高速铁路牵引供电系统负荷建模
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国高速铁路的快速发展,高铁牵引供电系统已成为电力系统的重要用户之一。但是高铁牵引负荷作为一种大容量、冲击性强的非线性负荷,会对电网产生一系列不良影响,甚至会严重威胁电网的安全稳定运行。为了适应我国高速铁路的快速发展形势,开展高铁牵引供电系统负荷建模研究,对正确分析和评估高铁牵引供电系统运行状态,降低其对电力系统的影响,保障两者的健康协调发展具有重要意义。
     基于此,根据高铁牵引供电系统工作原理和负荷特性,本文开展了动车组牵引传动系统数字仿真研究,在此基础上利用参数辨识方法进行动车组负荷建模和牵引供电臂负荷建模。
     在动乍组牵引传动系统数字仿真方而,针对动车组运行特性受牵引网网压、线路条件、载重影响,建立了CRH2动车组牵引传动系统仿真模型,对不同运行情况进行仿真分析。根据动车组控制原理、牵引制动特性和控制策略,建立CRH2动车组牵引传动系统仿真模型;根据制动减速度计算再生制动力和空气制动力,通过电磁转矩和负载转矩变化模拟电空复合制动,进行牵引、制动全过程仿真;分析线路条件对动车组的影响,通过负载转矩变化表征线路条件变化,进行不同线路条件和网压波动下的动车组运行仿真。仿真结果表明,该模型各项参数均符合实际,能较真实模拟动车组运行。
     在动车组负荷建模方而,针对动车组负荷随动车组运行工况、载重和线路条件变化,建立了CRH2动车组负荷模型,并对模型适用性进行分析。动车组牵引电机在牵引和制动工况分别运行在异步电动机和异步发电机状态,根据其负荷构成和特点,采用异步电机并联静态负荷模型来描述动乍组负荷;根据CRH2动车组仿真模型不同速度、不同电压扰动下的功率扰动数据,采用遗传算法进行参数辨识,并进行模型泛化能力验证,结果证明该负荷模型能较好描述动车组牵引和制动工况下的负荷需求:通过改变负荷模型的部分参数,反映不同负载和不同线路条件下的动车组负荷变化情况,结果证明该方法能有效提高该模型的适用性。
     在以牵引供电臂为单元的负荷建模方面,针对牵引供电臂负荷随动车组数量、载重及线路条件变化,建立了牵引变电所以供电臂为单元的负荷模型,并对模型适用性进行分析。参考现有文献的牵引供电臂负荷建模思路,建立牵引供电臂负荷模型,并采用遗传算法进行参数辨识,结果证明该模型能较好拟合辨识样本数据;变换牵引供电臂负荷模型部分参数,对供电臂负荷随动车组载重和动车组所处线路条件变化进行适用分析。
     综上所述,本论文所建立的负荷模型能够较真实模拟高铁牵引供电系统负荷特性,可望为高铁牵引供电系统理论研究及其对电力系统的影响分析提供支持。
With the rapid development of China's high-speed rail, high-speed rail traction power supply system has become one of the important loads of the power system. But high-speed rail traction load, as a large capacity and strong impact of nonlinear load, would cause a series negative impacts on power network, even undermine the safe and stable operation of the power network. In order to adapt to the rapid development of China's high-speed railway, the study of high-speed rail traction power supply system load modeling is very important to the exact analysis and evaluation of high-speed rail traction power supply system operating status. It is helpful to reduce its impact on the power system and generates great significance in guaranteeing their healthy and coordinated development.
     On this basis, according to the working principle and load characteristics of the high-speed rail traction power supply system, simulation modeling of EMU traction drive system is studied in this article. And then, parameter identification method is used to carry out the EMU load modeling and traction power supply arm load modeling research.
     In the aspect of EMU traction drive system simulation modeling, since operating characteristics of the EMU is not only affected by the traction network voltage, but also affected by the line conditions and load, CRH2EMU traction drive system simulation model is established, which is used to make simulation analysis under different operating conditions. On the base of studying EMU control principle of traction braking characteristics and control strategy, CRH2EMU traction drive system simulation model is established. According to the brake deceleration, regenerative braking force and the air braking force are calculated. EMU's electromagnetic torque and load torque are changed to analog electro-pneumatic composite braking and then the simulation of whole process of traction and braking is completed. Impact of line conditions on EMU is analyzed and the variation of line conditions is imitated through the load torque variation to carry out EMU operation simulation under different line conditions and network voltage fluctuations. The results of simulation show that the parameters of the model are realistic and the model can simulate the real operation of EMU.
     In the aspect of EMU load modeling, considering that EMU load varies with EMU operating conditions, load and line conditions, CRH2EMU load model is built and the applicability of the model is analyzed. EMU operates as asynchronous motors and asynchronous generator status, respectively, under traction and braking condition. According to the load configuration and features, the use of asynchronous motors with parallel static load model is made to describe the dynamic load of the vehicle group. With the power disturbance data generated from CRH2model under different speed and voltage disturbance, genetic algorithm is utilized to identify the parameters and model generalization ability is studied. Results show that the load model can describe the dynamic load requirements of EMU under traction and braking conditions. Vary some parameters of the load model to reflect the EMU load changes under different load and line conditions. The results show that this method can effectively improve the applicability of the model.
     In the aspect of traction substation power arm load modeling, taking the fact that traction substation power arm load varies with the CRH2quantity, load and line conditions into account, the traction substation power arm load model is built and the applicability of the model is analyzed. Referred to the existing model method of traction substation load, traction substation supply arm load model is established and the parameters is identified using genetic algorithms. Results show that the model can fit the identification of the sample data well. Vary some parameters of traction substation supply arm load model to adapt to the different requirements of substation load under different geographical conditions.
     Generally speaking, the load model established in this paper can be realistic to simulate the high-speed rail traction power supply system load characteristics, which is expected to support the theoretical study of the high-speed rail traction power supply system and its impact on the power system analysis.
引文
[1]李带,安琪,王华.高速动车组概论[M].成都:西南交通大学出版社,2008.
    [2]冯晓芳.中国高速铁路的发展与展望[J].科技资讯,2009,(01):129-130.
    [3]卢志海,厉吉文,周剑.电气化铁路对电力系统的影响[J].继电器,2004,32(n):33-36.
    [4]Gao Lin, Xu Yonghai, Xiao Xiangnin, et al. Analysis of Adverse Effects on the Public Power Grid Brought by Traction Power-supply System[J]. IEEE Electrical Power and Energy Conference,2008, Canada:1-7.
    [5]吴命利.电气化铁道牵引网的统一链式电路模型[J].中国电机工程学报,2010,30(28):52-58.
    [6]Hanmin Lee, Changmu Lee, Gilsoo Jang. Harmonic Analysis of the Korean High-speed Railway Using the Eight-port Representation Model[J]. IEEE Transactions on Power Delivery,2006, 26(2):979-986.
    [7]Dmitry N Kosterev, Carson W Taylor, William A Mittelstadt. Model Validation for the August 10,1996 WSCC System Outage[J]. IEEE Transactions on Power System,1999,14(3):967-979.
    [8]李欣然,李培强,陈辉华,等.基于统计综合负荷建模的系统方法研究[J].电力自动化设备,2004,24(3):25-28.
    [9]张红斌,汤涌,张东霞,等.基于总体测辩法的电力负荷建模系统[J].电网技术,2007,31(4):32-35.
    [10]Louie K W, Marti J R. A Method to Improve the Performance of Conventional Static Load Models[J]. IEEE Transactions on Power Systems,2005,20(1):507-508.
    [11]Pereira L, Kosterev D N, Mackin P, et al. An Interim Dynamic Induction Motor Model for Stability Studies in the WSCC[J]. IEEE Transactions on Power Systems,2002,17(4): 1108-1115.
    [12]Hiyama T. Tokieda M, Hubbi W. Artificial Neural Network Based Dynamic Load Modeling[J]. IEEE Transactions on Power System,1997,12(4):1576-1583.
    [13]王吉利.电力系统特殊负荷建模的研究[D].北京:华北电力大学,2010.
    [14]Tongxin Zheng. Makram E B. An Adaptive Arc Furnace Model[J]. IEEE Transactions on Power Delivery,2000,15(3):931-939.
    [15]顾丹珍,艾竿,陈陈,等.冲击负荷实用建模新方法[J].电力系统自动化,2006,30(20):10-15.
    [16]Pee-Chin Tan, Poh Chiang Loh, Holmes, D G. Optimal Impedance Termination of 25-kV Electrified Railway Systems for Improved Power Quality[J]. IEEE Transactions on Power Delivery,2005,20(2):1703-1710.
    [17]Hanmin Lee, Changmu Lee, Gilsoo Jang, et al. Analysis model for harmonic study on Korean railway system[C]. International Conference on Electrical Machines and Systems,2004:406.
    [18]Lei Guo, Qunzhan Li, Yinglei Xu. Study on Harmonic Resonance of Traction Line in Electrified High-speed Traction System[C]. International Conference on Sustainable Power Generation and Supply, Nan Jing,2009:1-4.
    [19]Morrison R E. Power quality issues on AC traction system[C]. International Conference on Harmonics and Quality of power, Orlando, Florida, USA,2000:709-714.
    [20]黄石柱,李建华,赵娟,等.基于MATLAB的电力机车数字仿真模型[J].电力系统自化, 2002,(4):51-55.
    [21]赵娟,李建华,黄永宁.基于MATLAB/SIMULINK的SS3B型电力机车仿真模型[J].机车电传动,2002,(6):25-26,42.
    [22]张俊杰,肖湘宁,尹忠东,等.基于PSCAD/EMTDC的SS6B型电力机车仿真模型研究[J].机车电传动,2008,(6):27-29.
    [23]吴命利.星形曲折延边三角形接线平衡变压器的阻抗匹配与数学模型[J].铁道学报,2008,30(1):26-31.
    [24]何俊文,李群湛,刘炜等.交流牵引供电系统仿真通用数学模型及其应用[J].电网技术,2010,34(7):25-29.
    [25]张广东,李欣然,李培强等.电力机车牵引电机负荷特性仿真研究[J].西北电力技术,2005,(6):21-22,70.
    [26]刘凤,李群湛,刘炜等.SS6型电力机车仿真模型建立及谐波电流分析[J].机车电传动,2008,(6):27-29.
    [27]李欣然,张广东,朱湘有.牵引供电系统综合负荷模型结构[J].电力系统自动化,2009,33(16):71-75,95.
    [28]解绍锋,李群湛,赵丽平.电气化铁道牵引负载谐波分布特征与概率模型研究[J].中国电机工程学报,2005,25(16):79-83.
    [29]韩奕,李建华,黄石柱,等.SS4型电力机车的动态模型及随机谐波电流计算[J].电力系统自动化.2001,25(4):31-36.
    [30]李曙辉.电气化铁道负荷统计特征的仿真分析[J].铁道学报,1996,18(2):40-46.
    [31]张丽艳,李群湛,解绍锋,等.牵引变电所馈线电流的概率模型[J].西南交通大学学报,2009,44(6):848-854.
    [32]HO T K, CHI Y L, WANG J, et al. Probabilistic load flow in AC electrified railways[J].IEE Proceedings:Electric Power Applications,2005,152(4):1003-1013.
    [33]盛彩飞.电力机车和动车组谐波电流的仿真研究[D].北京:北京交通大学,2009.
    [34]余丹萍,周盛,江全元.CRH3型动车组牵引传动系统的直接转矩控制研究[J].机电工程,2010,27(10):62-67,97.
    [35]王月仙,王成国,马大炜,等.高速动车组自动运行仿真研究[J].电力机乍与城轨车辆,2009,32(4):7-10.
    [36]曾剑群.动车组牵引计算仿真系统的研究[D].北京:北京交通大学,2009.
    [37]石耀勇,兰婷.高速铁路牵引供电系统模拟仿真模型研究[J].机电工程技术,2007,36(10):81-84.
    [38]周盛,余丹萍,江全元.CRH3动车组牵引传动系统的负荷建模[J].机电工程,2011,28(1):118-122,130.
    [39]周盛.高速铁路牵引负荷建模及分析[D].浙江:浙江大学,2011.
    [40]杨少兵,吴命利.基于实测数据的高速动车组谐波分布特性与概率模型研究[J].铁道学报,2010,32(3):33-38.
    [41]杨少兵,吴命利.电气化铁道牵引变电所负荷概率模型[J].电力系统自化,2010,34(24):40-45.
    [42]张民.再生制动工况下高速铁路牵引供电系统谐波与负序分析[D].成都:西南交通大学,2012.
    [43]李群湛.电气化铁道并联综合补偿及其应用[M].北京:中国铁道出版社,1993:6-13.
    [44]胡海涛,何正友,王江峰,等.基于车网耦合的高速铁路牵引网潮流计算[J].中国电机工程 学报,2012,32(19):101-108.
    [45]贺辉,杨洁.武广客运专线铁路电力负荷特性分析及预测[J].电力需求侧管理,2011,13(3):47-50.
    [46]许韵武,邓小军,鄢桂珍,等.CRH2型200km/h动车组[J].机车电传动,2007,(3):39-45.
    [47]李伟,张黎.交-直-交传动系统网侧变流器预测电流控制方法的计算机仿真及实现[J].中国铁道科学,2002,23(6):49-54.
    [48]葛兴来,冯晓云.动车组牵引传动三电平逆变器SVPWM控制[J].西南交通大学学报,2008,43(5):566-572.
    [49]张曙光.CRH2型动车组[M].中国铁道出版社,2007:229-344.
    [50]Dixon J, Mo ran L. A Clean Four-quadrant Sinusoidal Power Rectifier Using Multistage Converters for Subway Applications[J]. IEEE Transactions on Industrial Electronics,2005. 52(3):653-661.
    [51]宋文胜,冯晓云,王利军,等.基于SPWM调制的三电平四象限变流器研究与仿真[J].机车电传动,2007,(4):22-25.
    [52]冯晓云.电力牵引交流传动及其控制系统[M].成都:西南交通大学出版社,2009:95-118.
    [53]程启明,李月娥,程尹曼,等.基于Matlab/Simulink交流电机矢量控制系统建模与仿真[J].华东电力,2010,38(5):740-744.
    [54]Beig A R, Narayanan G, Ranganathan V T. Modified SVPWM Algorithm for Three Level VSI With Synchronized and Symmetrical Waveforms[J]. IEEE Transactions on Industrial Electronics, 2007,54(1):486-494.
    [55]冯晓云,王利军,葛兴来,等.高速动车组牵引传动控制系统的研究与仿真[J].电气传动,2008,38(11):25-28.
    [56]孙睿.动车组电空制动系统仿真研究[D].成都:西南交通大学,2008.
    [57]李官军.高速动车组牵引工况变流器控制算法研究与实现[D].成都:西南交通大学,2008.
    [58]王月仙,王成国.马大炜,等.高速动车组自动运行仿真研究[J].电力机车与城轨车辆,2009,32(4):7-10.
    [59]TB/T 1407—1998列车牵引计算规程[S].北京:铁道部科学研究院机车车辆研究所,1999.
    [60]Maitra A, Gaikwad A, Zhang P. Using System Disturbance Measurement Data to Develop Improved Load Models[C]. Power Systems conference and exposition, Atlanta, GA,2006: 1978-1985.
    [61]李欣然.考虑负荷特性的电压稳定及其负荷建模的研究[D].北京:华北电力大学,1998.
    [62]Byoung-Kon Choi, Hsiao-Dong Chiang. Multiple Solutions and Plateau Phenomenon in Measurement Based Load Model Development:Issues and Suggestions[J]. IEEE Transactions on Power Systems,2009,24(2):824-831.
    [63]鞠平,潘学萍,韩敬东.3种感应电动机综合负荷模型的比较[J].电力系统自动化,1999,23(19):40-43.
    [64]王吉利,贺仁睦,马进.配网侧接入电源对负荷建模的影响[J].电力系统自动化,2007,31(20):22-26.
    [65]Byoung-Kon Choi, Hsiao-Dong Chiang, Yinhong Li, et al. Measurement-Based Dynamic Load Models:Derivation, Comparison, and Validation[J]. IEEE Transactions on Power Systems, 2006,21(3):1276-1283.
    [66]刘能文.时速200公里动车组辅助供电系统的研究[D].湖南:中南大学,2011.
    [67]Do Bomfim, Antonio L B, Taranto G N, et al. Simultaneous Tuning of Power System Damping Controllers Using Genetic Algorithms[J]. IEEE Transactions on Power Systems,2000,15(1): 163-169.
    [68]Jin Ma, Ren-mu He, Zhao-yang Dong, et al. Measurement-based Load Modeling using Genetic Algorithms[C]. IEEE Congress on Evolutionary Computation(CEC2007),Singapore,2007:2.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700