氨吹脱与膜生物反应器组合工艺处理猪场厌氧消化液研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沼气工程处理畜禽粪污、回收生物能源在我国得到广泛示范应用,但产生的大量厌氧消化液,在无法还田利用的区域,由于缺乏适当的深度处理技术造成环境污染。针对这一个问题,本研究以猪场厌氧消化液深度处理为研究目标,在调研分析了水质参数、单一采用氨吹脱与膜生物反应器(MBR)工艺实验基础上,探讨了氨吹脱与膜生物分反应器组合工艺与运行参数,分析了脱氮细菌的群落演替规律,明确了高氨氮污水短程硝化的控制措施,为猪场厌氧消化液深度处理、畜禽养殖污染防治提供理论与技术支持。主要研究结论如下:
     (1)通过测试4家猪场的沼气工程厌氧消化液,分析了水质参数,其具有高氨氮、低碳氮比的特性。厌氧消化液氨氮浓度范围300-2000mgN/L、COD/TN仅为1.0-3.5,直接生物脱氮处理存在硝化碱度不足、反硝化碳源不足的问题。
     (2)采用氨吹脱工艺处理猪场厌氧消化液,分析了pH值、气液比、温度对氨吹脱的影响,并对参数进行了优化。在pH为10.5、气液比为2000-3000、沼液温度为30oC条件下,氨氮去除率为81.84%。经吹脱处理后,沼液碳氮比更为协调,有利于进一步生化处理。
     (3)采用MBR处理猪场厌氧消化液,明确了碳氮比、氨氮浓度对生物脱氮的影响。在相同的有机负荷(0.5kgCOD/(m3·d))条件下,COD/TN为1.78-8.76,MBR有机物去除不受碳氮比影响,COD平均去除率75%。在COD/TN为8.76±0.30、BOD5/TN为3.02±0.09时,TN去除率最高为83%。MBR实现了较高的氨氮去除速率0.08kgN/(kgMLSS·d)和95%的氨氮去除率,AOB数量为107-109copies/mL。氨氮浓度对AOB结构具有选择作用。随着氨氮浓度降低,AOB菌群结构多样性降低,Nitronomonas eutropha逐渐消失,Nitrosomonas sp. OZK11表现出较强的底物亲和性,发挥了高效的厌氧消化液氨氧化作用。
     (4)采用氨吹脱与MBR组合工艺处理猪场厌氧消化液,优化“低pH氨吹脱+短程脱氮MBR”耦合工艺与参数。与“高pH氨吹脱+传统脱氮”相比,采用“低pH氨吹脱+短程脱氮MBR”耦合工艺可实现厌氧消化液脱氮的高效、低成本运行。氨吹脱采用添加NaOH2.37±0.16g/L、pH值为9.39±0.04时,氨氮去除73%,TN去除65%,COD/TN提高至5.0-6.0。后续MBR中,在DO为6.12±0.69mg/L时,通过提高好氧区氨氮负荷至0.12-0.16kgN/(kgMLSS·d),FA浓度为4-11mgNH3/L时,获得亚硝酸盐积累率53%-71%。通过低pH氨吹脱和MBR中短程脱氮可分别去除厌氧消化液TN的64%和30%,处理后污染物浓度低于国家排放标准(GB18926-2001)。该组合工艺不外加碳源、不影响产沼气过程且可回收氨氮,总处理时间仅为2.0天,处理成本为7.76元/m3。
     (5)比较了高氨氮污水的短程硝化控制措施,明确了高DO下FA的短程控制条件。FA为10.61±2.89mgNH3/L、DO为4.48mg/L条件下实现了氨氧化率91%、亚硝酸盐积累率83%和较高的氨氮负荷(2.05±0.16kgN/(m3·d)、1.41±0.06kgN/(kgMLSS·d)),该运行负荷比低DO、低FA处理(DO为1.75±0.09mg/L、FA为1.67±0.73mgNH3/L)高4倍。在高DO条件调控高效短程硝化FA浓度应为7-16mgNH3/L。
Biogas plants are widely used in confined animal farms in China, for waste treatment andrenewable energy recovery, and it produces large amount of anaerobically digested liquid. Where thedigested liquid could not be applied to the farmland, it poses large threat to the environment due to thelack of appropriate treatment technologies. The object of this study is the deep treatment ofanaerobically digested swine wastewater. The characteristics of the wastewater were investigated. Basedon the sole treatment study of ammonia stripping and membrane bioreactor (MBR), the combinedprocesses were conducted to treat the digested liquid, and the coupling parameters were optimized.Additionally, the shifts of biological nitrogen removal bacteria communities were analysed. Finally,comparison study of influencing factors on shortcut nitrification of high-strength ammonia wastewaterwas investigated. The main conclusions drawn in this study are as follows.
     (1) Four swine farm biogas plants were surveyed, and the characteristics of digested wastewaterwere figured out, which had high ammonia nitrogen and low carbon to nitrogen ratio. The ammonianitrogen concentration was300-2000mgN/L and COD/TN ratio was1.0-3.5, which realved thatalkalinity deficiency for nitrification and lack of carbon source for denitrification.
     (2) Ammonia stripping was carried out to treat digested liquid. The effects of pH, air to liquidratio, and temperature on ammonia stripping was investigated and the parameters were optimized. Itsuggested that under the condition of pH of10.5, air to liquid ratio of2000-3000, and temperature of30oC, the ammonia removal rate was optimal of81.84%. After the treatment of ammonia stripping,ammonia was reduced and carbon to nitrogen ratio was increased, which was beneficial for subsequentbiological treatment.
     (3) MBR was implemented for the treatment of digested swine wastewater, and the effects of C/Nratio and ammonia concentration on biological nitrogen removal were investigated. The MBR showedsteady COD removal rate of about75%when COD/TN was at the range of1.78-8.76with a constantorganic load of0.5kgCOD/(m3·d). TN removal rate was highest of83%at COD/TN of8.76±0.30andBOD5/TN of3.02±0.09. MBR displayed high ammonia oxidizing efficiency with0.08kgN/(kgMLSS·d) and95%of ammonia was oxidized. The AOB abundance was stable at a high level of107-109copies/mL. The ammonia concentration had selective effect on AOB community. With decreaseof ammonia concentration, the diversity of the AOB community decreased. Nitrosomonas eutrophagradually disappeared, whereas Nitrosomonas sp. OZK11showed high affinity for the substrate and wasconstantly adapting to survive with the oxidization of digested swine wastewater.
     (4) The combined process of ammonia stripping and MBR were adopted for the treatment ofdigested swine wastewater, and the combined process of “Low-pH ammonia stripping and shortcutnitrogen removal in MBR” and parameters were optimized. Compared with the “High-pH ammoniastripping and traditional nitrogen removal”, the “Low-pH ammonia stripping and shortcut nitrogenremoval in MBR” could efficiently remove nitrogen with relatively low cost. Under the condition of NaOH addition amount of2.37±0.16g/L and pH increased to9.39±0.04,73%of ammonia and65%of TN were removed and COD/TN was increased to5.0-6.0by ammonia stripping process. In thesubsequent MBR, at DO of6.12±0.69mg/L, enlarging the ammonia loading rate of O zone to0.12-0.16kgN/(kgMLSS·d) and FA concentration increased to4-11mgNH3/L, nitrite accumulation wasenhanced to53%-71%.64%and30%of TN of the digested liquid were removed by Low-pH ammoniastripping and shortcut nitrogen removal in MBR, respectively. The concentration of the effluent fromthe combined process was lower than the national discharge standard (GB18926-2001). The combinedprocess did not input external carbon and did not have impact on biogas production, and it could recoverammonia. The total treatment period was2.0d, and the running cost was7.76RMB/m3.
     (5) Controlling prarameters of shortcut nitrification of high strength ammonia wastewater wasinvestigated, and the effect of FA on shortcut nitrification at high DO level was studied. With thetreatment of FA of10.61±2.89mgNH3/L and DO of4.48mg/L, ammonia oxidizing rate was91%andnitrite accumulation rate was83%at ammonia volumetric loading rate of2.05±0.16kgN/(m3·d) andsludge loading rate of1.41±0.06kgN/(kgMLSS·d), which was four times higher than that of the lowDO and low FA treatment (DO of1.75±0.09mg/L and FA of1.67±0.73mgNH3/L). Under the high DOcondition, the FA concentration of inhibition effect on NOB was7–16mg NH3/L.
引文
1. Simon Judd, Claire Judd.膜生物反应器水和污水处理的原理与应用[M].北京:科学出版社,2009.
    2.曹玉成,张妙仙,单胜道. MBBR处理猪场废水厌氧消化液的研究[J].环境工程学报,2008,2:591-594.
    3.陈涵毅.氨吹脱/SBR/砂滤工艺处理污泥调理废水[J].中国给水排水,2007,23:63-65.
    4.陈亮,杨仁斌,李欢,等.奶牛养殖场废水处理工程的设计与调试运行[J].给水排水,2007,33:71-73.
    5.陈智远,蔡昌达.大型沼气工程运行分析[J].可再生能源,2009,2:102-104.
    6.邓良伟,操卫平,孙欣.原水添加比例对猪场废水厌氧消化液后处理的影响[J].环境科学,2007,28:588-593.
    7.邓良伟,郑平,李淑兰.添加原水改善SBR工艺处理猪场废水厌氧消化液性能[J].环境科学,2005,26:105-109.
    8.董保成,路旭,马庆华.猪场沼气工程沼渣、沼液的利用[J].中国沼气,2005,23:263-265.
    9.段然,王刚,杨世琦,等.沼肥对农田土壤的潜在污染分析[J].吉林农业大学学报,2008,30:310-315.
    10.戈军,荆肇乾,吕锡武.膜生物反应器中水回用示范工程[J].水处理技术,2007,33:75-77.
    11.高延耀,顾维国,周琪.水污染控制工程[M].北京:高等教育出版社,2007.
    12.国家环境保护总局.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2002.
    13.黄海明,傅忠,肖贤明,等.氨氮废水处理技术效费分析及研究应用进展[J].化工进展,2009,28:1642-1646.
    14.姜维,王小佳,贾仁勇,等.吹脱法预处理皮革废水的实验研究[J].环境工程学报,2010,4:769-794.
    15.李冰冰,肖波,宋灿辉,等.武汉东西湖区养殖场固废循环经济技术设计[J].可再生能源,2007,25:102-109
    16.李伦,汪宏渭,陆嘉竑.城镇高氨氮污水的吹脱除氨试验研究[J].中国给水排水,2006,22:92-95.
    17.李瑞华,韦朝,吴超飞,等.氨吹脱预处理焦化废水中氨氮的条件试验与工程应用[J].环境工程,2007,6:38-44.
    18.刘明轩,杜启云,王旭. USR在养殖废水处理中的实验研究[J].天津工业大学学报,2007,26:36-38.
    19.骆林平,张妙仙,单胜道.沼液肥料及其利用研究现状[J].浙江农业科学,2009,5:977-983.
    20.孟海玲,董红敏,黄宏坤.膜生物反应器用于猪场污水深度处理试验[J].农业环境科学学报,2007,26:1277-1281.
    21.孟海玲,董红敏,朱志平,等.运行条件对膜生物反应器处理猪场厌氧消化液效果的影响[J].农业工程学报,2008,24:179-183.
    22.孟海玲,陶秀萍,董红敏,等.猪场厌氧出水后续处理效果的测定[J].农业工程学报,2006,22:231-234.
    23.孙群荣,徐彬彬,张雁峰.氨吹脱-A2/O工艺处理高浓度养殖废水[J].给水排水,2005,31:55-57.
    24.隋倩雯,董红敏,朱志平.提高猪场沼液净化处理效果的氨吹脱控制参数[J].农业工程学报,2012,28:205-211.
    25.王文斌,董有,刘士庭.吹脱法去除垃圾渗滤液中的氨氮研究[J].环境污染治理技术与设备,2004,5:51-53.
    26.武丽娟,刘荣厚,王远远.沼气发酵原料及产物特性的分析[J].农机化研究,2007,7:183-186.
    27.谢勇丽,邓仕槐,段莎丽,等. UASB的启动及其对畜禽废水处理的试验研究[J].农业环境科学学报,2007,26:423-426.
    28.杨帅.移动床膜生物反应器脱氮除磷性能的研究.[博士学位论文].大连:大连理工大学,2010.
    29.张晓军,史殿林,闻世常,等.北郎中村沼气工程运行浅析[J].中国沼气,2007,25:38-42.
    30. Ahn J., Kwan T., Chandran K. Comparison of partial and full nitrification process applied fortreating high-strength nitrogen wastewaters: microbial ecological through nitrous oxide production[J]. Environmental Science and Technology,2011,45:2734-3740.
    31. An Y., Yang F., Chua H., Wong F., et al. The integration of methanogenesis with shortcutnitrification and denitrification in a combined USAB and MBR [J]. Bioresource Technology,2008,99:3714-3720.
    32. Anthonisen A.C., Loehr R.C., Prakasam T.B.S., et al. Inhibition of nitrification by ammonia andnitrous acid [J]. WPCF,1976,48:835-852.
    33. Artiga P., Oyanedel V., Garrido J.M., et al. An innovative biofilm-suspended biomass hybridmembrane bioreactor for wastewater treatment [J]. Desalination,2005,179:171-179.
    34. Baeza J.A., Gabriel D., Lafuente J. Improving the nitrogen removal efficiency of an A2/O basedWWTP by using an on-line knowledge based expert system [J]. Water Research,2002,36:2109-2123.
    35. Barat R, Montoya T, Seco A. et al. Modelling biological and chemically induced precipitation ofcalcium phosphate in enhanced biological phosphorus removal systems [J]. Water Research,2011,45:3744-3752.
    36. Béline F., Boursier H., Daumer M.L.,et al. Modelling of biological processes during aerobictreatment of piggery wastewater aiming at process optimization [J]. Bioresource Technology,2007,98:3298-3308.
    37. Bellara S.R., Cui Z.F., Pepper D.S. Gas sparging to enhance permeate flux in ultrafiltration usinghollow fiber membrane [J]. Journal of Membrane Science,1996,121:175-184.
    38. Bonmati A., Flotats X. Air stripping of ammonia from pig slurry: characterization and feasibility asa pre-and post-treatment to mesophilic anaerobic digestion [J]. Waste Management,2003,23:261-272.
    39. Braz R, Pirra A, Lucas M, et al. Combination of long term aerated storage and chemicalcoagulation/flocculation to winery wastewater treatment [J]. Desalination,2010,263:226-232.
    40. Chang S., Fane A.G., Waite T.D. Analysis of constant permeate flow filtration using dead-endhollow fiber membrane [J]. Journal of Membrane Science,2006,268:132-141.
    41. Chen J., Zheng P., Yu Y., et al. Enrichment of high activity nitrifers to enhance partial nitrificationprocess [J]. Bioresource Technology,2010,101:7293-7298.
    42. Chen K., Chen C., Peng J., et al. Reatl-time control of an immobilized-cell reactor for wastewatertreatment using ORP [J]. Water Research,2002,36:230-238.
    43. Cho B.D., Fane A.G. Fouling transients in nominally sub-critical flux operation of a membranebioreactor [J]. Journal of Membrane Science,2002,209:391-403.
    44. Chua H.C., Arnot T.C., Howell J.A. Controlling fouling in membrane bioreactors operated with avariable throughput [J]. Desalination,2002,149:225-229.
    45. Chuang H., Ohashi A., Imachi H., et al. Effect partial nitrification to nitrite by down-flow hangingsponge reactor under limited oxygen condition [J]. Water Research,2007,41:295-302.
    46. Chung J., Shim H., Lee Y.M., et al. Comparison of influence of free ammonia and dissolved oxygenon nitrite accumulation between suspended and attached cells [J]. Environmental Technology,2005,26:21-33.
    47. Ciudad G., González R., Bornhardt C., et al. Modes of operation and pH control as enhancementfactors for partial nitrification with oxygen transport limitation [J]. Water Research,2007,41:4621-4629.
    48. Ciudad G., Werner A., Bornhardt C., et al. Differential kinetics of ammonia-and nitrite-oxidizingbateria A simple kinetic study based on oxygen affinity and proton release during nitrification [J].Process Biochemistry,2006,41:1764-1772.
    49. Clech P., Jefferson B., Chang S., et al. Critical flux determination by the flux-step method in asub-merged membrane bioreactor [J]. Journal of Membrane Science,2003,227:81-93.
    50. Deng, L., Zheng, P., Chen, Z., et al. Improvement in post-treatmeng of digested swine wastewater[J]. Bioresource Technology,2008,99:3136-3145.
    51. Dong X., Reddy G. Ammonia-oxidizing bacterial community and nitrification rates in constructedwetlands treating swine wastewater [J]. Ecological Engineering,2012,40:189-197.
    52. Dosta J., Rovira J., MacèS., et al. Integration of a coagulation/flocculation step in a biologicalsequencing batch reactor for COD and nitrogen removal of supernatant of anaerobically digestedpiggery wastewater [J]. Bioresource Technology,2008,99:5722-5730.
    53. Fane AG. Membrane bioreactors: design and operation options [J]. Filtration&Separation,2002,29:26-29.
    54. Fane A.G. Sustainablility and membrane processing of wastewater for reuse [J]. Desalination,2007,202:53-58.
    55. Feng S., Zhang N., Liu H., et al. The effect of COD/N ratio on process performance and membranefouling in a submerged bioreactor [J]. Desalination,2012,285:232-238.
    56. Fu, Z., Yang, F., Zhou, F., et al. Control of COD/N ratio for nutrient removal in a modifiedmembrane bioreactor (MBR) treating high strength wastewater [J]. Bioresource Technology,2009,100:136-141.
    57. Ga C.H., Ra C.S. Real-time control of oxic phase using pH (mV)-time profile in swine wastewatertreatment [J]. Journal of Hazardous Materials,2009,172:61-67.
    58. GaniguéR., López H., Balaguer M.D., et al. Partial ammonia oxidation to nitrite of high ammoniumcontent urban landfill leachates [J]. Water Research,2007,41:3371-3326.
    59. Geets J., Cooman M., Wittebolle L.,et al. Real-time PCR assay for the simultaneous quantificationof nitrifying and denitrifying bacteria in activated sludge [J]. Applied Microbiology andBiotechnology,2007,75:211-221.
    60. Gong W., Li W., Liang H. Application of A/O-MBR for treatment of digestate from anaerobicdigestion of cow manure [J]. Jouranl of Chemical Technology and Biotechnology,2010,85:1334-1339.
    61. Graaff M.S., Zeeman G., Temmink H., et al. Long term partial nitritation of anaerobically treatedblack water and the emission of nitrous oxide [J]. Water Research,2010,44:2181-2178.
    62. Gu tin S., Marinsek-Logar R. Effect of pH, temperature and air flow rate on the continuousammonia stripping of the anaerobic digestion effluent [J]. Process Safety and EnvironmentProtection,2011,89:61-66.
    63. Guo C., Stabnikov V., Volodymyr I. The removal of nitrogen and phosphorus from reject water ofmunicipal wastewater treatment plant using ferric and nitrate bioreductions [J]. BioresourceTechnology,2010,101:3992-3999.
    64. Han Z., Wu W., Zhu J., et al. Oxidization-reduction potential and pH for optimization of nitrogenremoval in a twice-fed sequencing batch reactor treating pig slurry [J]. Biosystems Engineering,2008,99:273-281.
    65. Hasar H, Unsal A.S., et al. Stripping/flocculation/membrane bioreactor/reverse osmosis treatmentof municipal landfill leachate [J]. Journal of Hazardous Materials,2009,171:309-317.
    66. Henkens P.L.C.M., Keulen H. Mineral policy in the Netherlands and nitrate policy within theEuropean Community [J]. NJAS-Wageningen Journal of Life Sciences,2001,49:117-134.
    67. Henze M., Kristensen G.H., Strube R. Rate-capacity characterization of wastewater for nutrientremoval processes [J]. Water Science Technology,1994,29:101-108.
    68. Henze M., Van Loosdrecht M.C.M., Ekama G.A., et al. Biological wastewater treatment: Principles,Modelling and design [M]. London: IWA Publishing,2008.
    69. Hong S.P., Bae T.H., Tak T.M., et al. Fouling control in activated sludge submerged hollow fibermembrane bioreactor [J]. Desalination,2002,143:219-228.
    70. Hosni K, Moussa S, Chachi A, et al., The removal of PO3-4by calcium hydroxide from syntheticwastewater: optimisation of the operating conditions [J]. Desalination,2008,223:337-343.
    71. Hu J., Li D., Liu Q., et al. Effect of organic carbon on nitrification efficiency and communitycomposition of nitrifying biofilms [J]. Journal of Environal Sciences,2009,21:387-394.
    72. Igor I., TorOve L. Impact of aeration rates on particle colloidal fraction in the biofilm membranebioreactor (BF-MBR)[J]. Desalination,2008,231:182-190.
    73. IPCC2006.2006IPCC Guidelines for national greenhouse gas inventories [S]. Volume4.Agriculture, Forestry and Other Land Use. Institute of Global Environmental Strategies (IGES),Kanagawa, Japan,2006.
    74. Juang L.C., Tseng D., Lin H. Membrane processes for water reuse from the effluent of industrialpark wastewater treatment plant: a study on flux and fouling of membrane [J]. Desalination,2007,202:302-309.
    75. Jubany I., Lafuente J., Baeza J., et al. Total and stable washout of nitrite oxidizing bacteria from anitrifying continuous activated sludge system using automatic control based on oxygen uptake ratemeasurements [J]. Water Research,2009,43:2761-2772.
    76. Juck D, Charles T., Whyte L., et al. Polyphasic microbial community analysis of petroleumhydrocarbon-contaminated soils from two northern Canadian commnunities [J]. FEMSmicrobiology Ecology,2000,33:241-249.
    77. Kaan Y., Zehra S. Recovery of ammonium nitrogen from the effluent of UASB treating poultrymanure wastewater by MAP precipitation as a slow release fertilizer [J]. Journal of HazardousMaterials,2009,166:60-269.
    78. Kaparaju P, Rintala J. Effect of solid-liquid separation on recovering residual methane and nitrogenfrom digested cow manure [J]. Bioresource Technology,2008,99:120-127.
    79. Kim H., Seo I., Kim Y., et al. Full-scale study on dynamic state membrane bioreactor with modifiedintermittent aeration [J]. Desalination,2007,202:99-105.
    80. Kim J. Chen M., Kishida N., et al. Integrated real-time control strategy for nitrogen removal inswine wastewater treatment using sequencing batch reactors [J]. Water Research,2004,38:3340-3348.
    81. Kim J., Guo X., Behera S.K., et al. A unified model of ammonium oxidation rate at various initialammonium strength and active ammonium oxidizer concentrations [J]. Bioresource Technology,2009,100:2118-2123.
    82. Kim J., Guo X., Park H., et al. Comparison study of the effects of temperature and free ammoniaconcentration on nitrification and nitrite accumulation [J]. Process Biochemistry,2008,43:154-160.
    83. Kishida, N., Kim, J., Chen, M., et al. Effectiveness of oxidation-reduction potential and pH asmonitoring and control parameters for nitrogen removal in swine wastewater treatment bysequencing batch reactors [J]. Jounal of Bioscience and Bioengineering,2003,96:285-290.
    84. Kornboonraksa, T., Lee S.H. Factors affecting the performance of membrane bioreactor for piggerywastewater treatment [J]. Bioresource Technology,2009,100:2926-2932.
    85. Lei X., Sugiura N., Feng C., et al. Pretreatment of anaerobic digestion effluent with ammoniastripping and biogas purification [J]. Journal of Membrane Science,2007,145:391-397.
    86. Li J., Elliott D., Nielsen M., et al. Long-term partial nitrification in an intermittently aeratedsequencing batch reactor (SBR) treating ammonia-rich wastewater under controlled oxygen-limitedconditions [J]. Biochemical Engineering Journal,2011,55:215-222.
    87. Li B., Irvin S. The comparison of alkalinity and ORP as indicators for nitrification anddenitrification in a sequencing batch reactor (SBR)[J]. Biochemical Engineering Journal,2007,34:248-255.
    88. Liao P.H., Chen A., Lo K.V. Removal of nitrogen from swine manure wastewaters by ammoniastripping [J]. Bioresource Technology,1995,54:17-20.
    89. Loyon L., Guiziou F., Beline F., et al. Gaseous emissions (NH3, N2O, CH4and CO2) from theaerobic treatment of piggery slurry-comparison with a conventional storage system [J]. BiosystemEngineering.2007,97:472-480.
    90. Martens-Habbena W., Berube P.M., Urakawa H., et al. Ammonia oxidation kinetics determine nicheseparation of nitrifying archaea and bacteria [J]. Nature,2009,7266:976-979.
    91. Mayer M., Smeets W., Braun R., et al. Enhanced ammonium removal from liquid anaerobicdigestion residuals in an advanced sequencing batch reactor system [J]. Water Science andTechnology,2009,60:1649-1660.
    92. Melin T., Jefferson B., Bixio D., et al. Membrane bioreactor technology for wastewater treatmentand reuse [J]. Desalination,2006,187:271-282.
    93. Meng F., Yang F., Shi B. A comprehensive study on membrane fouling in submerged MBR operatedunder different aeration intensities [J]. Separation and Purification Technology,2008,59:91-100.
    94. Molinuevo B., Garcia M., Karakashev D., et al. Anammox for ammonia removal from pig manureeffluents: effect of organic matter content on process performance [J]. Bioresource Technology,2009,100:2171-2175.
    95. Mulbry M., Westhead E., Carolina Pizarro, et al. Recycling of manure nutrients: use of algalbiomass from dairy manure treatment as a slow release fertilizer [J]. Bioresource Technology,2005,96:451-458.
    96. Nicolaisen M., Ramsing N. Denaturing gradient gel electrophoresis (DGGE) approaches to studythe diversity of ammonia-oxidizing bacteria [J]. Journal of Microbiology Methods,2002,50:189-203.
    97. Nittmai T., Ootake H., Imai Y., et al. Partial nitrification in a continuous pre-denitrificationsubmerged membrane bioreactor and its nitrifying bacterial activity and community dynamics [J].Biochemical Engineering Journal,2011,55:101-107.
    98. Obaja D, Mace S, Costa J, et al. Nitrification, denitrification and biological phosphorus removal inpiggery wastewater using a sequencing batch reactor [J]. Bioresource Technology,2003,87:103-110.
    99. Obaja, D., Macé, S., Alvarez, M. Biological nutrient removal by a sequencing batch reactor (SBR)using an internal organic carbon source in digested piggery wastewater [J]. Bioresource Technology,2005,96:7-14.
    100. Otawa K., Asano R., Ohba Y., et al. Molecular analysis of ammonia-oxidizing bacteria communityin intermittent aeration sequencing batch reactors used for animal wastewater treatment [J].Environmental Microbiology,2006,8:1985-1996.
    101. Ozdemir B., Mertoglu B., Yapsakli K., et al. Investigation of nitrogen converters in membranebioreactor [J]. Journal of Envrionmental Science and Health A,2011,46:500-508.
    102. Paavola T., Rintala J. Effects of storage on characteristics and hygienic quality of digestates fromfour co-digestion concepts of manure and biowaste [J]. Bioresource Technology,2008,99:7041-7050.
    103. Park S., Bae W. Modeling kinetics of ammonium oxidation and nitrite oxidation undersimultaneous inhibition by free ammonia and free nitrous acid [J]. Process Biochemistry,2009,44:631-640.
    104. Park H., Noguera D. Evaluating the effect of dissolved oxygen on ammonia-oxidizing bacterialcommunities in activated sludge [J]. Water Research,2004,38:3275-3286.
    105. Park S., Bae W., Rittmann B., et al. Operation of suspended-growth shortcut biological nitrogenremoval (SSBNR) based on the minimum/maximum substrate concentration [J]. Water Research,2010,44:1419-1428.
    106. Peng Y., Zhu G. Biological nitrogen removal with nitrification and denitrification via nitritepathway [J]. Appied Microbiology and Biotechnology,2006,73:15-26.
    107. Pi KW, Li Z., Wan D., et al. Pretreatment of municipal landfill leachate by a combined process [J].Process Safety and Environment Protection,2009,87:191-196.
    108. Png C.W., Lindén S.K., Gilshenan K.S., et al. Mucolytic bacteria with increased prevalence in IBDmucosa augment in vitro utilization of mucin by other bacteria [J]. American Journal ofGastroenterology,2010,105:2420-2428.
    109. Qureshi A., Lo K., Liao P., et al. Real-time treatment of dairy manure: Implications of oxidationreduction potential regimes to nutrient management strategies [J]. Bioresource Technology,2008,99:1169-1176.
    110. Ra C.S., Ga C.H. Real-time control of oxic phase using pH (mV)-time profile in swine wastewatertreatment [J]. Journal of Hazardous Materials,2009,172:61-67.
    111. Renou S., Poulain S., Givaudan J., et al. Amelioration of ultrafiltration process by lime treatment:Case of landfill leachate [J]. Desalination,2009,249:72-82.
    112. Rosenberger S., Evenblij H., Poele S. The importance of liquid phase analyses to understandfouling in membrane assisted activated sludge processes-six case studies of different Europeanresearch groups [J]. Journal of Membrane Science,2005,263:113-126.
    113. Rotthauwe J.H., Witzel K.P., Liesack W. The ammonia monooxygenase structural gene amoA as afunctional marker: Molecular fine-scale analysis of natural ammonia-oxidizing populations [J].Applied Environmental Microbiology,1997,63:4704–4712.
    114. Ruiz G., Jeison D., Chamy R. Nitrification with high nitrite accumulation for the treatment ofwastewater with high ammonia concentration [J]. Water Research,2003,37:1371-1377.
    115. Scholz W., Lucas M. Techno-economic evaluation of membrane filtration for recovery and re-useof tanning chemical [J]. Water Research,2003,37:1859-1867.
    116. Schr der J.J., Neeteson J.J. Nutrient management regulations in The Netherlands [J]. Geoderma,2008,144:418-425.
    117. Shang C., Wong H., Chen G. Bacteriophage MS-2removal by submerged membrane bioreactor [J].Water Research,2005,39:4211-4219.
    118. Shin J., Lee S.in, Jung J., et al. Enhanced COD and nitrogen removals for the treatment of swinewastewater by combining submerged membrane bioreactor and anaerobic upflow bed filter reactor[J]. Process Biochemistry,2005,40:3769-3776.
    119. Sin G., Kealin D., Kampschreur M.J., et al. Modelling nitrite in wastewater treatment systems: adiscussion of different modelling concept [J]. Water Science and Technology,2008,58:1155-1171.
    120. Solomie A.G., Miranda P.M.M., Bram A.M.P., et al. Economic analysis of anaerobic digestion—Acase of Green power biogas plant in The Netherlands [J]. NJAS-Wageningen Journal of LifeSciences,2010,57:109-115.
    121. Song Y., Yuan P., Zheng B., et al. Nutrients removal and recovery by crystallization of magnesiumammonium phosphate from synthetic swine wastewater [J]. Chemosphere,2007,69:319-324.
    122. Sooknah R.D., Wikie A.C. Nutrient removal by floating aquatic macrophytes cultured inanaerobically digested flushed dairy manure wastewater [J]. Ecological Engineering,2004,22:27-42.
    123. Strous M., Heijnen J., Kuenen J., et al. The sequencing batch reactor as a powerful tool for thestudy of slowly growing anaerobic ammonium-oxidizing microorganisms [J]. AppliedMicrobiology and Biotechnology,1998,50:589-596.
    124. Sun Y., Gu P., Wang K., et al. Effectiveness of MBR in pre-disinfection and AOX removal forhospital wastewater treatment [J]. Journal of Biotechnology,2008,136: S647-S667.
    125. Tan T., Ng H., Ong S. Effect of mean cell residence time on the performance and microbialdiversity of pre-denitrification submerged membrane bioreactors [J]. Chemosphere,2008,70:387-396.
    126. Tanwar P., Nandy T., Ukey P., et al. Correlating on-line monitoring parameters, pH, DO and ORPwith nutrient removal in an intermittent cyclic process bioreactor system [J]. BioresourceTechnology,2008,99:7630-7635.
    127. Thanh T.N., Khoi T., Dan P.N., et al. Application of UMBR coupled with MBR for nitrogenremoval of piggery wastewater [J]. International Conference on Life Science and Engineering,2012,45:126-130.
    128. Third K., Gibbs B., Newland M., et al. Long-term aeration management for improved N-removalvia SND in a sequencing batch reactor [J]. Water Research,2005,39:3523-3530.
    129. Tokutomi T., Shibayama C., Soda S., et al. A novel control method for nitritation: The dominationof ammonia-oxidizing bacteria by high concentrations of inorganic carbon in an airlift-fluidized bedreactor [J]. Water Research,2010,44:4195-4203.
    130. ToràJ.A., Lafuente J., Baeza J.A., Carrera J. Combined effect of inorganic carbon limitation andinhibition by free ammonia and free nitrous acid on ammonia oxidizing bacteria [J]. BioresourceTechnology,2010,101:6051-6058.
    131. ToràJ.A., Lafuente J., Carrera J., et al. Fast start-up and controlled operation during a long-termperiod of a high-rate partial nitrification activated sludge system [J]. Environmental Technology,2012,33:1361-1366.
    132. Turk O., Mavinic D.S. Benefits of using selective inhibition to remove nitrogen from highlynitrogenous wastes [J]. Environmental Technology Letters,1987,8:419-426.
    133. Vadivelu V., Keller J., Yuan Z. Effect of free ammonia and free nitrous acid concentration on theanabolic and catabolic processes of an enriched nitrosomonas culture [J]. Biotechnology andBioengineering,2006,95:830-839.
    134. Vega P., Salaza E., Jaramillo M., et al. New contributions to the ORP&DO time profilecharacterization to improve biological nutrient removal [J]. Bioresource Technology,2012,114:160-167.
    135. Villaverde S. Caria-Encina P. FDZ-Polanco F. Influence of pH over nitrifying biofilm activity insubmerged biofilters [J]. Water Research,1997,31:1180-1186.
    136. Villaverde S., Fdz-Polanco F., Garcia P.A. Nitrifying biofilm accilimation to free ammonia insubmerged biofilters. Start-up influence [J]. Water Research,1999,34:602-610.
    137. Waeger F., Delhaye T., Fuchs W. The use of ceramic microfiltration and ultrafiltration membranesfor particle removal from anaerobic digester effluents [J]. Separation and Purification Technology,2010,73:271-278.
    138. Wang J., Yang N. Partial nitrification under limited oxygen dissolved oxygen conditions [J].Process Biochemistry,2004,39:1223-1229.
    139. Wang, F., Liu, Y., Wang, J., et al. Influence of growth manner on nitrifying bacterial communitiesand nitrification kinetics in three lab-scale bioreactors [J]. Jouranl of Industrial MicrobiologyBiotechnology,2012,39:595-604.
    140. Wang L., Zhu J., Miller C. The stability of accumulating nitrite from swine wastewater in asequencing batch reactor [J]. Applied Biochemistry and Biotechnology,2011,163:362-372.
    141. Wu B., An Y., Li Y., et al. Effect of adsorption/coagulation on membrane fouling in microfiltrationprocess post-treating anaerobic digestion effluent [J]. Desalination,2009a,242:183-192.
    142. Wu J., Chen Futai, Huang Xia, et al. Using inorganic coagulants to control membrane fouling in asubmerged membrane bioreactor [J]. Desalination,2006,197:124-136.
    143. Xia S., Li J., Wang R. Nitrogen removal performance and microbial community structure dynamicsresponse to carbon nitrogen ratio in a compact suspended carrier biofilm reactor [J]. EcologicalEngineering,2008,32:256-262.
    144. Xue Y., Yang F., Liu S., et al. The influence of controlling factor on the start-up and operation forpartial nitrification in membrane bioreactor [J]. Bioresource Technology,2009,100:1055-1060.
    145. Yamamoto T., Takaka K., Koyama T., et al. Long-term stability of partial nitritation of swinewastewater digester liquor and its subsequent treatment by Anammox [J]. Bioresource Technology,2008,99:6419-6425.
    146. Yamini S., Malini B. Effect of PAC addition on sludge properties in an MBR treating high strengthwastewater [J]. Water Research,2009,43:1577-1588.
    147. Ye F., Ye Y., Li Y. Effect of C/N ratio on extracellular polymeric substances (EPS) andphysicochemical properties of activated sludge flocs [J]. Journal of Hazardous Materials,2011,188:37-43.
    148. Yen H., Brune D. Anaerobic co-digestion of algal sludge and waste paper to produce methane [J].Bioresource Technology,2007,98:130-134
    149. Yeom I., Nah Y., Ahn K. Treatment of household wastewater using an intermittently aeratedmembrane bioreactor [J]. Desalination,1999,124:193-204.
    150. Yetilmezsoy K., Sapci-Zengin Z. Recovery of ammonium nitrogen from the effluent of UASBtreating poultry manure wastewater by MAP precipitation as a slow release fertilizer [J]. Journal ofHazardous Materials,2009,166:260-269.
    151. Yu T., Qi R., Li D. Nitrifier characteristics in submerged membrane bioreactors under differentsludge retention times [J]. Water Research,2010,44:2823-2830.
    152. Zafarzadeh A., Bina B., Nikaeen M., et al. Effect of dissolved oxygen and chemical oxygendemand to nitrogen ratios on the partial nitrification/denitrification process in moving bed biofilmreactor [J]. Iranian Journal of Biotechology,2011,3:197-205.
    153. Zhang M., Lawlor P., Wu G., et al. Partial nitrification and nutrient removal in intermittentlyaerated sequencing batch reactors treating separated digestate liquid after anaerobic digestion of pigmanure [J]. Bioprocess Biosystem Engineering,2011,34:1049-1056.
    154. Zhang M., Lawlor P.G., Li J., et al. Characteristics of Nitrous oxide(N2O) emissions fromintermittently-aerated sequencing batch reactors treating the separated liquid fraction ofanaerobically digested pig manure [J]. Water Air Soil Pollution,2012a,223:1973-1981.
    155. Zhang Z., Li Y., Chen S., et al. Simultaneous nitrogen and carbon removal from swine digesterliquor by the Canon process and denitrification [J]. Bioresource Technology,2012b,114:84-89.
    156. Zhang B., Sun B., Ji M., Liu H., et al. Quantification and comparison of ammonia-oxidizingbacterial communities in MBRs treating various types of wastewater [J]. Bioresource Technology,2010,101:3054-3059.
    157. Zhang M., Lawlor P., Hu Z. et al. Nutrient removal from separated pig manure digestate liquidusing hybrid biofilters [J]. Environmental Technology,2013,34:645-651.
    158. Zhang S., Peng Y., Wang S., et al. Organic matter and concentrated nitrogen removal by shortcutnitrification and denitrification from mature municipal landfill leachate [J]. Journal ofEnvironmental Sciences,2007,19:647-651.
    159. Zhao W., Huang X., Lee D. Enhanced treatment of coke plant wastewater using ananaerobic-anoxic-oxic membrane bioreactor system [J]. Seperation and Purification Technology,2009,66:279-286.
    160. Zhou, Y., Oehmen, A., Lim, M., et al. The role of nitrite and free acid (FNA) in wastewatertreatment plants [J]. Water Research,2011,45:4673-4682.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700