Φ430离合器压盘热应力分析与改进研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对某公司生产的Φ430干式膜片弹簧式离合器,为解决其在使用中出现的压盘变形、烧蚀等导致部分零件提前失效的现象,在综合分析了导致失效的可能原因基础上,通过硬度测定试验检测了压盘摩擦表面的硬度分布,表明压盘材料和制造工艺是导致压盘热损坏的原因之一,厂家需要改进压盘材料的合金配比和制造工艺;此外,本文以滑磨功为依据,对离合器客观工况进行了划分;使用有限元软件ABAQUS,针对不同工况进行了热-力耦合仿真分析,求解了压盘温度场及热应力场分布云图,结果表明在极限重载工况下,其抗拉强度安全系数不足是导致异常损坏的主要原因;依据分析结果,提出了空气冷却式压盘改进方案并获得实用新型专利授权(20246052.1),改进后的空气冷却式压盘在减轻重量的同时降低了压盘实心结构产生的热应力,减少了热变形,提高了离合器工作可靠性。
In this paper, a type of 0430 clutch pressure plate produced by certain company is analyzed. Deformation, erosion and cracking phenomena during using, which may lead to early failure of the clutch pressure plate was analyzed numerically. The material and manufacturing process is considered to be one of the factors leading to the failure of pressure plate based on the hardness tests of the friction surface. What's more, nonlinear finite element code ABAQUS is employed for the simulation. The temperature field and the thermal stress field were obtained depending on working conditions of the clutch. According to the result, the danger point centralized on the outer edges and the mounting holes of the friction surface. The main reason of the damage of the pressure plate is the insufficient strength when working in the heavy-load condition. Based on the analysis, a new type of air-cooling pressure plate is developed. The developed pressure plate reduces the thermal stress and deformation caused by the solid structure, which improves the efficiency of the vehicle. The conclusion is of significant meaning for improving the reliability of the pressure plate.
引文
1.白锐.低阻引线金属外壳热变形和热应力研究[D].北京:清华大学,2003:17-22.
    2.蔡丹,魏宸官,宋文悦.离合器片表面温度的测量与表面应力的计算[J].车辆与动力技术,2000,4(1):7-11.
    3.陈国金,殷小亮,龚友平.离合器摩擦片的热-应力耦合分析[J].机电工程,2008,25(12):100-102.
    4.陈维汉,许国良,靳世平.传热学[M].武汉:武汉理工大学出版社,2004:6-24.
    5.邓云飞.干式双离合器热性能有限元分析[D].长春:吉林大学,2008:21-35.
    6.丁晖,K.G.Davis, J. G. Magny.金属型灰铸铁的孕育[J].沈阳工业大学学报,1986,8(3):13-22.
    7.樊东黎,徐跃明.热处理技术数据手册[M].北京:机械工业出版社,2000:111-137.
    8.工藤良一.离合器结构的改进[J].国外汽车,1985,3(2):48-52.
    9.林世裕,范海荣,刘学章.膜片弹簧与碟形弹簧离合器的设计与制造[M].南京:东南大学出版社,1995:112-114.
    10.刘振军,王颖颖,秦大同.DCT离合器热负荷仿真研究[J].中国机械工程,2009,20(14):1753-1757.
    11.刘焜,盘式制动器温度场研究[D].合肥:合肥工业大学,2007:33-41.
    12.潘作良,毕克新.空气离心式离合器的优化设计[J].机械工程师,1997,3(1):29-30.
    13.曲艳阳.微型汽车离合器温度场的研究[D].武汉:武汉理工大学,2008:21-40.
    14.曲艳阳,黄继雄,莫易敏.基于有限元法的微车离合器温度场的研究[J].机械研究与应用,2008,21(5):75-77.
    15.宋德臣.干式双离合器模块优化设计方法[D].长春:吉林大学,2009:45-49.
    16.孙娟,张旦闻.基于断裂力学的数字相关技术残余应力检测方法[J].洛阳大学学报,2006,21(2):57-62.
    17.石亦平,周玉蓉.ABAQUS有限元分析实例详解[M].北京:机械工业出版社,2008:19-24.
    18.魏丕勇,李长有,陆子平.摩擦片瞬态温度场与应力场有限元分析[J].拖拉机与农用运输车,2008,35(4):90-92.
    19.王贻青.灰铸铁的凝固[J].现代铸铁,1987,1(1):58-61.
    20.邢预恩,高耀东,张根保.换档离合器摩擦片温升分析[J].设计与研究,2007,32(10):17-19.
    21.徐石安,肖德炳,刘惟信.离合器[M].北京:人民交通山版社,1981:78-80.
    22.杨顺田.水轮机叶片铸造与热处理缺陷分析及防止[J].四川工程职业技术学院学报,2007,4(3):24-26.
    23.尹明,钟毅芳.ZL50装载机换挡离合器摩擦片温升计算[J].煤矿机械,2009,8(1):17-19.
    24.张铁山,朱茂桃.汽车离合器压盘热变形和热应力的有限元分析[J].汽车技术,1995,5(5):23-26.
    25.朱茂桃,张铁山,夏长高.离合器压盘表面工作温度变化规律的测定[J].江苏理工大学学报,1996,17(2):32-36.
    26.周建钊,张辅荃.离合器摩擦片的温升分析[J].机械设计与研究,1998,4(1):50-52.
    27.周建钊,高亚明.主离合器摩擦片温度场的数值解法[J].解放军理工大学学报,2003, 4(1):58-62.
    28.张学勇,刘沃野,王平.离合器摩擦片温升分析[J].润滑与密封,2000,5(2):16-19.
    29.张卫波,赖联锋,严世榕.基于ANSYS的离合器压盘有限元设计[J].中国工程机械学报,2007,5(4):426-429.
    30.张洪武,关振群.有限元分析与CAE技术基础[M].北京:清华大学出版社,2004,11:6-8.
    31.赵腾伦.ABAQUS在机械工程中的应用[M].北京:中国水利水电山版社,2007,5:47-51.
    32.张铁山,赵金磊.模态分析和拓扑优化在专用车离合器零件设计中的应用[J].专用汽车,2007,12(3):31-33.
    33.庄茁,由小川.基于ABAQUS的有限元分析和应用[M].北京:清华大学出版社,2009,1:35-44.
    34. Armstrong-Helouvry. Control of Machines with Friction[J]. Kluwer Academic Press, 1991,5 (2):14-18.
    35. Allgower, George K. Numerical Continuation Methods:An Introduction[J]. Springer-Verlag,1990,6(3):25-28.
    36. Albers A. Clutches using engineering ceramics as friction material[J]. Materialwissenschaft Und Werkstofftechnik,2005,36(3):102-107
    37.Alvarado F. L. Bifurcations in nonlinear systems:computational issues[J]. International Symposium on Circuits and Systems,1990,4(2):922-925.
    38. Cameron T. M., Tersigni,S., McCombs, T. and Jao, T.-C. ATF effects on friction stability in slip-controlled torque converter clutches[J]. SAE Technical Paper, 2003,5(1):32-55.
    39.Czel Balazs, Fe thermal analysis of a ceramic clutch[J]. Tribology International, 2009,42(5):714-723.
    40.Cody L Davis. Influences of friction-induced thermal phenomena and macroscopic surface features on the stability of a thin disk subjected to sliding contact[D]. West Lafayette:Purdue University,2002:12-18.
    41.Chae D, Koss D A. Damage accumulation and failure of HSLA-100 steel[J]. Materials Science And Engineering,2004,36(6):1725-1731.
    42. Dolcini PJ. Observer-based optimal control of dry clutch engagement[J]. OIL & GAS Science And Technology-revue De L Institut Francais Du Petrole,2007,62(4):615-621.
    43. Ellam DJ, Atkin RJ, Bullough WA. Analysis of a smart clutch with cooling flow using two-dimensional Bingham plastic analysis and computational fluid dynamics[J]. Proceedings Of The Institution Of Mechanical Engineers Part A-Journal Of Power And Energy, 2005,219(A8):639-652.
    44. Firoz Ali Jafri. Nonlinear dynamics of controlled slipping clutches[D]. Mumbai: University of Mumbai,2000:11-14.
    45. Feng M., Ono K. The FEM analysis of dry contact in the variable torque slipping clutch with skewed rollers by using weighted simplex and BFGS methods [J]. JOURNAL OF MECHANICAL DESIGN,2003,125(1):186-199.
    46. Jen, Tien-Chen. Thermal analysis of a wet-disk clutch subjected to a constant energy engagement [J]. International Journal Of Heat And Mass Transfer,2008,51 (7-8):1757-1769.
    47. Jedryczka Cezary. FE analysis of electromagnetic field coupled with fluid dynamics in an MR clutch[J]. Compel-The International Journal For Computation And Mathematics In Electrical And Electronic Engineering,2007,26(4):1028-1036.
    48. Khamlichi A., Bezzazi M. Optimizing the thermal properties of clutch facings[J], Journal Of Materials processing technology,2007,142(3):634-642.
    49. Krempaszky C, Lippmann H. Frictionally excited thermoelastic instabilities of annular plates under thermal pre-stress[J]. Journal Of Tribology-Transactions Of The ASME,2005, 127(4):756-765.
    50. Lee B. Numerical analysis procedure for predicting temperature field in design of automotive friction clutch[J], International Journal Of Automotive Technology, 2006,7(1):61-68.
    51.Lacraru LM. Friction compensation of an actively restrained clutch for path tracking[J]. Proceedings Of The Institution Of Mechanical Engineers Part I-Journal Of Systems And Control Engineering,2006,220(15):381-393.
    52. Mark lund Par. Thermal influence on torque transfer of wet clutches in limited slip differential applications[J], Tribology International,2007,40(5):876-884. 53. Van Der Heijden AC. Hybrid optimal control of dry clutch engagement [J]. International Journal Of Control,2007,80(11):1717-1728.
    54. Watson M., Byington C. Dynamic modeling and wear-based remaining useful life prediction of high power clutch systems [J]. Tribology Transactions,2005,48(2):208-217.
    55. Zhao Shuangmei. Behavior of a composite multidisk clutch subjected to mechanical and frictionally excited thermal load[J]. Wear,2008,264(11-12):1059-1068.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700