风化壳淋积型稀土矿浸取动力学与传质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在导师悉心指导下,围绕本人主持的在研国家自然科学基金项目——“风化壳淋积型稀土矿贫矿浸取动力学与传质研究”(№50664004),确定了博士论文题目为“风化壳淋积型稀土矿浸取动力学与传质研究”,在风化壳淋积型稀土矿浸取应用基础研究方面开展了一些研究工作:
     1.风化壳淋积型稀土矿浸取稀土动力学研究
     针对代表性的江西龙南足洞稀土风化壳淋积型稀土矿,从浸取动力学角度出发,考察了浸取反应温度、浸出剂初始浓度、搅拌强度及矿石粒度对稀土浸出速率的影响。
     研究结果表明,风化壳淋积型稀土矿浸取是一个典型的液-固非均相反应,浸取过程较好地符合收缩未反应芯模型,尝试法求出动力学控速步骤为属固膜扩散控制,导出了浸出动力学方程为:
     求得风化壳淋积型稀土矿浸取反应级数为2级,浸取反应活化能为9.24 kJ/mol。
     2.风化壳淋积型稀土矿浸取铝动力学研究
     以代表性的江西龙南足洞稀土原矿,针对风化壳淋积型稀土矿离子相形态铝,开展浸取铝动力学研究,考察了浸取反应温度对铝浸出速率的影响。研究表明,风化壳淋积型稀土矿铝的浸取也是一个典型的液-固非均相反应,其浸取过程也可用“收缩未反应芯模型”描述。用尝试法求出铝浸取动力学控速步骤,结果发现1-(1-η)1/3对浸取时间t作图得到一系列直线,且通过原点。通过铝浸取Arrhenius图,求得风化壳淋积型稀土矿浸取铝反应动力学方程为:
     计算得出铝浸取反应活化能为41.57 kJ/mol介于40 kJ/mol到160 kJ/mol之间,表明风化壳淋积型稀土矿铝浸取过程受化学反应动力学控制。而且铝浸取的表观活化能远高于稀土浸取表观活化能,显示铝浸取平衡时间长于稀土浸取平衡时间,铝浸取速率远低于稀土浸取速率。
     3.风化壳淋积型稀土矿浸取传质研究
     用色层塔板理论研究和实验方法,研究了风化壳淋积型稀土矿浸取传质过程,探索淋浸速度、浸出剂初始浓度、矿石粒度及原矿品位对浸出效果的影响,用浸理论塔板高度评价浸取传质效果,对浸取传质过程进行了优化。
     实验表明,风化壳淋积型稀土矿浸取理论塔板高度与浸取流速关系可用Van Deemter方程描述,稀土矿浸取理论塔板高度存在最小值,在此流速条件下,浸取浸取过程传质效果最好,该浸取流速为最佳值(Uopt),低于或高于此流速(Uopt),浸取过程塔板高度均增大。
     通过研究浸取剂初始浓度对稀土浸取传质过程影响,结果显示,由于风化壳淋积型稀土矿浸取动力学受固膜内扩散控制,当浸取剂浓度足够高时,再提高浸取剂初始浓度,对稀土浸取理论塔板高度的影响不大,此时对传质的影响不明显。因而浸取剂初始浓度以选择2%~3%为宜。
     通过研究不同矿石粒度下风化壳淋积型稀土矿的浸取过程,结果表明,随着矿石粒度的增大,浸取理论塔板高度增大,浸取过程传质效果较差,柱效降低。而随着矿石粒度的减小,浸取渗透性能下降,当浸取流速低于是佳流速Uopt时,理论塔板高度将增大,浸取过程传质效果变差。
     研究稀土矿品位风化壳淋积型稀土矿浸取的影响表明,原矿稀土品位越高,浸取理论塔板高度越小,随着矿石品位的降低,浸取过程理论塔板高度增大。
     4.风化壳淋积型稀土矿稀土浸取动力学分离铝研究
     基于风化壳淋积型稀土矿其浸取稀土为内膜扩散控制动力学模型,而铝为离子交换反应化学控制动力学模型这一显著差异,进一步探索不同浸取条件下稀土浸取行为与铝浸取行为。结果表明,风化壳淋积型稀土矿稀土浸取曲线与铝浸取曲线变化并不同步,稀土浸取曲线随着浸取进程的增长,浸取稀土浓度出现峰值,而铝浸取曲线随着浸取进程的增长,铝浓度不变显著。
     在不同浸取流速条件下,风化壳淋积型稀土矿浸取液稀土浓度峰值浓度随浸取流速变化明显,而浸取液中铝的浓度随浸取流速变化不显著,浸取过程中稀土与铝在浸取动力学分离存在差异,在一定的浸取流速条件下,浸取过程中稀土与铝存在分离作用。
     通过研究风化壳淋积型稀土矿浸出液中铝与稀土相对含量随浸取流速变化,结果表明,在低流速时,浸出液中铝与稀土相对含量随浸取流速增大而减小,到一定流速时,再加快流速,浸出液中铝与稀土相对含量随浸取流速增大而增大,浸取过程中有一最佳流速,经优化得到优化流速为U=0.23mL/min,此时,稀土浸出液中含铝最低,AI/RE=0.012,因而在浸取过程中产生了浸取动力学分离铝效果。
     5.风化壳淋积型稀土矿贫矿浸取传质过程优化研究
     针对这些风化壳淋积型稀土矿贫矿的复杂性,以江西有代表性的龙南风化壳淋积型稀土矿贫矿为对象,用色层理论和实验方法探索其浸取传质特性,实验不同流速条件下稀土贫矿浸取行为,用理论塔板高度评价浸取传质效果,对浸取传质过程进行优化。
     研究结果表明,风化壳淋积型稀土矿贫矿浸取曲线峰形窄,峰高较低。浸取传质过程可用理论塔板高度变化来进行优化,风化壳淋积型稀土矿贫矿浸取时,随着浸取流速的增大,起初浸取理论塔板高HETP减小,但超过0.9mL/min速度后,浸取理论塔板高HETP增大,因而浸取有一个最佳流速,风化壳淋积型稀土矿贫矿浸取优化流速为0.9mL/min。
     对于风化壳淋积稀土矿贫矿,不同装矿高度条件下其浸取稀土曲线显示,浸出液稀土峰值浓度随浸矿柱径比增加而降低,表明浸取柱径比越大,浸取过程扩散距离越长,扩散作用越强。风化壳淋积型稀土矿贫矿浸取稀土时装矿高度越低,理论塔板高度越低,表明浸取传质效果越好。
     对稀土贫矿浸取时浸矿剂浓度优化结果表明,贫矿浸出液稀土峰值浓度高随浸取剂浓度的提高而升高,但当浸矿剂浓度达到2%后,浸矿剂浓度再升高,对贫矿浸取稀土峰值浓度影响不大,因而浸取剂初始浓度以选择~2%为宜
For the weathered crust elution-deposited rare earth ores, with the application and development of the green chemistry of extraction process, especially popularization of the in-situ leaching process, the high selectivity leaching, high performance and low consumption extraction technology becomes more and more important and stringent in industrial design. In order to improve extraction process with high performance and low consumption, the basie theoretic and applied experiments of leaching process have investigated in this dissertation.
     1 Kinetics on Leaching Rare Earth from the Weathered Crust Elution-deposited Rare Earth Ores
     In order to know the mechanism of the rare earth leaching and choose the more suitable technology of extraction rare earth from this ore, the kinetic of leaching rare earth from the weathered crust elution-deposited rare earth ores with ammonium sulfate solution was investigated. The effects of the main leaching parameters such as temperature and ore particle size on leaching process were examined and discussed in order to elucidate the kinetics and mechanism of leaching rare earth. It was found that the higher the leaching temperature or the smaller the ore particle size, the faster the leaching progress. The leaching mechanism was analyzed with different kinetics models. The results show that the leaching process can be described by the shrinking-core model, the leaching rate was controlled by the inner diffusion of reactants and leaching products through mineral porous layer, the leaching process follows the kinetic model 1—2/3α—(1—α)2/3=kt, the apparent activation energy was 9.24 kJ/mol obtained from calculating the experimental data and the order of the ore particle size found to be approximately 2.An empirical equation relating the rare earth leached rate constant with ore particle size and leaching temperature was established as:
     2 Kinetics on Leaching aluminum from the Weathered Crust Elution-deposited Rare Earth Ores
     For the weathered crust elution-deposited rare earth ores, the aluminum is existing as exchangeable phase state with contents of 4.56×10-2%, and is the main impurities in the rare earth leach liquor. In order to know the mechanism of the aluminum leaching and inhibit aluminium during leaching rare earth, the kinetic of leaching aluminum from the weathered crust elution-deposited rare earth ores with ammonium sulfate solution was investigated. The effects of the temperature on leaching process were examined and discussed, the leaching mechanism was analyzed with different kinetics models. The results show that the leaching process can be described with the shrinking-core model too. The leaching rate was controlled by the the ion-exchange chemical reaction controls. The leaching process follows the kinetic model 1-(1-α)1/3=kt, the apparent activation energy was 41.57 kJ/mol obtained from calculating the experimental data. An Empirical equations were established as: 1-(1-η)1/3=1.9x104·e41570/RT·t
     3 Mass transfer in Leaching of the weathering crust elution-deposited rare earth ores
     The mass transfer in leaching of rare earth from the weathered crust elution-deposited rare earth ores with ammonium sulfate solution was investigated. The effects of the flowrate, the concentration of leach reagents and rare earth ore grade on leaching performance were examined with column leahing, these experiment datum were analyzed with the chromatographic nonequilibrium plate theory in order to elucidate the mass transfer phenomena. It was found that the relationship between the height equivalent to a theoretical plate(HETP) and leaching flowrate can be described by van Deemter equation, there is a optimum flowrate in the leaching process. The results show that the dependence of leaching efficiency on flowrate of reagents. It provides a scientific approach to leaching the weathered crust elution-deposited rare earth ores with high efficiency and low material consumption, and is applied to optimize the rare earth extraction conditions and to improve the rare earth received rate.
     4 Kinetics Separation Aluminum in Leaching the Weathered Crust Elution-deposited Rare Earth Ores
     Comparing with the kinetics on leaching rare earth from the weathered crust elution-deposited rare earth ores, the kinetics on leaching aluminum has a great difference. The leaching rare erath rate was controlled by the inner diffusion of reactants and leaching products through mineral porous layer, but the leaching aluminum rate was controlled by the the ion-exchange chemical reaction controls. The apparent activation energy of leach aluminum is 41.57 kJ/mol, higher than rare earth as 9.24 kJ/mol. The leach reaction speed of leach aluminum is slower than rare earth. The results show that there are kinetic separation of aluminum from rare earth in leaching process. The kinetic separation of aluminum from rare earth in leaching the weathered crust elution-deposited rare earth ores with ammonium sulfate solution was carried out. The effects of the flowrate on kinetic separation aluminum in leaching the weathered crust elution-deposited rare earth ores were examined with column leahing. It was found that there is a optimum flowrate for kinetic separation aluminum in the leaching process. The optimum condition was established:the flowrate is U=0.23mL/min, the Al/RE in leach liquor is 0.012.
     5 Optimisation of mass transfer in column elution of rare earths from low grade weathered crust elution-deposited rare earth ore
     Along with exploitation of high-grade weathered crust elution-deposited rare earth ores during the recent decades, the quality of rare earth ores is becoming lower and lowe. It has been a serious worldwide problem that how to exploit low-grade rare earth ores availably. In order to improve extraction process from the low-grade rare earth ores, an investigation was carried out to optimize the leaching and mass transfer of rare earth metals with ammonium sulfate solution during the column elution of a low grade weathered crust elution-deposited rare earth ore. The effects of flow rate, concentration of leach reagent and ore grade on the leaching performance were examined. The experimental data was analysed using chromatographic non-equilibrium plate theory in order to elucidate the mass transfer phenomena. It was found that the relationship between the height equivalent to a theoretical plate (HETP) and the leaching flow rate can be described by the Van Deemter equation and there is an optimum flow rate in the leaching process. Compared with similar higher grade weathered crust elution-deposited rare earth ores which have a sharp peak followed by a short tail, the leach curve of low grade ores has a long tail following a broader peak.
引文
[1]徐光宪主编.稀土[M].第二版.北京:冶金工业出版社,1995.
    [2]池汝安,王淀佐.稀土选矿与提取技术[M].北京:科学出版社,1996.
    [3]奚洪民.稀土元素资源与应用[D].[博士学位论文].长春:吉林大学,2007.
    [4]CASTOR S B. Rare earth deposits of North America [J]. Resource Geology, 2008,58(4):337-47.
    [5]YASUO K, MASAHARU K. Rare earth minerals and resources in the world [J]. Journal of Alloys and Compounds,2006, (408-412):1339-1343.
    [6]XIONG J. Analysis and Outlook of Global Rare Earth Market (continued) [J]. China Rare Earth Information,2008,14(12):1-3.
    [7]FALCONNET P. The economics of rare earths [J]. Journal of the Less Common Metals,1985,111(1-2):9-15.
    [8]连俊坚.我国主要类型稀土矿床地采选研究动态与进展[J].冶金地质动态,1996,(11):20-23.
    [9]陈祥云,王志刚.江西省矿产资源产业发展研究[J].中国矿业,2008,17(4):22-24,36.
    [10]韩福军,王远良,熊家齐,等.中国稀土的国际地位[J].稀土,1999,20(3):70-75.
    [11]MIKE 0 D,郭婷,光宇.稀土进入龙的时代[J].稀土,1989,10(4):62-68.
    [12]林河成.我国稀土产品的生产,应用及市场状况[J].湿法冶金,2000,19(4):31-35.
    [13]常江,竺伟民.稀土在土壤中吸附和解吸研究[J].土壤通报,1996,27(2):84-87.
    [14]李德成,黄圣彪,王文华,等.铈(Ⅲ)在不同土壤中的吸附、解吸动力学研究[J].环境科学学报,2000,20(5):548-533.
    [15]DONNAY G D. The crystallography of basnasite, parisite, rontgenite and synchysite [J]. Am Mineral,1953,38(8):897-903.
    [16]FUERSTENAU D W, PRADIP H R. The surface chemistry of bastnaesite, barite and calcite in aqueous carbonate solutions [J]. Colloids and Surfaces,1992,68(1-2):95-102.
    [17]QIWU Z, FUMIO S. Non-thermal process for extracting rare earths from bastnaesite by means of mechanochemical treatment [J]. Hydrometallurgy,1998,47(2-3):231-241.
    [18]周殉若,宋新华,郑济林.某些花岗岩中稀土元素赋存状态的研究[J].地球科学,1987,12(3):277-284.
    [19]包志伟.华南花岗岩风化壳稀土元素地球化学研究[J].地球化学,1992,21(2):166-174.
    [20]COPPIN F D R, BERGER G, BAUER A, et al. Sorption of lanthanides on smectite and kaolinite [J]. Chemical Geology,2002,182:57-68.
    [21]陈炳辉,刘琥琥,毋福海.花岗岩风化壳中的微生物及其对稀土元素的浸出作用[J].地质论评,2001,47(1):88-94,98.
    [22]CHEN B, WANG Z, HUANG L, et al. An Experimental Study on the Effects of Microbes on the Migration and Accumulation of REE in the Weathering Crust of Granite [J]. Chinese Journal of Geochemistry,2000,19(3): 280-288.
    [23]CHEN B H, WU F H, LIU H H. Study on microbes and their effects on rare earth extraction in weathering crust of granite [J]. Journal of Rare Earths,2001,19(3):161-167.
    [24]林传仙,郑作平.风化壳淋积型稀土矿床成矿机理的实验研究[J].地球化学,1994,23(2):189-198.
    [25]CHI R, TIAN J, LI Z, et al. Existing State and Partitioning of Rare Earth on Weathered Ores [J]. Journal of Rare Earths,2005,23(6): 756-759.
    [26]BULATOVIC S, PETERBOROUGH. Froth Flotation of bastnaesite [J]. Minerals Engineering,1990,3(1-2):V.
    [27]GAHAN B, Umit A M. Beneficiation of bastnaesite by a multi-gravity separator [J]. Journal of Alloys and Compounds,2000, (303-304):520-3.
    [28]REN J, LU S, SONG S, et al. A new collector for rare earth mineral flotation [J]. Minerals Engineering,1997,10(12):1395-1404.
    [29]罗家珂,任俊,唐芳琼,等.我国稀土浮选药剂研究进展[J].中国稀土学报,2002,20(5):385-391.
    [30]Pradip, Fuerstenau D W. The adsorption of hydroxamate on semi-soluble minerals. Part I:Adsorption on barite, Calcite and Bastnaesite [J]. Colloids and Surfaces,1983,8(2):103-119.
    [31]Fuerstenau D W, Pradip. Adsorption of hydroxamate collectors on semisoluble minerals Part Ⅱ:Effect of temperature on adsorption [J]. Colloids and Surfaces,1985,15:137-46.
    [32]Fuerstenau D W, Pradip. The role of inorganic and organic reagents in the flotation separation of rare-earth ores [J]. International Journal of Mineral Processing,1991,32(1-2):1-22.
    [33]SOMASUNDARAN P, DIANZUO W. Solution Chemistry, Minerals and Reagents [M]. Amsterdam:Elsevier,2006.
    [34]曹兴兰,李芳积,刘剑军.中国稀土选矿工艺进展[J].上海第二工业大学学报,1992,9(2):27-31.
    [35]余永富.我国稀土矿选矿技术及其发展[J].中国矿业大学学报,2001,30(6):537-542.
    [36]车丽萍,余永富.我国稀土矿选矿生产现状及选矿技术发展[J].稀土,2006,27(1):95-102.
    [37]车丽萍,余永富,庞金兴,等.羟肟酸类捕收剂在稀土矿物浮选中的应用及发展[J].稀土,2004,25(3):49-54.
    [38]梁国兴,池汝安,朱国才.氟碳铈矿羧基与羟肟基浮选捕收剂性能比较[J].化工冶金,1998,19(1):25-30.
    [39]任俊,黄林旋,黄成新.H316新型捕收剂分选稀土精矿工业生产试验研究[J].稀土,1995,16(5):14-18.
    [40]池汝安,田君.风化壳淋积型稀土矿评述[J].中国稀土学报,2007,25(6):641-650.
    [41]池汝安,田君.风化壳淋积型稀土矿化工冶金[M].北京:科学出版社,2006.
    [42]田君,尹敬群,欧阳克氙,等.风化壳淋积型稀土矿提取工艺绿色化学内涵与发展[J].稀土,2006,27(1):70-72,102.
    [43]贺伦燕,冯天泽,傅师义.硫酸铵淋洗从离子型稀土矿中提取稀土工艺的研究[J].稀土,1983,4(3):1-8.
    [44]郑皆富.连续水平真空带式过滤机渗滤浸取工艺[P]:中国.发明专利.CN85103341,1985.
    [45]曾令坚,江民涛.水平真空带式过滤机浸取离子型稀土矿[J].江西有色金属,1989,3(4):1-3,5.
    [46]曾令坚.水平真空带式过滤机的进展[J].江西有色金属,1991,5(2):4-8.
    [47]卢盛良,江民涛.应用连续水平真空带式过滤机浸取离子吸附型稀土矿[J].江西科学,1989,7(1):23-30.
    [48]汤洵忠,李茂楠,杨殿.原地浸析采矿方法在离子型稀土矿的应用及其展望[J].湖南有色金属,1998,14(4):5-7.
    [49]汤洵忠,李茂楠,杨殿.原地浸析采矿中的水封闭工艺原理及其应用[J].中南工业大学学报(自然科学版),1999,30(3):225-229.
    [50]汤洵忠,李茂楠,杨殿.原地浸析采矿中的溶液毛细损失及其对策[J].湖南有色金属,1999,15(5):6-14,18.
    [51]吴爱祥,尹升华,李建锋.离子型稀土矿原地溶浸溶浸液渗流规律的影响因素[J].中南大学学报(自然科学版),2005,36(3):506-510.
    [52]卢盛良,田君.离子型稀土矿控速淋浸新工艺通过中评估[J].稀土信息,1994,(2-3):6.
    [53]王永志,吴延喜.离子吸附型稀土矿堆法浸出工艺[P]:中国.发明专利,CN 1037875A,1989.
    [54]李秀芬,池汝安.稀土矿淋出液除杂工艺的研究[J].矿产综合利用,1997,(2):10-3.
    [55]毛燕红,张长庚,吴南萍,等.离子吸附型稀土矿的除铝研究[J].上海金属有色分册,1993,14(2):16-19.
    [56]赵治华,桑晓云,张文斌,等.离心沉降法去除稀土溶液中杂质铝和铁[J].稀土,2007,28(4):95-97.
    [57]李秀芬.硫化钠从稀土矿淋出液中除重金属离子[J].矿产综合利用,2000,(3):46-47.
    [58]王东援,孙毓庆,王延琮.关于塔板理论的进一步讨论[J].沈阳药科大学学报,1995,12(1):72-78.
    [59]CHI R, XU Z. A solution chemistry approach to the study of rare earth element precipitation by oxalic acid [J]. Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science, 1999,30B(2):189-195.
    [60]池汝安,王淀佐.某复杂溶液沉淀稀土草酸用量分析及试验研究[J].稀土,1992,13(4):11-14,10.
    [61]CHI R, HU Y, ZHU G, et al. Solution-chemistry analysis of ammonium bicarbonate consumption-in rare-earth-element precipitation [J]. Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science,2003,34(5):611-617.
    [62]李永绣,何小彬,辜子英,等.RECl3与NH4HC03的沉淀反应及伴生杂质的共沉淀行为[J].稀土,1999,20(2):19-22.
    [63]冯天泽.稀土碳酸盐的制法、性质和组成[J].稀土,1989,10(3)45-49.
    [64]贺伦燕,冯天泽.用碳酸氢胺沉淀稀土[P].中国.发明专利.CN86100671A,1986.
    [65]Li Y, He X, Gu Z, et al. Precipitation Reaction of REC13 with NH4HCO3 and Co-Precipitation Behavior of Accompanying Impurity lons [J]. Chinese Rare Earths,1999,20(2):19-22.
    [66]YU Q, LI X. Study on the Formation of Crystalline Rare Earth Carbonates from Rare Earth Ore Leaching Liquors [J]. Journal of Rare Earths,1993,11(3):223-226.
    [67]喻庆华.原地浸出及在低品位稀土矿中的应用[J].矿冶工程,1995,17(1):53-55.
    [68]尹敬群,卢盛良.用风化壳淋积型稀土矿控速淋浸浸出液制备晶形碳酸稀土[J].湿法冶金,1995,14(4):9-14.
    [69]刘光德,刘锦春,刘良斌,等.稀土元素的沉淀浮选法研究[J].分析试验室,1992,11(1):30-22.
    [70]刘光德,刘锦春,刘良斌,等.稀土元素的沉淀浮选(Ⅱ)[J].武汉大学学报(自然科学版),1992,(4):83-87.
    [71]黄兴华.沉淀一浮选法提取离子吸附型稀土的研究[J].南方冶金学院学报,1990,11(1):30-39.
    [72]刘钧云,温赣杰,彭江峻.离子浮选法提取离子吸附型稀土[J].稀土,1992,13(2):41-44.
    [73]ZHUT. Solvent extraction in China [J]. Hydrometallurgy,1991,27(2): 231-245.
    [74]李德谦.稀土湿法冶金工业中的化工问题[J].化学进展,1995,7(3):209-213.
    [75]李德谦.稀土分离的新进展[J].第九届全国稀土分析化学学术报告会论文集,2001,
    [76]Yan C H, Zhang Y W, Liao C S, et al. Application of the Phase Transfer Catalysis in Rare Earth Solvent Extraction [J]. Journal of Rare Earths, 1996,14(12):88-93.
    [77]李琼清,李德谦,刘书珍,等.稀土与二(2,4,4-三甲基戊基)膦酸固体配合物的研究[J].金属学报,1993,29(6):59-65.
    [78]王忠怀,孟淑兰,宋文仲,等.二(2,4,4-三甲基戊基)膦酸萃取分离稀土元素(Ⅲ)的研究[J].分析化学,1995,23(4):391-394.
    [79]JIA Q, WANG Z H, LI D Q, et al. Adsorption of heavy rare earth (Ⅲ) with extraction resin containing bis (2,4,4-trimethylpentyl) monothiophosphinic acid, Geneva, Switzerland, Aug 24-29,2003 [C]. Elsevier Science
    [80]Yang B H, Wang P, Dai G J. Separation of Rare Earths From Ore Leaching Liquor (Ⅰ) Sorption of Rare Earthls From Ore Leaching Liquor by Ion-exchange Resin [J]. Uranium Mining and Metallurgy,1991,10(3): 13-17.
    [81]Wan Y X, Liu C Q. Study on Adsorption of Rare Earth Elements by Kaolinite [J]. Journal of Rare Earths,2005,23(3):377-381.
    [82]杨悦,王家任,卢能迪,等.一种从稀土矿中提取稀土的新工艺[P].中国.发明专利,CN86103403,1986.
    [83]王家任,欧阳红.树脂矿浆法提取稀土的研究[J].江西冶金,1983,3(4):31-32.
    [84]陈励权,董长发,辛文达.VS-1型强酸性阳离子交换纤维分离稀土元素的研究[J].稀土,1986,7(3):1-4.
    [85]Zhou X M, Tan H Y, XU Z. Study on Adsorption Properties of Vermiculite to Rare Earth Ions [J]. Non-Metallic Mines,2004,27(2):7-9.
    [86]Gu Z M. State of the art and recent progress of liquid membrane separation processes [J]. Chinese Membrane Science and Technology, 2003,23(4):214-223,233.
    [87]李明玉,刘兴荣,张秀娟.液膜法分离稀土的现状[J].稀土,1994,15(3):45-49.
    [88]顾忠茂,许明霞,朱兰英.静电式准液膜分离方法及其装置[P].中国.发明专利.CN86101730,1986.
    [89]Gu Z, Wu Q, Zheng Z, et al. Laboratory and pilot plant test of yttrium recovery from wastewater by electrostatic pseudo liquid membrane [J]. Journal of Membrane Science,1994,93(2):137-147.
    [90]Gu Z M. A new liquid membrane technology—electrostatic pseudo liquid membrane [J]. Journal of Membrane Science,1990,52(1):77-88.
    [91]Liu X R, Zhang X J. A mass transfer model for extraction of rare earth with emulsion liquid membrane [J]. Chinese Membrane Science and Technology,1996,16(2):51-57.
    [92]NISHIHAMA S, SAKAGUCHI N, HIRAI T, et al. Extraction and separation of rare earth metals using microcapsules containing bis(2-ethylhexyl)phosphinic acid [J]. Hydrometallurgy,2002,64(1): 35-42.
    [93]王向德,陈新棉,万印华,等.液膜法自低品位稀土矿生产氯化稀土和富铕、富钇氯化物中间试验[J].稀土,1992,13(2):30-35.
    [94]刘兴荣,郑载兴.聚砜一P204支撑液膜分离稀土离子研究[J].稀土,1992,13(4):6-10.
    [95]杨显万,刘朗明.用支撑液膜(SLM)提取稀土[J].中国有色金属学报,1993,3(3):30-34.
    [96]Liu Y N, Shu W Y, Huang K. The extraction kinetics of rare earth by supported liquid membrane [J]. Journal of Central South University of Technology(Natural Science),1994,25(4):535-539.
    [97]Yang X J, Gu Z M, Fane A G. Multicomponent separations by a combined extraction/electrostatic pseudo-liquid membrane:(I):Separation of Al, La, Sm, and Y [J]. Hydrometallurgy,1998,49(3):275-288.
    [98]YANG X J, GU Z M, FANE A G. Multicomponent separation by a combined extraction/electrostatic pseudo-liquid membrane (Ⅱ):extraction and group separation of rare earths from simulated rare earth ore leach solutions [J]. Hydrometallurgy,1999,53(1):19-29.
    [99]吴全峰,顾忠茂,金兰瑞.静电式准液膜从稀土矿浸出液中提取与浓缩稀土的探讨[J].稀土,1991,12(4):1-6,17.
    [100]QUANFENG W, SIIUYU B, ZIIONGMAO G. Studies on Improvement and Scaling-up of Inner-Coupling Extraction-Stripping Separator [J]. Atomic Energy Science and Technology,1997,31(6):252-258.
    [101]吴全峰,顾忠茂.内耦合萃取反交替分离法从稀溶液中提取与富集稀土的研[J].稀土,1996,17(4):5-10.
    [102]顾忠茂.液膜分离技术进展[J].膜科学与技术,2003,23(4):214-223,233.
    [103]吴全锋,白书雨,顾忠茂.内耦合萃反交替反应槽改进与扩大研究[J]. 原子能科学技术,1997,3 1(6):524-525.
    [104]田君,尹敬群,欧阳克氙.从风化壳淋积型稀土矿高柱效浸出液中溶剂萃取氯化稀土的研究[J].湿法冶金,1998,17(2):45-49.
    [105]Tian J, Yin J Q, Chen K H, et al. Extraction Rare Earths from the Leach Liquid of the Weathered Crust Elution-deposited Rrare Earth Ore with Non-precipitation [J]. Int J Miner Process,2010,97(In publishing)
    [106]包钢稀土研究院编.稀土分析化学手册[M].包头;中国稀土学会.1994:17-26.
    [107]VIL MEC J, JAKUBEC K. Direct spectrophotometric determination of rare earths in organic extracts with chlorophosphonazo III [J]. Microchemical Journal,1987,35(3):325-327.
    [108]李梅.稀土元素及其分析化学[M].北京:化学工业出版社,2009.
    [109]田君,池汝安,朱国才,等.我国南方某类稀土矿中铝的赋存状态[J].有色金属,2000,52(3):58-60,65.
    [110]Chi R, Tian J. Weathered Crust Elution-Deposited Rare Earth Ores [M]. New York:Nova Science Publishers,2008.
    [111]Hu Y, Chi R, Xu Z. Solution Chemistry Study of Salt-type Mineral Flotation Systems:Role of Inorganic Dispersants [J]. Ind Eng Chem Res, 2003,42(8):1641-1647.
    [112]LIDDELL K C. Shrinking core models in hydrometallurgy:What students are not being told about the pseudo-steady approximation [J]. Hydrometallurgy,2005,79(1-2):62-8.
    [113]SOHN H Y, WADSWORTH M E. Rate Process of Extraction Metallurgy [M]. New York:Plenum press,1979.
    [114]HABASHI F. Principles of Extractive Metallurgy [M]. New York: Gordon and Breach,1980.
    [115]N EZ C, VI ALS J, ROCA A, et al. A general shrinking-particle model for the chemical dissolution of crystalline forms [J]. Hydrometallurgy,1994,36(1):1-17.
    [116]N EZ C, CRUELLS M, GARC A-SOTO L. A general shrinking-particle model for the chemical dissolution of all types of cylinders and discs [J]. Hydrometallurgy,1994,36(3):285-294.
    [117]Zhou H, Zheng S, Zhang Y, et al. A kinetic study of the leaching of a low-grade niobium-tantalum ore by concentrated KOH solution [J]. Hydrometallurgy,2005,80(3):170-178.
    [118]LEVENSPIEL O. Chemical Reaction Engineering [M]. Third Edition ed. New York:John Wiley & Sons, Inc,1999.
    [119]Tian J, Yin J Q, Chi R, et al. Kinetics on leaching rare earth from the weathered crust elution-deposited rare earth ores with ammonium sulfate solution [J]. Hydrometallurgy,2010,101(3-4):166-170.
    [120]MOHAMMAD A, ZAFARAND I Z, A. TARIQ M. Selective leaching kinetics and upgrading of low-grade calcareous phosphate rock in succinic acid [J]. Hydrometallurgy,2005,80(4):286-292.
    [121]王维君,陈爱坊.土壤形态及其溶液化学的研究[J].土壤学进展,1992,20(3):10-15.
    [122]SOON Y K. Fractionation of extractable aluminum in acid soils:A review and a proposed procedure [J]. Commun in soil sci Plant Anal, 1993,24(13&14):1683-1708.
    [123]邵宗臣,何群,王维君.红壤中铝的形态[J].土壤学报,1998,(1):38-48.
    [124]王维君.我国南方一些酸性土壤铝存在形态的初步研究[J].热带亚热带土壤科学,1995,4(1):1-8.
    [125]张长庚,毛燕红,饶国华,等.离子型稀土矿中稀土与非稀土元素浸出关系的研究[J].稀有金属,1991,15(3):175-179.
    [126]毛燕红,张长庚,吴南萍,等.离子吸附型稀土矿的除铝研究[J].上海金属(有色分册),1993,14(2):16-19.
    [127]李斯加,喻庆华,陈一波,等.南方某类稀土矿的抑杂浸出[J].稀土,1996,17(2):29-34.
    [128]欧阳克氙,饶国华,姚慧琴,等.南方稀土矿抑铝浸出研究[J].稀有金属与硬质合金,2003,31(4):1-3.
    [129]JTM C.漫浸与滤浸对比分析[J].国外采矿,1980,(10):46-49.
    [130]Tian J, Chi R, Zhu G C, et al. Leaching hydrodynamics of weathered elution-deposited rare earth ore [J]. Transactions of Nonferrous Metals Society of China,2001,11(3):434-437.
    [131]LI Y, MA R. Studies on Mathematical Model for In Situ Leaching of Ionic Type Rare Earth Ore; proceedings of the The 3rd International Conference on Hydrometallurgy, Kunming,1998 [C]. International Academic Publisher:Beijing.
    [132]赵靖.离子吸附型稀土矿原地溶浸过程分析及其数模研究[D].[博士学位论文],长沙:中南工业大学,2001.
    [133]ACRIVOS A. On the combined effect of longitudinal diffusion and external mass transfer resistance in fixed bed operations [J]. Chemical Engineering Science,1960,13(1):1-6.
    [134]石辉,赵晓光.土壤溶质运移的色谱塔板理论模型[J].西南农业大学学报,2003,25(3):267-269.
    [135]韩振为,何志敏,余国琼.正常拖尾色谱峰的塔板模型表达式[J].色谱,1997,15(6):532-533.
    [136]Martin A J P, Synge R L M. The Plate Theory of Chromatography [J]. Biochem J,1941, (35):1358.
    [137]傅厚暾,冯钰锜,赵俐敏,等.非线性条件下的塔板理论模型和计算机模拟[J].江汉大学学报(自然科学版),2003,31(1):25-27.
    [138]张雅雄.基于塔板理论的色谱过程的计算机模拟[D],[博士学位论文],太原:山西师范大学,2008.
    [139]DEVAULT D. The Theory of Chromatography [J]. Journal of the American Chemical Society,1943,65(4):532-540.
    [140]饶国华,毛燕红,吴南萍,等.田菁胶及其化学改性产物对风化壳淋积型稀土矿浸矿的影响[J].湿法冶金,1995,14(2):10-14.
    [141]LEE W C, TSAI G J, TSAO G T. Analysis of chromatography by plate theory [J]. Separations Technology,1993,3(4):178-197.
    [142]戴朝政,向在筠.塔板理论色谱流出曲线性质的研究[J].化学学报,1994,52(1):64-70.
    [143]Tian J, Chi R-A, Yin J Q. Leaching process of rare earths from weathered crust elution-deposited rare earth ore [J]. Transactions of Nonferrous Metals Society of China,2010,20(5):892-896.
    [144]张大力,柯家骏,卢立柱.以滑移机理探讨拖尾色谱峰与仲舌色谱峰[J].中国科技信息,2009,(20):29-30.
    [145]DAI C, XIANG Z. Research into Character of Chromatographic Eluting Curve by Plate Theory [J]. Acta Chimica Sinica,1994, (52):64-70.
    [146]汤洵忠,李茂楠,杨殿.离子型稀土原地浸析采矿的再吸附问题及对策[J].中南工业大学学报,1998,29(6):523-526.
    [147]Qiu T, Fang X, Cui L, et al. Behavior of leaching and precipitation of weathering crust ion-absorbed type by magnetic field [J]. Journal of Rare Earths,2008,26(2):274-278.
    [148]ALKJAERSIG N, FLETCHER L R, FLETCHER A, et al. Analysis of gel exclusion chromatographic data by chromatographic plate theory analysis:Application to plasma fibrinogen chromatography [J]. Thrombosis Research,1973,3(5):525-544.
    [149]王静.塔板理论对毛细管色谱程序升温保留时间预测的研究[D].[博士学位论文].天津:天津大学,2003.
    [150]VAN DEEMTER J J, ZUIDERWEG F J, KLINKENBERG A. Longitudinal diffusion and resistance to mass transfer as causes of nonideality in chromatography [J]. Chemical Engineering Science,1956,5(6): 271-289.
    [151]王东援,孙毓庆,王延琮.用塔板理论证明正常峰为拖尾峰[J].色谱,1993,11(2):120-121.
    [152]王少坤,夏芸,汪圣利.非理想状态下的塔板理论模型[J].色谱,2002,20(1):30-33.
    [153]Tian J, Yin J Q, Chen K H, et al. Optimisation of mass transfer in column elution of rare earths from low grade weathered crust elution-deposited rare earth ore [J]. Hydrometallurgy,2010,103(1-4): 211-214.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700