废弃电路板破碎分级系统优化与控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
废弃电路板是废旧电子电气产品的重要组成部分,因其含有大量金属,如铜、铝、铁、镍、铅、锡、锌、金、银、钯、铑等,具有重要的回收价值。同时,还含有重金属、有机物等有毒有害物质,处理过程中存在环境风险。因此,废弃电路板的回收和处置从资源和环境的角度来说有着重要的意义。废弃电路板物理法资源化工业生产线包括四个部分:多级破碎、物料分级、静电分选、除尘设备,尽管工艺工业化的过程中已经解决了很多问题,但是在不同工艺之间的配合上面还是存在一些问题。如果粉碎和分级系统不能得到很好的控制,整个生产线将会面临几个问题:效率过低、金属非金属未有效解离、颗粒过破碎、破碎不充分、堵料和设备过热等。
     为此,本文研究了废弃电路板冲击粉碎动力学特性,实验分析了物料参数对粉碎效果的影响,并根据生产线实际状况建立了破碎分级循环过程模型以及神经网络粒度预测模型,为废弃电路板破碎分级生产线的工业化应用提供了优化和控制新方法。
     对粉碎后的电路板颗粒应用不同的分布模型进行粉碎分布特性的分析,发现罗辛-拉姆勒(R-R)分布能更精确地描述废弃电路板冲击破碎的分布规律,说明此模型可应用于预测废弃电路板冲击破碎的分布特性。根据粉碎过程及粒度分布状况建立了精度高,适用性强的一级粉碎动力学模型,对电路板冲击粉碎的生产过程有一定的指导意义。对影响电路板冲击粉碎性能的影响因素进行了分析,得出主要的影响因素。对进料颗粒粒径与进料质量对电路板冲击粉碎特性的影响作了实验分析,得出在描述废弃电路板颗粒冲击粉碎粒度分布的R-R模型中c、m值的变化规律。
     采用将粉碎颗粒粒级矩阵化的方法,为废弃电路板资源化生产线建立了破碎分级矩阵模型,并与实际生产线对比,确认了模型的有效性。运用MATLAB软件,将建立的模型应用于生产线的稳定状态分析。结果表明,3次循环即可让生产线达到稳定状态,生产线有着很好的应变性和很小的波动性。将建立的模型应用于不同系统总进料量分析,发现各部分物料量与进料量有着非常好的线性关系,该模型为生产线过程控制自动化奠定了基础。
     针对废弃电路板破碎分级粒度控制进行神经网络原理的理论分析,选用BP神经网络作为建模类型,使用MATLAB设计并训练了BP神经网络,并证明网络的收敛性。对仿真结果进行误差分析,表明这一神经网络模型能较好地模拟实际生产过程,为控制器的设计奠定了基础。
Waste Printed circuit boards (PCBs) are recognized as an important part of waste electronic products, it contains a lot of valuable metals, such as copper, aluminum, iron, nickel, lead and tin, zinc, gold, silver, palladium, rhodium and others,so it has important recovery value. At the same time, it also contains heavy metals, organic and other toxic or harmful substance, the treatment process contains environmental risk. Therefore, the recycle and disposal of waste PCBs have momentous significance from the perspective of resources and environment. Chemical and mechanical methods are two traditional recycling processes for waste PCBs. The whole technology of waste PCBs physical recycling industry line contains four parts: multiple scarping, material screening, multiple-roll corona electrostatic separator, and dust precipitation. Although many problems in the industrialization of technology were solved, there are still some problems blocking the integration of different technologies. If the grinding and classification cyclic system is not well controlled, the whole process will face problems such as metals and nonmetals insufficient dissociation, particles over-pulverizing, incomplete comminuting, material plugging and equipment fever.
     Therefore,this paper studies the kinetics characteristics of waste PCBs impact crushing, and material parameters on crushing effect was analyzed with experiment. According to the actual conditions of production line, crushing and classification cyclic model and neural network size prediction model were established, it provides a new method for optimization and control of the industrial application of waste PCBs production line.
     With crushing matrix method, a grinding and classification matrix model for waste PCBs automatic production line was built. By contrast with actual production line, the validity of the model was verified. With software of MATLAB,the model was applied for steady-state analysis of the production line, it was found that only 3 cycles are needed for the equilibrium of the production line, which indicated that the production line have a strong adaptability. The established model was applied for analysis according to different weight of feeding material, material flow in each part presented a linear relationship with the feeding material. The model provides a good foundation for automatic process control of the production line.
     According to waste PCBs crushing and classification granularity controlling,analysis the principle of neural network theory,and BP neural network is choose as modeling type, MATLAB is used to design and train the BP neural network, and the convergence of the network is proved. The result of simulation error analysis shows that the neural network model can simulate the practical production process, which laid a foundation for the controller design.
     According to crushed PCBs particles, different distribution model are applied to analysis distribution characteristics, it is found that R-R distribution can more accurately describe the waste PCBs impact crushing regularity distribution, it illustrate that the model can be applied to predict the impact crushing waste PCBs distribution characteristics. According to the crushing process and particle size distribution, first level crushing dynamic model with high accuracy is established, which has certain directive significance to waste PCBs crushing production process. Factors influence the PCBs crushing performance were analyzed, and got the main influence factors. The feeding material weight and particle size on the impact crushing characteristics were experimentally analyzed, and got c, m value change rule of R-R model which describe the waste PCBs particles impact crushing distribution.
引文
[1]K.Huang, J.Guo,Z.Xu, Recycling of waste printed circuit boards: A review of current technologies and treatment status in China, J.Hazard.Mater. 2009,164: 399–408.
    [2]J.Cui, E.Forssberg, Mechanical recycling of waste electric and electronic equipment: a review, J. Hazard. Mater. 99 (2003) 243–263.
    [3]Rolf Widmer, Heidi Oswald-Krapf, Deepali Sinha-Khetriwal, Max Schnellmann. Global perspectives on e-waste[J]. Environmental Impact Assessment Review.2005,5(25):436-458
    [4]http://www.zhb.gov.cn/info/gw/juling/200709/t20070928_109698.htm
    [5]Brett H. Robinson. E-waste: An assessment of global production and environmental impacts[J]. Science of The Total Environment. 2009,2(408):183-191
    [6]孔令锋.家电以旧换新政策的环保效应与电子废弃物治理[J].生态经济.2010(6): 164~167.
    [7]J.Cui, E.Forssberg, Mechanical recycling of waste electric and electronic equipment: a review, J. Hazard. Mater. 99 (2003) 243–263.
    [8]任慧玲,电子垃圾回收系统及其标准化研究[J].安全与环境工程.2006,2(13):70-79
    [9]牛东杰,马俊伟,赵由才.电子废弃物的处理处置与资源化.北京:冶金工业出版社.2007:23-56.
    [10]何亚群,段晨龙,王海锋,宋树磊.电子废弃物资源化处理.北京:化学工业出版社.2006:8-15
    [11] Kahhat Ramzy, Kim Junbeum, Xu Ming, Allenby Braden,Williams Eric,Zhang Peng. Exploring e-waste management systems in the United States[J]. Resources, Conservation and Recycling. 2008,7(52): 955-964.
    [12]Yang Jianxin, Lu Bin,Xu Cheng. WEEE flow and mitigating measures in China[J]. Waste Management. 2008,9(28): 1589-1597.
    [13] Hicks C,Dietmar R, Eugster M.The recycling and disposal of electrical and electronic waste in China egislative and market responses[J]. Environmental Impact Assessment Review.2005,5(25): 459-471.
    [14] Shinkuma Takayoshi, Nguyen Thi Minh Huong. The flow of E-waste material in the Asian region and a reconsideration of international trade policies on E-waste[J].2009,1(29): 25-31.
    [15]王宏勋,吴建明,袁海生.粉碎工程及其加工设备的进展[J].金属矿山.2005,8:38-50.
    [16]智玉莲.石料的破碎与筛分.北京:人民交通出版社.1991.
    [17]段晨龙,赵跃民,叶璀玲,石常省,张洪建.废弃电路板湿法破碎粒度特性研究[J].中国矿业大学学报.2008,1(37):88-92.
    [18]贺靖峰,段晨龙,何亚群,赵跃民,张洪建.废弃电路板湿法破碎与分选回收金属研究[J].环境科学与技术.2010,4(33):112-116.
    [19]杨艳利,华贲,徐文东,熊永强.低温破碎技术及其在资源回收中的应用[J].化工进展.2006,6(25): 663-666.北京石油化工学院学报.2005,1(13)
    [20]周翠红.低温破碎技术及其在资源回收中的应用[J].北京石油化工学院学报.2006,1(13):23-26.
    [21]路洪洲,李佳,郭杰,许振明.基于可资源化的废弃印刷线路板的破碎及破碎性能[J].上海交通大学学报.2007,4(41):551-556.
    [22] Li Jia,Lu Hongzhou,Guo Jie,Xu Zhenming,Zhou Yaohe. Recycle Technology for Recovering Resources and Products from Waste Printed Circuit Boards[J]. Environmental Science & Technology.2007,6(41): 1995-2000.
    [23]路洪洲.破碎废弃印刷电路板的高压静电分选[硕士论文].上海:上海交通大学. 2007.
    [24] Murugan R Vetri,Bharat S,Deshpande Abhijit P,Varughese Susy,Haridoss Prathap. Milling and separation of the multi-component printed circuit board materials and the analysis of elutriation based on a single particle model[J]. Powder Technology.2008,2(183): 169-176.
    [25]张洪建,赵跃民,王全强,段晨龙.湿法破碎在废弃线路板资源化中的应用[J].环境工程.2006,5(24):60-63.
    [26]邹亮,白庆中,李金惠,温雪峰.废弃线路板的低温粉碎试验研究[J].中国矿业大学学报.2006,2(35):220-224.
    [27]尚海利,王平,栾晓彦,吴六顺,李辽沙.废弃印刷线路板资源化处理的研究进展[J].化工环保.2008,2(28):132-135.
    [28]Mohabuth Nusruth,Miles Nicholas. The recovery of recyclable materials from Waste Electrical and Electronic Equipment (WEEE) by using vertical vibration separation[J]. Resources, Conservation and Recycling.2005,1(45):60-69.
    [29]Zhang Shunli, Forssberg Eric. Mechanical separation-oriented characterization of electronic scrap[J]. Resources, Conservation and Recycling.1997,4(21): 247-269.
    [30]Zhang Shunli,Forssberg Eric. Intelligent Liberation and classification of electronic scrap[J].Powder Technology.1999,3(105):295-301.
    [31]http://www.environmental-expert.com/products/rotor-impact-mill-rpmv-70042/view-comments.
    [32]Hornung Ursel,Schneider David, Hornung Andreas,Tumiatti Vander, Seifert Helmut. Sequential pyrolysis and catalytic low temperature reforming of wheat straw[J]. Journal of Analytical and Applied Pyrolysis.2009,2(85): 145-150.
    [33]Tange Lein, Drohmann Dieter. Waste electrical and electronic equipment plastics with brominated flame retardants from legislation to separate treatment thermalprocesses[J].2005,1(88):35-40.
    [34]段晨龙,赵跃民,温雪峰,叶璀玲,王全强.废弃电路板破碎中热解气体的研究[J],中国矿业大学学报.2005,6(34):730-734.
    [35]Chien Yi-Chi,Paul Wang H,Lin Kuen-Song,Huang Y J, Yang Y W. Fate of bromine in pyrolysis of printed circuit board wastes[J]. Chemosphere.2000,4(40):383-387.
    [36] Jie Guan,Ying-Shun Li, Mai-Xi Lu. Product characterization of waste printed circuit board by pyrolysis[J].Journal of Analytical and Applied Pyrolysis.2008,2(83): 185-189.
    [37]Charlotte Scheutz, Yutaka Dote, Anders M. Fredenslund, Hans Mosb?k, and Peter Kjeldsen. Attenuation of Fluorocarbons Released from Foam Insulation in Landfills[J].Environmental Science & Technology.2007,41(22):7714-7722.
    [38]Wu Chao-Hsiung,Chang Ching-Yuan,Li Jiunn-Kuen. Glycolysis of rigid polyurethane from waste refrigerators[J]. Polymer Degradation and Stability.2002,3(75): 413-421.
    [39]Branca Carmen,Di Blasi Colomba,Casu Angela,Morone Vincenza,Costa Caterina. Reaction kinetics and morphological changes of a rigid polyurethane foam during combustion[J]. 2003,2(399):127-137.
    [40]方园,赵新,胡嘉琦,何丽娇,王玲.废旧冰箱聚氨酯材料的回收利用技术研究[J].日用电器.2008,2(11):53-56.
    [41]Li Jia,Xu Zhenming,Zhou Yaohe. Application of corona discharge and electrostatic force to separate metals and nonmetals from crushed particles of waste printed circuit boards[J]. 2007,4(65): 233-238.
    [42] Zhan Lu, Xu Zhenming. Application of Vacuum Metallurgy to Separate Pure Metal from Mixed Metallic Particles of Crushed Waste Printed Circuit Board Scraps[J]. Environmental Science & Technology.2008,20(42): 7676-7681.
    [43] Wu Jiang,Li Jia,Xu Zhenming. Electrostatic Separation for Recovering Metals and Nonmetals from Waste Printed Circuit Board: Problems and Improvements[J]. Environmental Science & Technology.2008,14(42): 5272-5276.
    [44]Lu Hongzhou,Li Jia,Guo Jie, Xu Zhenming. Movement behavior in electrostatic separation: Recycling of metal materials from waste printed circuit board[J]. Journal of Materials Processing Technology.2008,3(179): 101-108
    [45] Li Jia, Xu Zhenming, Zhou Yaohe. Theoretic model and computer simulation of separating mixture metal particles from waste printed circuit board by electrostatic separator.2008,3(153): 1308-1313.
    [46] Guo Jie,Li Jia,Rao Qunli,Xu Zhenming. Phenolic Molding Compound Filled with Nonmetals of Waste PCBs[J]. Environmental Science & Technology.2008,2(42): 624-628.
    [47]Qin Yufei,Wu Jiang,Zhou Quan,Xu Zhenming. Quadratic nonlinear models for optimizingelectrostatic separation of crushed waste printed circuit boards using response surface methodology[J]. Journal of Hazardous Materials.2009,3(167): 1038-1043
    [48]Hou Shibing,Wu Jiang,Qin Yufei,Xu Zhenming. Electrostatic Separation for Recycling Waste Printed Circuit Board: A Study on External Factor and a Robust Design for Optimization[J]. Environmental Science & Technology.2010,13(44):5177-5181.
    [49] Guo Jie,Guo Jiuyong,Cao Bin,Tang Yinen,Xu Zhenming. Manufacturing process of reproduction plate by nonmetallic materials reclaimed from pulverized printed circuit boards[J]. Journal of Hazardous Materials.2009,3(163): 1019-1025.
    [50]李佳.废旧印刷电路板的破碎和高压静电分离研究[博士论文].上海:上海交通大学. 2008.
    [51] Li Jia, Xu Zhenming. Environmental Friendly Automatic Line for Recovering Metal from Waste Printed Circuit Boards[J]. Environmental Science & Technology.2010,4(44): 1418-1423.
    [52]求是科技.MATLAB7.0从入门到精通.北京:人民邮电出版社.2006:1-10.
    [53]房丽娜,马正先,李慧,张在美.粉碎设备及技术的发展历程与研究进展[J].2005,1(21): 178-180.
    [54]孙成林,郭惠兰.我国超细粉碎设备发展现状及其存在问题[J].化工矿物与加工.2000,6(29):1-4.
    [55]Djordjevic N,Shi F N,Morrison R D. Applying discrete element modelling to vertical and horizontal shaft impact crushers[J]. Minerals Engineering.2003,10(16): 983-991.
    [56] F.N.Reece, B.D.Lott, J.W.Deaton, The Effects of Hammer Mill Screen Size on Ground Corn Particle Size, Pellet Durability, and Broiler Performance. Poult.Sci. 1986,65:1257-1261.
    [57]O.Gutsche, P.C.Kapur, D.W.Fuerstenau, Comminution of single particles in a rigidly-mounted roll mill, part 2: particle size distribution and energy utilization. Pow. Tech, 1993,76263-270.
    [58]刘建远.威布尔分布在颗粒碎裂描述和粉碎数学建模中的应用[J].矿冶.2009,3(18):1-8.
    [59] G.A.Stamboltzis, Modification of Rosin–Rammler and Gates–Gaudin–Schuhmann equations in repeated single fracture of brittle materials, Min.Metall.Ann , 54(1983)36-44.
    [60] A.Macias, M.Eduardo, M.A.Diaz, Application of the Rosin–Rammler and Gates– Gaudin– Schuhmann models to the particle size distribution analysis of agglomerated cork, Mater. Character, 52 (2004) 159-164.
    [61] C.Duan, Y.Zhao, J.He, N.Zhou. Research on Liberation Mechanism of the Impact Crushing Waste Printed Circuit Board, Advan.Mater.Resear ,113-114 (2010) 730-734.
    [62]J.Li, J.Zhang, C.Du, Fractal character of the impact crusher of coal, Consum.Electron,Commun.Networks (CECNet), 2011 Inter.Confer,2011.
    [63]A.Tasdemir, Fractal evaluation of particle size distributions of chromites in different comminution environments, Miner.Engineer, 22(2009)156-167.
    [64]J.Zhang, J.Wang, J.Xiao, On the impact smash of discarded tires and the kinetic modeling, J.Beijing univer.chem.technol.5(2003)17-20.
    [65]Austin, Leonard G. The effect of damage on breakage kinetics[J]. Powder Technology.2004, 143-144: 151-159.
    [66] Choi W S, Chung H Y, Yoon B R, Kim S S. Applications of grinding kinetics analysis to fine grinding characteristics of some inorganic materials using a composite grinding media by planetary ball mill[J]. Powder Technology.2001,3(115):209-214.
    [67] Srinivasan Sreeram,Scattergood Ronald O. Effect of erodent hardness on erosion of brittle materials[J]. Wear.1988,2(128): 139-152.
    [68]蒋大勇,王煊军,白云,韩启龙.废弃丁羟推进剂(HTPB)粉碎方式研究[J].含能材料.2010,2(18): 184-187.
    [69]刘根凡,王晓晨,舒朝晖,胡义飞,黄昆.根茎类药材粉碎设备的实验研究[J].华西药学杂志.2005,5(20): 378-380.
    [70]Kim C S,Wilson K M,Rytuba J J. Particle-size dependence on metal(loid) distributions in mine wastes: Implications for water contamination and human exposure[J]. Applied Geochemistry.2011,4(26):484-495.
    [71] Ueda Takao,Matsushima Takashi,Yamada Yasuo. Effect of particle size ratio and volume fraction on shear strength of binary granular mixture[J]. Granular Matter.2011,6(13): 731-742.
    [72]梁翾翾,张小平,舒长河.一款微型高速万能粉碎机粉碎废旧线路板性能分析[J].矿冶.2009,1(18): 72-77.
    [73]赵敏.立式冲击粉碎机分级叶轮的优化设计[J].矿冶.2001,4(10):34-37.
    [74]王晓博,谢瑞清,丁武学,王栓虎.锤片式粉碎机转子结构动态优化设计[J].振动与冲击.2010,5(29): 147-149.
    [75]孙成林.冲击式粉碎机的使用与开发[J].中国非金属矿工业导刊.2003,4:78-80.
    [76]WANG Jian-huai,CHEN Qing-ru,KUANG Ya-li,LYNCH A J,ZHUO, Jin-wu.Simulation of open circuit clinker grinding[J].Mining Science and Technology .2009,1(19):97-101.
    [77]H.Benzer, L.Ergun, M.Oner M, A.J.Lynch. Simulation of open circuit clinker grinding[J], Minerals Engineering. 2001,14:701–710.
    [78]A.J. Lynch. Mineral crushing and grinding circuits: their simulation, optimization, design and control[J], Elsevier .1977):340.
    [79]李启衡.粉碎理论概要.北京:冶金工业出版社.1993:82-101.
    [80]蔡安江,张晓钟.超细粉碎旋风分级系统的设计[J].化工矿物与加工.2002, 11(31): 12-14
    [81]沈丽娟,陈建中,胡言凤.细粒矿物分级设备的研究现状及进展[J].2010,3:65-69.
    [82]J.Liu. A general model for the simulation of closed-circuit comminution process[J]. Mining and Metallurgy.2005,14: 23-30
    [83]L.G.Austin, P.T.Luckie, D.Wightman. Steady-state simulation of a cement-milling circuit[J]. International Journal of Mineral Processing. 1975,2:127–150.
    [84]A.J.Lynch, M.Oner, H.Benzer. Simulation of a closed cement grinding circuit. Zement.Kalk.Gips. 2000,53:560–567
    [85]B.Micha?l, V.W.Alain, L.Renato, R.Christine, R.Marcel. Modeling and control of cement grinding processes[J]. IEEE Transaction On Control Systems Technology. 2003,11:715–725.
    [86]韩力群.人工神经网络理论设计及应用(第二版).北京:化学工业出版社.2007:5-30
    [87]丁士圻,郭丽华.人工神经网络基础.哈尔滨:哈尔滨工程大学出版社.2008.
    [88]汪镭,周国兴,吴启迪.人工神经网络理论在控制领域中的应用综述[J].2001,3(29): 357-361.
    [89]周政. BP神经网络的发展现状综述[J].山西电子技术.2008,2:90-92.
    [90]丛爽,王怡雯.随机神经网络发展现状综述[J].控制理论与应用.2004,6(21): 975-980 .
    [91]周勇,胡中功.RBF神经网络理论及其在控制中的应用[J].武汉科技学院学报,2007, 20(5): 40-42.
    [92]杨芳.基于遗传算法的BP神经网络在成矿预测中的应用[D].中国地质大学(武汉), 2007.
    [93]彭江.基于BP网络的股市预测模型设计[J].电脑知识与技术,2009,5(21): 5715-5715, 5732.
    [94]罗成汉.基于MATLAB神经网络工具箱的BP网络实现[J].计算机仿真,2004,21(5): 109-111,115.
    [95]闵惜琳,刘国华.用MATLAB神经网络工具箱开发BP网络应用[J].计算机应用,2001,21: 163-164.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700