基于动力学仿真的森林消防车悬架系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,森林火灾频繁发生,森林消防装备尤其是森林消防车的研制日益受到人们的重视。森林消防车由原来的单一简单化逐渐向种类多样化、功能具体化发展,因而对森林消防车性能的要求也越来越高。森林扑火运兵车作为运送森林扑火人员和装备的专业车辆,不仅要求具有良好的通过性能,也要求具有比其他类型森林消防车辆更好的行驶平顺性能。
     本文以多体系统动力学为理论基础,以前后均为钢板弹簧非独立悬架的某森林扑火运兵车为研究对象,首先介绍了汽车平顺性的评价方法,并按照国家有关汽车平顺性试验的相关技术要求,在试车场进行了公路道路和林区道路条件下的实车平顺性试验,试验结果显示,在两种路面条件下车身座椅位置的总加权加速度均方根值分别为0.854m/s2和1.797m/s2,森林消防车在林区路面条件下行驶时车辆的平顺性亟待改善。进而采用该车的实际结构参数,在虚拟样机仿真分析软件ADAMS中建立了整车各子系统模型,主要包括前后悬架、车身底盘、轮胎、转向系等,进而装配成整车多体动力学仿真模型,其中对钢板弹簧非独立悬架的建模进行了重点介绍,并对建模原理和过程进行了详细阐述。在此基础上进行了车辆悬架的偏频试验与仿真,验证了整车模型的正确性。然后分析了悬架对车辆行驶平顺性的影响,并以前后悬架刚度和减振器阻尼系数为设计变量,森林消防车驾驶员座椅底板处的总加权加速度均方根值最小为目标函数,对悬架中的弹性元件和阻尼元件进行参数优化设计。最后对优化后的模型进行了A级和F级路面条件下的行驶平顺性仿真,仿真结果表明,车身座椅位置的总加权加速度均方根值分别减小为0.684m/s2和1.263m/s2,森林消防车的行驶平顺性得到了一定改善。
In recent years, forest fires occur frequently, the development of forest fire-fighting equipment especially forest fire vehicle has been paid more and more attention to by people. Forest fire trucks have developed from single simply to functional diversification. So the need of its quality has been higher and higher. As a sort of professional vehicles which deliver forest fire personnel and equipment, forest fire suppression personnel carriers not only require good through performance, but also require more greatly riding comfort than other types of forest fire vehicles.
     Based on multi-body system dynamics theory, this paper was taking forest fire suppression personnel carriers as the research object. The front and rear suspension consisted of the longitudinal leaf spring. First, the evaluation method of vehicle riding comfort was introduced and the riding comfort test was held under the highway road and forest road in the testing field according to the relevant technical requirements. The total weighted RMS acceleration value located under the driver's seat were respectively0.854m/s2and1.797m/s2.The results showed that the riding comfort of forest fire vehicle needs to be improved when driven through the forest pavement. Then with the vehicle's actual structure parameters, the vehicle multi-body dynamics simulation model was established in the virtual prototype simulation analysis software ADAMS, including front and rear suspension system, chassis system, tires system, power transmission system, braking system, steering system, etc. The modeling of the steel plate spring independent suspension was emphasized, and the modeling principle and process were introduced in detail. The test and simulation for partial frequency of suspension was carried on, which verified the validity of the whole vehicle model. Then the effects of the suspension on ride comfort of the vehicle was analyzed, and the function, which took the front and rear suspensions'stiffness and absorbers'damping as design variables and the total weighted RMS acceleration value located under the driver's seat as the target variable, was established to optimize the design of elastic elements and damping elements in suspension. Finally, the riding comfort simulation for the optimized model was conducted under A grade and F grade road surface conditions, the simulation results showed that the total weighted RMS acceleration value was reduced to0.684m/s2and1.263m/s2, the riding comfort was improved.
引文
[1]陈立平.机械系统动力学分析及ADAMS应用教程[M].北京:清华大学出版社,2005.
    [2]王国强.虚拟样机技术及其在ADMAS上的实践[M].陕西:西北工业大学出版社,2002.
    [3]李军,邢俊文,覃文浩等ADAMS实例教程[M].北京:北京理工大学出版社,2002.
    [4]陈军MSC.ADAMS技术与工程分析实例[M].北京:中国水利水电出版社,2002.
    [5]谢东,姜立标,崔胜民,等ADAMS环境下卡车及悬架模版的建立[J].佳木斯大学学报(自然科学版),2007,25(1):7-9.
    [6]张洪欣,李润,温吾凡,等.R-W方法在汽车悬架运动分析中的应用[J].吉林大学学报(工学版),1987,(4):136-139.
    [7]梁天麟.对凯恩(Kane)方程的一些探讨[J].昆明工学院学报,1985,(1):68-74.
    [8]李杰,朱毅杰,刘煜,等.钢板弹簧建模模块Leaf spring的研究及其应用[J].科学技术与工程,2011,11(30):7556-7569.
    [9]崔金一,赵又群,阮米庆,等.钢板弹簧柔性体建模及整车性能仿真[J].农业装备与车辆工程,2010,(3):12-14.
    [10]李二华,郭朝勇,黄海英,等.基于ADAMS的弹药运输车辆钢板弹簧建模与刚度测试[J].四川兵工学报,2009,30(7):70-72.
    [11]管欣,齐海政,詹军.基于SAE三连杆模型的钢板弹簧迟滞特性建模[J].吉林大学学报(工学版),2010,40:76-80.
    [12]黄建,王良模,彭曙兮,等.基于多体动力学的钢板弹簧建模方法研究[J].汽车技术,2011,(8):10-13.
    [13]李增刚ADAMS入门详解与实例[M].北京:国防工业出版社,2007.
    [14]周乾坤.某低端SUV高速性能优化及仿真研究[D]:北京林业大学,2012.
    [15]宋德跃.某商用车多片钢板弹簧的研究[D]:太原理工大学,2011.
    [16]何新维.某重型载货车平衡悬架钢板弹簧数值分析及试验研究[D]:湖南大学,2011.
    [17]王其东,方锡邦,卢剑伟,等.汽车钢板弹簧多体动力学建模及动特性仿真研究[J].合肥工业大学学报(自然科学版),1999,22(6):35-39.
    [18]宋桂霞.汽车钢板弹簧柔性体建模与仿真研究[J].农业装备与车辆工程,2011,(6):18-21.
    [19]夏均忠,马宗坡,方中雁,等.汽车平顺性评价方法综述[J].噪声与振动控制,2012,(4):1-5.
    [20]韩翔.基于ADAMS的钢板弹簧动力学建模方法及性能仿真[J].机械设计与制造,2009,(10):220-222.
    [21]GB/T 4971-2009.汽车平顺性术语和定义[S].北京:中国标准出版社,2009.
    [22]GB/T 4970-2009.汽车平顺性试验方法[S].北京:中国标准出版社,2009.
    [23]余志生.汽车理论[M].北京:机械工业出版社,2009.
    [24]陈志伟,董月亮MSC Adams多体动力学仿真基础与实例解析[M].北京:中国水利水电出版社,2012.
    [25]梁新成,黄志刚,朱亭,等.汽车悬架的发展现状和展望[J].北京工商大学学报(自然科学版),2006,24(2):30-32.
    [26]徐贵清.汽车悬架研究现状及发展趋势[J].中国高新技术企业,2010,(22):35-36.
    [27]高英,高昱.重型车前悬架模型的建立及参数优化[J].太原科技大学学报,2011,32(5):380-384.
    [28]张双利,程崇.浅谈汽车平顺性对悬架系统的要求[J].科协论坛,2010,(2):21-22.
    [29]宋传学,高晋,杨树凯.悬架对整车平顺性影响的虚拟仿真分析[J].吉林大学学报(工学版),2010,40:6-12.
    [30]GB//T 4783-1984.汽车悬挂系统的固有频率和阻尼比测定方法[S].北京:中国标准出版社,1984.
    [31]GB/T 7031-2005.机械振动道路路面谱测量数据报告[S].北京:中国标准出版社,2005.
    [32]GB/T 7031-1986.车辆振动输入路面平度表示方法[S].北京:中国标准出版社,1986.
    [33]JT/T 497-2004.乘用车悬架特性的评定指标和检测方法[S].北京:中国标准出版社,2004.
    [34]LY 5104-1998.林区公路工程技术标准[S].北京:中国标准出版社,1998.
    [35]史世俊ADAMS钢板弹簧离散梁建模及重型载货汽车悬架K&C特性仿真[D]:吉林大学,2012.
    [36]房月根.高速叉车悬架系统研究及分析[D]:长安大学,2008.
    [37]陶利民.基于ADAMS/Car的非独立悬架轻型客车操纵稳定性和行驶平顺性仿真研究[D]:上海交通大学,2010.
    [38]饶剑.基于ADAMS的悬架系统动力学仿真分析与优化设计[D]:武汉理工大学,2005.
    [39]程康.基于ADAMS的越野车独立悬架仿真研究[D]:武汉理工大学,2011.
    [40]王臣涛.基于ADAMS的整车操纵稳定性与平顺性仿真分析[D]:合肥工业大学,2010.
    [41]黄建,王良模,彭曙兮.基于多体动力学的钢板弹簧建模方法研究[J].汽车技术,2011,(8):10-13.
    [42]李刚.渐变刚度钢板弹簧后悬架有限元与动力学建模及仿真[D]:吉林大学,2011。
    [43]黄李丽.某型汽车悬架系统性能分析与研究[D]:广西大学,2008.
    [44]刘虹.轻型客车悬架运动分析与整车平顺性仿真[D]:合肥工业大学,2006.
    [45]何焜.特种车辆整车建模与动力学仿真[D]:南京理工大学,2005.
    [46]吴碧磊.重型汽车动力学性能仿真研究与优化设计[D]:吉林大学,2008.
    [47]齐海政.高品质商用车动力学建模关键问题研究[D]:吉林大学,2011.
    [48]熊明洁.悬架系统动力学分析及对整车性能影响研究[D]:武汉理工大学,2012.
    [49]Douglas W. Waehtel, David E. Adkins, John M. May, et al. Advances in the Design, Analysis and Manufacturing of Steel Leaf Springs[C].SAE Paper No.872256,1987.
    [50]Uys P E, Els P S, Thoresson M. Suspension settings for optimal ride comfort of off-road vehicles travelling on roads with different roughness and speeds[J].Journal of terramechanics,2007,2(44).
    [51]Pengbo Wang, Chongliang Zhang, Yongquan Liu. Simulation and Design of Leaf Spring Characteristics[C].SAE Paper No.2009-01-2897,2009.
    [52]P. Jayakumar, J. Alanoly, R.Johnson. Three-Link Leaf-Spring Model for Road Loads[C].SAE Paper No.2005-01-0625,2005.
    [53]Besiger F H, Cebin D, Coje D J. Damper models for Heavy Vehicle-Ride Dynamics [J].Vehicle System Dynamics,1995,24:32-64.
    [54]Esch S M.ADAMS/Car in the Vehicle Development Process Using Suspension and Full Vehicle Features[C].Marburg,1997.
    [55]Segel L. An overview of developments in road vehicle dynamics:past, present and future[C]. Proceedings of ImechE Conference on Vehicle Ride and Handling,1993.
    [56]Guttilla M.ADAMS/Car Specialized Environment for Vehicle Design and Testing. European ADAMS Users'Conference[C].Marburg,1997.
    [57]Hackett P B, O'Leary M C, Sitchin A. Dynamics Simulation Of Light Truck Handling Maneuvers Using ADAMS[C].Anaheim,CA,USA,1986.
    [58]Ieluzzi M, Turco P, Montiglio M. Development of a heavy truck semi-active suspension control [J].Control Engineering Practice,2006,14:305-312.
    [59]Mechanical vibration and shock-Evaluation of human exposure to whole-body vibration[S]. International Organization for Standardization,1997.
    [60]Kitsch M. Integrated Generation of Full Vehicle Models[C].Berlin,1999.
    [61]B. Hale Heighway, C. Murray, S. Douglas, et al. Multi-body dynamic modeling of commercial vehicles [J]. Computing & Control Engineering Journal,2002.
    [62]Gipser M. FTire, a new fast tire model of ride comfort simulations[C].Marburg,1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700