
    [171]DJ Kim, DC Lee, SJ Yang, et al. Lysyl oxidase like 4, a novel target gene of TGF-β1 signaling, can negatively regulate TGF-β1-induced cell motility in PLC/PRF/5 hepatoma cells[J]. Biochem Biophys Res Commun,2008,373:521-7.
    [172]X Dolcet, D Llobet, J Pallares, et al. NF-κB in development and progression of human cancer [J]. Virchows Archiv,2005,446:475-82.
    [173]刘明,丁庆军,梁统类风湿性关节炎潜在的治疗靶点-NF-κB[J].细胞与分子免疫学杂志,2008,24:651-3
    [174]Z Han, DL Boyle, AM Manning, et al. AP-1 and NF-κB regulation in rheumatoid arthritis and murine collagen-induced arthritis[J]. Autoimmunity,1998,28:197-208.
    [175]Z Tang, L Yang, R Xue, et al. Differential expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases in anterior cruciate ligament and medial collateral ligament fibroblasts after a mechanical injury:Involvement of the p65 subunit of NF-κB[J]. Wound Rep Reg,2009,17:709-16.
    [176]AA Tandara, TA Mustoe. Oxygen in wound healing-more than a nutrient[J]. World J Surg, 2004,28:294-300.
    [177]KB Saunders, PA D'Amore. An in vitro model for cell-cell interactions[J]. In Vitro Cell Dev Biol,1992,28:521-8.
    [178]邓跃毅,陈以平,张志刚贴壁细胞共培养的一种方法[J]中华病理学杂志,1999,28:298-9
    [179]张树鹰,段大波,张力,等Transwell(?)室环境下兔成骨样细胞与骨髓基质干细胞的共培养及成骨分化[J]中国组织工程研究,2012,16:3438-41
    [180]D Proudfoot, C Fitzsimmons, J Torzewski, et al. Inhibition of human arterial smooth muscle cell growth by human monocyte/macrophages:a co-culture study[J]. Atherosclerosis,1999, 145:157-65.
    [181]WS Hou, Z Li, RE Gordon, et al. Cathepsin K is a critical protease in synovial fibroblast-mediated collagen degradation[J]. Am J Pathol,2001,159:2167-77.
    [182]P Muir, NA Danova, DJ Argyle, et al. Collagenolytic protease expression in cranial cruciate ligament and stifle synovial fluid in dogs with cranial cruciate ligament rupture[J]. Vet Surg, 2005,34:482-90.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700