半干旱黄土高原旱作覆膜玉米农田氧化亚氮排放特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,全球温度的不断上升,极端天气气候事件发生频率的不断增加,使得人类开始更加关注自身的生存环境以及人类活动对生态环境所带来的巨大影响。大气中温室气体的不断增加是全球变暖和气候变化的主因,因此,探索不同类型人为排放源的排放机理,对控制人为温室气体的排放具有重要意义。农田生态系统是人类食物和工业原料的重要来源,亦是温室气体的重要排放源。地膜覆膜作为一种重要的旱作农业技术,应用十分广泛,但对其温室气体氧化亚氮的排放研究尚未深入。本研究立足我国较为典型的早作农业区,以玉米为研究对象,研究了施用氮肥和地膜覆盖处理对农田氧化亚氮排放特征、排放量和地下气体浓度的影响。使用静态箱-气象色谱法,测定了氧化亚氮的气体浓度,并计算不同处理的氧化亚氮通量。结合测定的土壤速效氮含量、地上生物量和土壤温度数据进行进一步的分析,可得出如下主要结论如下:
     1、本实验中,在测定不同处理氧化亚氮地下气体浓度和地上排放量的同时,还对地上生物量的变化进行了持续的测定。结果表明:不论是在覆膜还是不覆膜条件下,施用氮肥均对玉米地上生物量的积累具有重要的促进作用,该作用在玉米生长的后期显现的较为明显。地膜覆盖能显著促进玉米地上生物量的积累,其中,双垄沟覆膜施肥处理(DRM)在植株生长的初期显著地促进了玉米植株地上生物量的积累,其地上生物量显著高于齐垄覆膜施肥(M1N1)等其余处理,显示了双垄沟覆膜技术所具有的独特优势。
     2、对氧化亚氮通量的三次日变化监测发现:典型晴朗天气条件下(6月14-15日,8月28-29日),氧化亚氮的通量变化呈现比较规律的双峰曲线,即于正午12:00左右达到第一次排放峰,随后排放量下降,并于凌晨3:00左右到达第二次排放峰。在阴天并伴有短时小雨天气条件下,氧化亚氮的排放并无明显的排放峰,而是在12:00-15:00左右出现一个排放低点。
     3、对氧化亚氮气体地下浓度的监测发现:5月20日第一次采集地下气体时,M1N1处理0-l0cm氧化亚氮浓度为747.3138ppb,显著高于DRM处理的539.4266ppb,而DRM处理的氧化亚氮浓度又显著高于其余处理,其余各处理间氧化亚氮浓度并无显著差异。此后各个处理的0-10cm氧化亚氮浓度均迅速下降,至6月15日左右所有处理的氧化亚氮浓度均保持在325-350ppb之间,并维持在这一水平直至收获。
     4、对氧化亚氮通量的监测发现:观测期内,氧化亚氮通量并无明显的季节性变化规律。整体上来看,所有处理的氧化亚氮浓度均呈现先下降,到达最低后又开始缓慢上升,并于收产时到达第二个排放高点,收产一周后所有处理的氧化亚氮排放量迅速下降。6月9日开始第一次通量测定时,DRM处理氧化亚氮通量显著高于覆膜不施肥的M1N0处理和不覆膜施肥的MON1处理。6月15日时,DRM处理氧化亚氮通量显著高于其余各个处理。此后,各个处理间氧化亚氮通量的差异逐步缩小,各个处理间的排放量较为接近。
     5、影响氧化亚氮排放的各个因素间的相关性分析:对土壤0-l0cm温度与氧化亚氮通量间的相关性分析发现,晴朗天气条件下,两者间呈现显著的线性负相关关系。而在阴雨条件下,两者间呈现显著的指数型负相关关系。对土壤0-l0cm温度和氧化亚氮浓度间的相关性分析发现,温度与氧化亚氮浓度间均存在显著的指数型或者线性的正相关关系。20-30cm处的氧化亚氮浓度与氧化亚氮通量间均呈现显著的正相关关系。整个观测期内的土壤速效氮浓度与地下气体浓度间呈现显著的指数型相关关系。
Rising global temperature and frequently occurred extreme weather-climate event arouse people's concern towards the tremendous impact human caused on global environment change. Numerous researches on climate change have proved that increasing greenhouse gases concentration in atmosphere account for the global warming occurred. Thus, exploring greenhouse gases emission mechanism is vital for the control of human-induced emission source. Farmland supplies human being with food and industrial material, but an important gases emission source also. Plastic mulching is a technique which has been widely adopted in rainfed farming areas, but research on greenhouse gases emission of fields with plastic mulching, however, is not deeply investigated. In the present study, maize field with plastic mulching in typical rainfed area-loess plateau was chosen to investigate the effect of plastic mulching on nitrous oxide flux, diurnal variation and concentration in different soil depth. Nitrous oxide (N2O) concentration was determined using chamber-gas chromatography method, and flux was then calculated. Combining with other data obtained, such as aboveground biomass, soil temperature and soil ammonium and nitrate content, further analysis was conducted. Some major conclusion can be drawn as follows:
     1. Both urea application and plastic mulching stimulate maize aboveground biomass accumulation. But the different is that urea application reveal its stimulate effect at late growth stage. Treatments with plastic mulching exhibit its stimulate effect at the very beginning of the growth stage. In particular, the treatment, two ridges and furrow mulched by plastic film with urea application (DRM), present its advantage over other treatments, both mulching and non-mulching.
     2. N2O flux diurnal variation showed different pattern according to the weather condition. In typical sunny days (June14th-15th and August28th-29th), soil N2O flux showed a two-peak curve, with one flux peak around12:00and the other around3:00. In a cloudy and rainy day, soil N2O flux reached the lowest point at around12:00-15:00and showed no flux peak.
     3. Soil N2O concentration monitoring result showed that:on May20th, the first soil N2O concentration determination, N2O concentration in0-10cm ridge soil of the treatment alternating ridges and furrows mulched by plastic film with urea application (MINI) was747.3138ppb, which is significantly higher than DRM (539.4266ppb). The concentration of DRM is higher than all other treatments left with a significance at p<0.05. Henceforth N2O concentration in0-10cm soil decreased gradually. Around June15th, all treatment kept an N2O concentration about325-350ppb, and kept at this level until harvesting.
     4. N2O flux was monitored in partial of the growth period. No seasonal variation was observed in the test period. On the whole, N2O flux of all treatments decreased gradually until reached the lowest point, afterwards, flux of all treatments increased and reached the highest point around harvesting. A week after harvesting, N2O flux decreased sharply. On June9th, the first N2O flux determination, DRM N2O flux was significantly higher M1N0and M0N1. On June15th, DRM N2O flux was significantly higher than all the other treatments. Afterwards, N2O flux difference among treatments diminished.
     5. Correlation analysis between0-10cm soil temperature and soil N2O flux proved that:in typical sunny days, soil temperature showed a significant negative linear correlation with N2O flux. While, in cloudy and rainy day, soil temperature showed a significant negative exponential correlation with N2O flux. Correlation analysis between0-10cm soil temperature and20-30cm soil N2O concentration proved that:soil temperature showed a significant positive linear or exponential correlation with20-30cm soil N2O concentration.20-30cm soil N2O concentration showed a significant positive correlation with N2O flux. During the test period, plant available nitrogen content (soil nitrate and ammonium content) showed a significant exponential correlation with20-30cm soil N2O concentration.
引文
[1]IPCC,2007. Climate Change 2007:synthesis report. Contribution of Working Groups Ⅰ, Ⅱ and Ⅲ to the Forth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge university,52pp
    [2]唐国利,任国玉.近百年中国地表气温变化趋势的再分析[J].气候与环境研究.2005.10(4):791-798
    [3]丁一汇,任国玉,石广玉等.气候变化国家评估报告(1):中国气候变化的历史和未来趋势[j].气候变化研究进展.2006.2(1):3-8
    [4]秦大河,丁一汇等.中国气候与环境变化及未来趋势[J].气候变化研究进展.2005.1(1):4-9
    [5]吴青柏,陆子建等.青藏高原多年冻土监测及近期变化[J].气候变化研究进展.2005.1(1):26-28
    [6]张东启,效存德等.喜马拉雅山区1951-2010年气候变化事实分析[J].气候变化研究进展.2012.8(2):110-118
    [7]林而达,许吟隆等.气候变化国家评估报告(Ⅱ):气候变化的影响与适应[J].气候变化研究进展.2006,2(2):51-56.
    [8]陈宜瑜,丁永健等.中国气候与环境演变评估(Ⅱ):气候与环境变化的影响与适应、减缓对策[J].气候变化研究进展.2005.1(2):51-57.
    [9]熊伟,林而达等.气候变化的影响阈值与中国的粮食安全[J].气候变化研究进展.2005.1(2):84-87.
    [10]Correia C. M., Areale E. L. V., Torres-Pereira M. S., Torres-Pereira J. M. G. Intraspecific variation in sensitivity to ultraviolet-B radiation in maize grown under field conditions:I.Growth and morphological aspects[J]. Field Crops Research.1999,59:81-89
    [11]Murphy T. M. Effect of broad-band ultraviolet and visible radiation in hydrogen peroxide formation by cultured rose cells [J].Plant Physiology.1990,80:63-78 [12] IPCC,2007
    [13]Rodhe H. Comparision of the contribution of various gases to the greenhouse effect. Science,1990,248:1217-1219
    [14]王少彬,苏维翰.中国地区氧化亚氮排放量及其变化的估算[J].环境科学.1993,14(3):42-46
    [15]Guo J. H., Liu X. J., et al. Significant Acidification in Major Chinese Croplands[J]. Science,2010,327:1008-1010.
    [16]Council for Agriculture Science and Technology. Preparing US agriculture for global climate change. Task Force Report no.119 Aemes, Lowa,1992
    [17]李迎春.中国农业氧化亚氮排放及减排潜力研究[D].中国农业科学院,2009.
    [18]封克,殷士学.影响氧化亚氮形成与排放的土壤因素[J].土壤学进展.1995,23(6):35-42
    [19]85-913-04-05攻关课题.我国农用氮肥氧化亚氮排放量变化趋势预测(1990-2020)[J].农业环境保护,1994,13(6):259-261.
    [20]周礼恺,徐星凯等.氢醌和双氰胺对种稻土壤N20和CH4排放的影响[J].应用生态学报,1999,10(2):189-192
    [21]李天杰.土壤环境学[M].北京:高等教育出版社,1995.255-260.
    [22]Parton W. J., Mosier A. R., et al. Gerneralized model for N2 and N20 production from Nitrification and denitrification[J].Global Biogeochemical Cycles.1996,10(3):401-402
    [23]万晓红,周怀东等.湿地反硝化作用研究进展[J].中国水利.2007,9:38-40
    [24]秦晓波,李玉娥等.稻田温室气体排放与土壤微生物菌群的多元回归分析[J].生态学报.2012,32(6):1811-1819
    [25]郎漫,蔡祖聪.百菌清对土壤氧化亚氮和二氧化碳排放的影响[J].应用生态学报.2008,19(12):2745-2750
    [26]丁洪,郑祥洲等.除草剂对土壤温室气体排放的影响[J].农业环境科学学报.2012,31(2):435-439.
    [27]Qaiser Hussain.土壤微生物群落结构及动态随水稻品种和生育期的变化及其农田温室气体释放意义[D].南京农业大学,2011
    [28]Xu C. G., Cao L., et al. Importance of feedback loops between soil inorganic nitrogen and microbial communities in the heterotrophic soil respiration response to global warming. Nature Review Microbiology.2011,8:779-790
    [29]郑循华,王明星等.温度对农田N20产生于排放的影响[J].环境科学.1997,18(5):1-5.
    [30]叶欣.华北平原典型农田土及作物氧化亚氮通量特征[D].西南农业大学,2005.
    [31]刘辉娟.施氮对玉米间作豌豆农田温室气体排放的影响及机制[D].甘肃农业大学,2012.
    [32]邱炜红,刘金山等.菜地系统土壤氧化亚氮排放的日变化[J].华中农业大学学报.2011,30(2):210-213
    [33]白红英.土壤N20排放的影响因子及其定量模型研究[D].西北农林科技大学,2003.
    [34]郑循华,王明星等.稻麦轮作生态系统中土壤湿度对N20产生于排放的影响[J].应用生态学报.1996,7(3):273-279
    [35]王智平,曾江海等.农田土壤N20排放的影响因素[J].农业环境保护.1994,,13(1):40-42
    [36]徐华,鹤田志雄.冬作季节土地管理对稻田土CH4排放的季节变化的影响[J].应用生态学报.2000,11,(2):215-218
    [37]王连峰,蔡祖聪.前期不同水分状况对土壤氧化亚氮排放的影响[J].土壤学报.2009,46(5):802-807.
    [38]谢军飞,李玉娥.农田土壤温室气体排放机理与影响因素研究进展[J].中国农业气象.2002,23(4):47-52
    [39]韩作强.酸化及其治理措施对黑土氧化亚氮排放的影响[D].大连交通大学,2010.
    [40]封克,王子波.土壤PH对硝酸根还原过程中N20产生的影响[J].土壤学报.2004,41(1):81-86
    [41]封克,汤炎等.施用石灰对酸性土壤中氧化亚氮形成的影响[J].土壤与环境.1999,8(3):198-202.
    [42]Hansen S.,Mehlum J. E.,et al. N20 and CH4 fluxes in soil influenced by fertilization and tractor[J].Soil Biology and Biochemistry.1993,25(5):621-630.
    [43]王艳芬,陈佐忠等.内蒙古典型草原N20研究刍议[J].气候与环境研究.1997,2(3):280-285
    [44]徐华,邢光熹等.土壤质地对小麦和棉花田N20排放的影响.农业环境保护.2000,19(1):1-3
    [45]徐华,邢光熹等.土壤水分状况和质地对稻田N20排放的影响.土壤学报.2000,37(4):499-505
    [46]梁东丽,方日尧等.硝、铵态氮肥对旱地土壤氧化亚氮排放的影响.干旱地区农业研究.2007,25(1):67-72.
    [47]郑循华,王明星等.华东稻田CH4和N20排放[J].大气科学.1997,21(2):231-237.
    [48]曾江海,王智平等.小麦-玉米轮作期土壤排放N20通量及其总量估算[J].环境科学.1995,16(1):32-35.
    [49]徐杰.黄土性土壤施肥与氧化亚氮排放研究[D].西北农林科技大学,2008.
    [50]李志安,邹碧等.地面氧化亚氮排放静态箱测定技术[J].土壤与环境.2002,11(4):413-416
    [51]万运帆,李玉娥等.静态箱法测定旱地农田温室气体时密闭时间的研究[J].2005,27(2):122-124.
    [52]王荣堂,张竹青,王友宁,2002。地膜覆盖对蒸腾蒸发的影响。湖北农学院学报,22(2),101-103
    [53]胡明芳,田长彦,2003。新疆棉田地膜覆盖耕层土壤温度效应研究。中国农业生态学报,11(2),128-130
    [54]郭志东,刁培松,1999。旱地冬小麦全生育期地膜覆盖穴播高产栽培技术的研究。农业工程学报,15(2),222-224
    [55]F M Li, A H Guo, H Wei,1999. Effects of clear plastic film mulch on yield of spring wheat. Field Crops Research.63,79-86.
    [56]晋小军,李国琴,潘荣辉,2004。甘肃高寒阴湿地区地膜覆盖对马铃薯产量的影响。中国马铃薯,18(4),207-210
    [57]李玉璞,刘志明,2012。春季大棚黄瓜地膜覆盖栽培试验。四川农业科技,2,26-27
    [58]刘建辉,崔鸿文,宋文胜,1995。地膜覆盖对冬栽洋葱生长及产量的影响。陕西农业科学,6,21-22
    [59]单翠芬,赵汝迪,佟金德,1994。日光温室地膜覆盖对春番茄生长发育的影响。河北农业大学学报,17(3),34-38
    [60]尚瑞广,王朝云,易永健,谭石林,汪洪鹰,周晚来,2012。麻地膜覆盖保温特征及对白菜生长和产量的影响。中国农学通报,28(16),255-260
    [61]王莉娟,张先存,赵军,2008。地膜覆盖在林地造林中的应用,安徽农学通报,14(15),173-178
    [62]杨彬,郭艳秋,康静,2003。杨树扦插地膜覆盖育苗实验,中国林副特产,66,47。
    [63]王桂芬,1996。地膜覆盖条件下土壤水及溶质运移规律的室内试验研究,水利水电技术,3,43-47。
    [64]谷晓岩.2012.盐碱地水稻地膜覆盖栽培的增效作用与增产形成机制.中国科学院研究生院。
    [65]Zhou, L. M., Li, F. M., Jin, S. L., Song, Y. J.,2009. How tow ridges and the furrow mulched with plastic film affect soil water, soil temperature and yield of maize on the semiarid Loess Plateau of China. Field Crops Research.113,41-47
    [66]史竹叶,刘文兆,郭胜利,李凤民.中连川小流域土壤水分物理特征及其与地形条件的关系.干旱地区农业研究[J],2003,21(4):101-104.
    [67]刘长安.覆膜、施肥和耕作方式对半干早黄土高原地区作物产量和土壤质量的影响[D].兰州大学,2009.
    [68]Mummey D. L., Smith J. L., et al. Nitrous oxide flux from a shrub-steppe ecosystem: sources and regulation[J]. Soil Biology and Biochemistry,1994,26(2):279-286
    [69]黄国雄,程冠雄等.玉米植株对大田温室气体N2O排放的影响[J].应用生态学报.1998,9(3):261-264
    [70]于克伟,黄斌等.田间大豆植株N2O通量的测定及光照的影响[J].应用生态学报.1997,8(2):171-174
    [71]Bremner J. M., Robbins S. G., et al. Seasonal variability in emission of nitrous oxide from soil[J]. Geophysical Research Letters.1980,7(9):641-644
    [72]薛菁芳,高艳梅等.长期施肥与地膜覆盖对土壤微生物量碳氮的影响[J].中国土壤与肥料.2007,3,55-58
    [73]周莹.早作条件下紫花苜蓿草地氧化亚氮排放及其影响因素的研究[D].兰州大学.2012

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700