不同饱和度水合物开采实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过在三维的天然气水合物实验平台上合成具有不同饱和度的天然气水合物,对沉积物中天然气水合物的多种开采方法进行了实验研究,主要内容包括:
     (1)通过控制不同的充气量合成了三种不同饱和度的水合物试样。结果发现,在相同充气量的多组水合物合成过程中,体系不同位置的温度曲线变化极为相似,说明水合物合成十分均匀;体系压力变化相似且最终的稳定压力十分接近,表明水合物合成的气体消耗量十分接近,因而相同充气量合成的水合物分布均匀且饱和度十分接近。
     (2)对三种不同饱和度的水合物进行了降压分解实验,结果发现,随着饱和度的提高,水合物吸热效应越发强烈,导致产气速率的波动越发剧烈,产气量随饱和度提高逐渐增大,因而对于高饱和度的水合物储藏可考虑辅助其他增强传热的方式,以更高效的开采水合物。
     (3)对三种不同饱和度的水合物进行了两循环式注热分解实验,结果表明,第一循环的产气量明显高于第二循环,随着饱和度的提高,第二循环的产气量有显著的提高,表明对于高饱和度的水合物储藏,采用两循环甚至多循环有着越发良好的效果。
     (4)对三种不同饱和度的水合物进行了降压与注热联合法分解实验,结果表明,联合法相比于单一降压法及注热法在产气速率及产气量方面均有明显的优势,且随着饱和度的提高,这种优势越发明显。
In this dissertation, some of gas hydrates exploitation method in sediments are studied experimentally by through different saturated hydrates are formed on the platform of three-dimensional hydrates experiments. The research contents are as follows:
     (1) Three different saturated hydrates are formed by controlling amount of gas. The results indicated that in the series of hydrates formation, the temperature profiles of every RTD in the vessel are likely similar, so, the hydrates are formed well-distributed; the system pressure profiles are also similar and the eventually pressure are very closely, the consumption of gas are closely, so the amount of hydrates formation and the saturation are also closely.
     (2) Three different saturated hydrates are dissociated by depressurization, the results indicated that as the saturation increasing, the endothermic effect of hydrates dissociation stronger, the fluctuation of gas production rate intensifying, and the amount of gas production increasing. So, for the higher saturated hydrates, some of auxiliary heat transfer measures would be advisable in depressurization method.
     (3) Three different saturated hydrates are dissociated by two circle warm water flooding. The results indicated that the amounts of the first circle are obviously higher than of the second circle. As the saturation increasing, the amount of the second circle is markedly enhancing, so, for the higher saturated hydrates, two or more circle would be advisable in the warm water flooding method.
     (4) Three different saturated hydrates are dissociated by combination of depressurization and warm water flooding. The results indicated that the combination method has many obvious advantages in the hydrates exploitation compared with depressurization or warm water flooding method. And as the saturation increasing, those advantages are clearer.
引文
[1].陈光进,孙长宇,马庆兰.气体水合物科学与技术[M].北京:化学工业出版社,2008:1-4.
    [2]. Demirbas A. Methane hydrate as potential energy resource:Part1-Importance, resource and recovery facilities [J]. Energy conversion and management,2010,51:1547-1561.
    [3]. Davy H. The Bakerian Lecture:On some of the combination of ox muriatic gas and oxygen, and on the chemical relations of these principles to inflammable bodies [M]. Phil. Trans. R. Soc. London.1811,101:1-35.
    [4]. Kevenvolden K. A. Methane hydrate-a major reservoir of carbon in the shallow geosphere [J]. Chemical Geology,1998,71:41-51.
    [5].史斗,郑军卫.世界天然气水合物研究开发现状和前景[J].地球科学进展,1999,14:330-339.
    [6]. Collett T S. Natural-gas hydrates of the Prudhoe Bay and Kuparuk River area, North Slope, Alaska [J]. AAPG Bull,1993,77(5):793-812.
    [7]. Fatykhov M A, Bagautdinov N Y. Experimental investigations of decomposition of gas hydrate in a pipe under the impact of a microwave electromagnetic field [J]. High Temp,2005, 43(4):614-619.
    [8]. Li D L, Liang D Q, Fan S S et al. In situ hydrate dissociation using microwave heating: Preliminary study. Energy Conversion and management,2008,49(8):2207-2213.
    [9].窦斌,蒋国盛,吴翔等.地面分解法开采天然气水合物[J].天然气工业,2008,28(7):123-125.
    [10].McMullan R K, Jeffrey G A. Polyhedral clathrate hydrates IX structure of ethylene oxide hydrate [J]. Journal of Chemical Physics,1965,42:2725-2732.
    [11].Mak T C, McMullan R K. Polyhedral clathrate hydrates X structure of the double hydrate of tetrahydrofuran and hydrogen sulfide [J]. Journal of Chemical Physics,1965,42:2732-2737.
    [12].Konstantin A K, Uchadin A, Ripmeester J A. A complex clathrate hydrate structure showing bimodal guest hydration [J]. Nature,1999,397:420-423.
    [13].张振国,方念乔,高莲凤等.气体水合物在海洋中的分布及赋存区域的海洋地质特征[J].资源开发与市场,2006,22(4):337-340.
    [14].Grover T. Natural gas hydrates-Issues for gas production and geomechanical stability[D]. Texas: Texax A&M University,2008.
    [15].Sloan E D. Clathrate Hydrates of Nature Gas [M]. NY:Marcel Dekker,1998.
    [16].U.S. Geological Survey. A global inventory of natural gas hydrate occurrence [M/OL]. http://walrus.wr.usgs.gov/globalhydrate. [2009,5,23].
    [17]. Sloan E D, Koh C A. Clathrate hydrates of natural gase[M]. Boca Raton:CRC Press,2008.
    [18].Pooladi D M. Gas production from hydrate reservoirs and its modeling [J]. Journal of Petroleum Technology,2004,56(6):65-71.
    [19].Moridis G J, Kowalsky M B and Pruess K. Depressurization-induced gas production from Class 1 hydrate deposits. SPE reservoir evaluation & engineering,2007:458-481.
    [20].赵建忠,石定贤.天然气水合物开采方法研究[J].矿业研究与开发.2007,27(3).
    [21].Chuang Ji, Goodarz Ahmadi, Duane H Smith. Constant rate natural gas production from a well in a hydrate reservoir [J]. Energy Conversion and Management,2003, (44):2403-2423.
    [22]. LI Shuxia, CHEN Yueming, DU Qingjun. Schemes of gas production from natural gas hydrate [J]. Journal of chemical Industry and engineering,2003, (54):102-107.
    [23]. Tang L, Rui X, Huang C, et al. Experimental of investigation of production behavior of gas hydrate under thermal stimulation in unconsolidated sediment [J]. Energy&Fuels,2005, 19(6):2402-2407.
    [24].李栋梁.微波作用下天然气水合物分解特性研究[D].广州:广州能源研究所,2004.
    [25].Castaldi M J, Zhou Y. Down-hole combustion method for gas production from methane hydrates [J]. Journal of Petroleum Science and Engineering,2007,56(1-3):176-185.
    [26].周锡堂,樊栓狮,梁德青.C02置换开采天然气水合物研究进展[J].化工进展,2006,25(5):524-527.
    [27].Davidson D W, Garg S K, Guogh S R et al. Some structural and thermodynamic studies of clathrate hydrates [J]. Journal Inclusion Phenomena,1984,2:231-238.
    [28]. Zhou Y, Castaldi M J, Yegulalp T M. Experimental investigation of methane gas production from methane hydrate. Industrial & Engineering Chemistry Research,2009,48:3142-3149.
    [29].孙建业,业渝光,刘昌岭.沉积物中天然气水合物合成及开采模拟实验研究[J].中国海洋大学学报.2009,39(6):1289-1294.
    [30].李刚,李小森.过冷度对气体水合物合成影响的实验研究[J].现代地质.2010,24(3)
    [31].陈敏曹志敏.海洋天然气水合物合成的模拟实验研究[J].海洋学报.2006,28(6)
    [32].祁影霞,杨光.天然气水合物合成实验[J].低温工程.2009,(4)
    [33].李淑霞,陈月明.填砂模型中天然气水合物合成及降压分解实验研究[J].油气田地面工程.2009,28(7).
    [34].Zhong Y, Rogers R E. Surface effects on gas hydrates form action [J]. Chemical engineering Science,2000,55:4175-4187.
    [35].Makogon Y F, Makogon T Y, Holditch SA. Kinetics and mechanisms of gas hydrate formation and dissociation with inhibitors [M]//H older G D, Bishnoi P R. Gas Hydrates:Challenges for the Future. New York:New York Academic Sciences,2000:777-796.
    [36]. Makogon Y F, Holditch SA, Holste J C, et al Aspects of gas hydrate kinetics[M]//Mori Y H. Proceedings of the 4th International Conference on Natural Gas Hydrates. Yokohama:Tapir Academic Press,2002:531-536.
    [37].KonoH O, Narasimhan S, Song F, et al Synthesis of methane gas hydrate in porous sediments and its dissociation by depressurizing [J]. Powder Techno logy,2002,122 (2/3):239-246.
    [38].Cha S B, Ouar H T, Wildeman R, et al A third-surface effect on hydrate formation[J]. Journal of Physical Chemistry B,1988,92:6492-6494.
    [39].ENGLEZOS P, KALOGERA KIS N, DHOLAHAI P D, et al. Kinetics of formation of methane and ethane gas hydrates [J]. Chem Eng Sci,1987,42(11):2647-2658.
    [40]. SKOVBORG P, RASMUSSEN P. A mass transport limited model for the growth of methane and ethane gas hydrate [J]. Chem Eng Sci,1994,49 (8):1131-1143.
    [41]. Chen G J, Guo T M. Thermodynamic Modeling of Hydrate Formation Based on New Concepts. Fluid Phase Equilibria,1996,122:43-65.
    [42]. Chen G J, Guo T M. A New Approach to Gas Hydrate Modeling [J]. Chem. Eng.J.,1998, 71:145-151.
    [43].冯自平,沈志远.水合物降压分解的实验及数值模拟[J].化工学报.2007,58(6)
    [44].宋新利.天然气水合物降压开采实验和数值模拟研究[D].北京:中国石油大学,2008.
    [45]. Holder, Gerald D. Simulation of Gas Production From a Reservoir Containing Both Gas Hydrates and Free Natural Gas [J]. SPE Annual Technical Conference and Exhibition,26-29 September 1982, New Orleans, Louisiana.
    [46]. W.X. Panga, W.Y. Xu. Methane hydrate dissociation experiment in a middle-sized quiescent reactor using thermal method [J]. Fuel, Issue 3, March 2009, Pages 497-503.
    [47].Xin Yang, Chang-Yu Sun. Experimental Study on Gas Production from Methane Hydrate-Bearing Sand by Hot-Water Cyclic Injection [J]. Energy Fuels,2010,24 (11), pp 5912-5920
    [48]. Liang G. Tang, Rui Xiao. Experimental Investigation of Production Behavior of Gas Hydrate under Thermal Stimulation in Unconsolidated Sediment [J]. Energy Fuels,2005,19 (6), pp 2402-2407.
    [49].Praveen Linga, Cef Haligva. Recovery of Methane from Hydrate Formed in a Variable Volume Bed of Silica Sand Particles [J]. Energy Fuels,2009,23(11), pp 5508-5516.
    [50]. Gang Li, Xiao-Sen Li. Production behavior of methane hydrate in porous media using huff and puff method in a novel three-dimensional simulator [J]. Energy,2011(36),3170-3178
    [51].Xiao Sen Li, Yi Wang. Experimental investigation into methane hydrate production during three-dimensional thermal huff and puff [J]. Applied Energy,2012,94:48-57.
    [52].李淑霞,陈月明.多孔介质中天然气水合物注热+降压开采的实验研究[J].实验力学,26(2)
    [53].BAI Yu Hu, LI Qing Ping. Simulation of gas production from hydrate reservoir by the combination of warm water flooding and depressurization [J]. SCIENCE CHINA, Technological Sciences,2010,53:2469-2476.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700