用户名: 密码: 验证码:
分步进水序批式反应器处理猪场废水工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国畜禽养殖规模不断扩大,削减规模化养殖场废弃物污染负荷已经成遏制农业面源污染的关键。碳氮比例失调是养殖废水生物处理的主要限制因子。分步进水序批式反应器(SFSBR)是一种依靠多步缺氧进水补充反硝化碳源的生物脱氮强化工艺。为促进SFSBR工艺在畜禽养殖场废水处理中的应用和发展,本研究围绕SFSBR生物脱氮问题,以猪场废水为处理对象,通过实验室模拟实验,从污染物变化、污泥性状和氧化还原电位(ORP)、pH、溶解氧(DO)过程控制参数三个方面探明曝气强度、进水负荷、进水碳氮比、进水分配对SFSBR工艺特性的影响,确定SFSBR处理猪场废水生物脱氮最佳工艺参数,探明ORP、pH、DO动态变化特征,论证SFSBR内污泥颗粒化可行性。通过实验研究和理论分析,取得以下主要结果:
     有机污染物降解遵循一级反应关系时,去除有机物SFSBR工艺中有机物去除效率是反应时间和进水次数的函数,延长反应时间或增加进水次数有利于提高SFSBR有机物去除率;生物脱氮型SFSBR中各“非曝气—曝气”子循环发生完全反硝化—硝化时,降低最后一步进水体积分数(β)或增加换水量(V_0/V_F)有助于提高SFSBR生物脱氮效率。泥龄相同条件下SFSBR所需反应器容积小于传统A/O型SBR工艺所需容积。
     进水负荷、曝气强度、进水体积比、进水碳氮比直接影响进水量递减型SFSBR处理猪场废水工艺特性。两步减量进水SFSBR中,提高有机负荷(进水碳氮比随机变化)SFSBR内生物脱氮过程受到抑制;提高曝气强度利于提高SFSBR曝气阶段硝化速率,缩短硝化时间,改善生物除磷效率;降低进水体积比(>1:1)SFSBR生物脱氮效率提高不显著,而生物除磷过程得到强化。三步减量进水SFSBR中,提高进水氮负荷(进水碳氮比固定),反硝化及生物除磷过程受到限制;提高SFSBR进水碳氮比有助于提高反应器内反硝化效率,强化生物除磷过程。SFSBR因过有机负荷硝化完全停止时和反硝化效率提高时,反应器内ORP和pH变化幅度发生特征性变化。
     SFSBR内污泥颗粒化具有可行性。以猪场废水为营养基质,在SFSBR内培养的颗粒污泥呈黄褐色,直径0.5~1.0mm,微生物菌相丰富。进水负荷和进水碳氮比主要影响颗粒污泥胞外多聚物(ECPs)分泌量及颗粒污泥结构,高进水负荷和高进水碳氮比条件下颗粒污泥ECPs增多,颗粒污泥结构致密。污泥微生物聚合酶链式反应-变性梯度凝胶电泳(PCR—DGGE)检测结果表明,反应器内混合污泥微生物多样性随着进水碳氮比提高而增加。
     正交实验结果表明不同工艺参数对颗粒污泥型SFSBR(G-SFSBR)处理猪场废水脱氮效果和污泥性状影响效应不同:氮负荷对出水氮素浓度(氨氮、亚硝态氮与硝酸盐氮浓度总和)影响最大,曝气强度对氮净去除率(NNER)影响最大,进水碳氮比对污泥体积指数(SVI)及颗粒污泥质量分数(f_(0.5mm))影响最大,但进水体积比(>1:1)对颗粒污泥质量分数(f_(0.5mm))影响较小,对反应器生物脱氮效果影响不显著。G-SFSBR处理猪场废水最佳工艺条件为进水碳氮比7.0mgCOD/mgNH_4~+-N,进水体积比3:1,进水氮负荷0.026gNH_4~+-N/(gVSS·d),曝气强度4.2 L/(m~3·s),在该实验条件下出水无机氮浓度最低、氮净去除率最高,分别为21mg/L和72%。污泥微生物PCR-DGGE检测结果表明,G-SFSBR污泥微生物种群结构稳定性较强,而脱氮参数优化对污泥微生物种群和丰度有影响,颗粒污泥及混合污泥微生物种群向优势化菌群方向发展。
     进水量递减型SFSBR系统内ORP、pH、DO变化与生物脱氮过程关联度与进水分配相关。SFSBR进水氨氮浓度及硝化时间与曝气强度相匹配时,ORP“氮突破点”可以指示硝化结束,ORP“硝酸盐膝”指示内源代谢显著的反硝化结束。pH“氨谷”可指示硝化结束,但其灵敏性受氨氮初始浓度和硝化时间的限制。另外,非曝气阶段ORP下降幅度及完全硝化过程pH下降幅度均可作为SFSBR工艺进水分配的控制参数。SFSBR系统内硝化过程中ORP及pH变化速率可用于硝化速率估计。DO飙升指示硝化结束,可用于曝气过程控制。
     进水量递减型SFSBR处理猪场废水工艺中,生物除磷主要在第1“非曝气—曝气”子循环内发生,后续“非曝气—曝气”子循环内生物除磷过程不明显,SFSBR生物除磷机制有待进一步研究。
With the expansion of livestock industry, pollution control of animal feedlots becomes a key factor for alleviating the agricultural non-point source pollution. The shortage of available carbon source for denitrification is the main limiting factor in the bio-treatment of livestock wastewater. The step-fed sequencing batch reactor (SFSBR) is a new type of the enhanced nitrogen removal system, characterized by a multiple anoxic feeding for supplying the organic carbon source to denitrifiers. To facilitate the application of SFSBR in livestock industry, a series of lab-scale experiments were conduced to investigate the performance of SFSBR treating swine wastewater under various operating conditions. The relationship between the pollutants removal efficiency and operating parameters in SFSBR, such as aeration intensity, loading rate, influent carbon nitrogen ratio, feeding volume ratio, was identified in aspects of pollutants evolution, microbial characteristics and on-line process parameters including oxidization reduction potential (ORP), pH and dissolved oxygen (DO). As such, an optimal combined operating condition was determined for the SFSBR, together with the profiles of ORP, pH and DO in the reactor. In addition, "the feasibility of sludge granulation in the SFSBR system was explored using swine wastewater as substrates. Main results obtained in this study are as follows:
     Provided the degradation of organic matter following the first order model, the removal of organic matter in SFSBR is correlated with the reaction time and feeding number. Prolonging the reaction time or multiplying the feeding number would benefit the organic matter removal in the SFSBR system. Given both nitrification and denitrification completed in each sub-cycle of non-aeration-aeration, the theoretical nitrogen removal efficiency is a function of the feeding volume ratio of the last sub-cycle to the total feeding volume (β) and the ratio of initial volume in the tank before feeding to the total feeding volume (V_0/V_F). The nitrogen removal efficiency of SFSBR would be improved by decreasingβor increasing V_0/V_F. The comparison of A/O-SBR with SFSBR in tank volume shows that the required tank volume of SFSBR is smaller than that of A/O-SBR at the same sludge age.
     The performance of SFSBR with decreasing feeding volume was influenced by the loading rate, aeration intensity, feeding volume ratio and influent carbon nitrogen ratio. For the twice-fed SBR with decreasing feeding volume, nitrogen removal was inhibited by the increase of organic loading rate (the influent carbon nitrogen ratio varied in random), while the increase of aeration intensity enhanced the nitrification rate, shortened the nitrification time, and improved the phosphorus removal during the aeration phase. When the feeding volume ratio (greater than 1:1) decreased in the twice-fed SBR, the phosphorus rather than nitrogen removal was significantly improved. In the triple-fed SBR with decreasing feeding volume, both nitrogen and phosphorus removals were inhibited due to the increase in the nitrogen loading rate (the influent carbon nitrogen ratio was fixed), while those were enhanced by promoting the influent carbon nitrogen ratio. The ORP decreasing range as well as pH decreasing range varied corresponding to the performance of SFSBR under conditions of overloading or enhanced denitrification.
     Sludge granulation was achieved in SFSBR treating swine wastewater. Granular sludge cultivated in this study is yellow brown and its diameter falls in the range of 0.5 to 1.0 mm, and rich in bacteria species. The loading ratio and influent carbon nitrogen ratio did have significant impacts on the extra-cellular polymers (ECPs) and structure of granular sludge. The results of polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) shows that the diversity of bacterial community in activated sludge increased as the influent carbon nitrogen ratio increased.
     According to the results of orthogonal experiment, the influence order of operating parameters on the performance of SFSBR treating swine wastewater is quite different. The nitrogen loading rate contributed most to the build-up of NO_2~--N, NO_3~--N and NH_4~+-N in the effluent, while the aeration intensity had the greatest effect on the net nitrogen removal efficiency. The influent carbon nitrogen ratio has a profound influence on the sludge volume index (SVI) and the fraction of granular sludge with a diameter over 0.5 mm (f_(0.5mm)). In SFSBR, the increase of the feeding volume ratio from 3:2 to 3:1 did not affect the nitrogen removal performance remarkably. The optimal combined operating parameters for nitrogen removal include a carbon to nitrogen ratio of 7mg COD/mg NH_4~+-N, a feeding volume ratio of 3:1, a nitrogen loading rate of 0.026 gNH_4~+-N/(gVSS·d), and an aeration intensity of 4.2 L/(m~3·s) in a twice-fed granular sludge sequencing batch reactor treating swine wastewater, at which the net nitrogen removal efficiency has reached 72% with an inorganic nitrogen concentration of 21 mg/L in the effluent. PCR-DGGE results show that optimization of nitrogen removal of SFSBR did have an impact on the bacterial community, and the microflora become less diversified in the granular and mixed sludge, although the bacterial community stay stable in the SFSBR system treating swine wastewater.
     The variation of ORP, pH and DO has a potential to function as indicators of nitrogen removal in the SFSBR with decreasing feeding volume. The ORP "nitrogen broken point" could indicate termination of nitrification when the initial ammonia nitrogen concentration and aeration time match the aeration intensity. In contrast, the ORP "nitrate knee" could act as an indicator for the termination of denitrification when endogenous denitrification plays an important role in the non-aeration phase. The pH "ammonia valley" also could serve as an indicator for the termination of nitrification, while its sensitivity is interfered with the initial ammonia nitrogen concentration and nitrification time. In addition, both the ORP decreasing range during the non-aeration phase and the pH decreasing range during nitrification have the potential to serve as the control parameter for feeding distribution. In addition, the variation rate of ORP and pH during nitrification could be used to estimate the nitrification rate. As the jump of DO coincides with the termination of nitrification, it could be used to control aeration.
     The biological phosphorus removal usually happened in the first non-aeraion/aeration sub-cycle of SFSBR in this study, but became insignificant in following sub-cycles. A further study needs to be done to improve the biological phosphorus removal in the SFSBR technique for swine wastewater treatment.
引文
Andreottola G, Foladori P, Ragazzi M, et al. On-line control of a SBR system for nitrogen removal from industry wastewater[J]. Wat. Sci Tech. 2001, 43 (3):93-100.
    Aneja V P, Chauhan J P, Walker J T. Characterization of atmospheric ammonia emissions from swine waste storage and treatment lagoons [J]. J. Geophys. Res. 2000, 105(D9):11535-11545.
    Andreottola G, Bortone G, Tilche A. Experimental validation of a simulation and design model for nitrogen removal in sequencing batch reactors [J]. Wat. Sci. Tech. 1997, 35(1):113-120.
    Arrojo B, Mosquera-Corral A, Garrido J M, et al. Aerobic granulation with industrial wastewater in sequencing batch reactors [J]. Wat. Res. 2004, 38:3389-3399.
    Artan N, Tasli R, Orhon D. Rational basis for optimal design of sequencing batch reactors with multiple anoxic filling for nitrogen removal [J]. Process Biochem. 2006, 41 (4): 901-908.
    Ayoub G M, Saikalay P.The combined effect of step-feed and recycling on RBC performance [J]. Wat.-Res. 2004, 38:3009-3016.
    Beun J J. Aerobic granulation in a sequencing batch reactor [J]. Wat. Res. 1999, 33:2283-2290.
    Bicudo Svobada I F, Intermittent aeration of pig slurry farm scale experiments for carbon and nitrogen removal [J]. Wat. Sci Tech. 1995, 32(12):83-90.
    Bortone G, Gemelli S, Rambaldi A, et al. Nitrification, denitrificaiton and biological phosphorus removal in sequencing batch rectors treating piggery wastewater [J], Wat. Sci. Tech. 1992, 26(5-6):977-985.
    Bortone G, Malaspina F, Stante L, et al. Biological nitrogen and phosphorus removal in an anaerobic/anoxic sequencing batch reactor with separated bofilm nitrification [J]. Wat. Sci. Tech. 1994, 30(6):303-313.
    
    Boyd A, Chakrabarty A M. Role of alginate lyase in cell detachment of Pseudomonas aeruginosa [J]. Appl. Environ. Microbiol. 1994, 60:2355-2359.
    
    Bossier P., Verstraete W. Triggers for microbial aggregation in activated sludge [J]. Appl. Microbiol. Biotechnol. 1996, 45:1-6.
    
    Castellanos T, Ascencio F, Bashan Y. Starvation-induced changes in the cell surface of Azospirillum lipoferum [J]. FEMS Microbiol. Ecol. 2000, 33:1-9.
    
    Chang C N, Yu R F, Chao A C, et al. On-line monitoring and control of the textile wastewater color removal process [J]. Wat. Sci. Tech. 1994, 30(3):265-274.
    
    Chang C N. Application of oxidation-reduction potential as a controlling parameter in waste activated sludge hydrolysis [J]. Chem. Eng. J. 2002, 90:273-281.
    
    Charpentier J, Martin G, Wacheux H, et al. ORP regulation and activates sludge: 15 years of experience [J]. Wat. Sci. Tech. 1998, 38(3): 197-208.
    
    Cheng J Y, Liu B. Nitrification/denitrification in intermittent aeration process for swine wastewater treatment [J]. J. Environ. Eng. 2001, 127(8):705-711.
    
    De Kreuk M K, Pronk M, van Loosdrecht M C M. Formation of aerobic granules and converstion processes in an aerobic granular sludge reactor at moderate and low temperatures [J]. Wat. Res. 2005, 39:4476-4484.
    
    Deng L W, Zheng P, Chen Z A. Anaerobic digestion and post-treatment of swine wastewater using IC-SBR process with bypass of raw wastewater [J]. Process Biochem. 2006, 41(4):965-969.
    
    Dunne E J, Culleton N, O'Donovan G, et al. Antegrated constructed wetland to treat contaminants and nutrients from diary farmyard dirty water [J]. Ecol. Eng. 2005, 24:221-234.
    
    Edgerton. Strategies for dealing with piggery effluent in Australia: the sequencing batch reactor as a solution [J]. Wat. Sci. Tech. 2000, 41(1):123-126.
    
    Eikelbom D H, van Buijsen H J J. Microscopic Sludge Investigation Manual (2nd ed) [M]. TNO Research Insitute for Environmental Hygiene, 1983.
    
    Fernandes L, Mckyes E, Warith M. Treatment of liquid swine manure in the sequencing batch reactor under aerobic and anoxic condition [J]. Can. Agri. Engng. 1991, 33:373-379.
    
    Grady C P L, Daigger G T, Lim H C. Biological wastewater treatment [M]. New York: Marcel Dekker, 1999.
    
    Horning G, Turk M, Wanka U. Slurry covers to reduce ammonia emission and odour nuisance [J]. J.Agric. Engng. Res. 1999, 73(2):151-157.
    
    Hunt P. G, Poach M E. State of the art for animal wastewater treatment in constructed wetlands [J]. Wat. Sci. Technol. 2001, 44(11/12):19-25.
    
    Hunt P G, Szogi A A, Humenik F J, et al. Constructed wetlands for treatment of swine wastewater from an anaerobic lagoon [J]. Trans. ASAE. 2002, 45: 639-647.
    Janczukowicz W, Klimiuk E. The influence of the raw wastes dosing system on technological parameters of the rotating biological disk (RBD) process [J]. Biore. Technol. 1992, 42:241-245.
    Khanal S K, Huang J C. ORP-based oxygenation for sulfide control in anaerobic treatment of high-sulfate wastewater [J].Wat. Res. 2003, 37:2053-2062.
    Knight R L, Payne Jr V W E, Borer R E, et al. Constructed wetlands for livestock wastewater management [J]. Ecol. Eng. 2000, 15:41-55.
    Kim J H, Chen M, Kishida N, et al. Integrated real-time control strategy for nitrogen removal in swine wastewater using sequencing batch reactors [J]. Wat. Res. 2004, 38(14-15): 3340-3348.
    Lee S I, Park J, Ko K B, et al. Effect of fermented swine wastes on biological nutrient removal in sequencing batch reactors [J]. Wat. Res. 1997, 31(7): 1087-1812.
    Liao C M, Maekawa T. Nitrification/denitrification in an intermittent aeration process for swine wastewater[J]. J. Environ. Sci. Health (Part B). 1994, 29(5):1053-1078.
    Lin Y F, Jing S R. Characterization of denitrification and nitrification in a step-feed alternating anoxic-oxic sequencing batch reactor [J]. Wat. Environ. Res. 2001, 73(5):526-533.
    Liu Y Q, Tay J H. Variable aeration in sequencing batch reactor with aerobic granular sludge [J]. J. Biotechnol. 2006, 124: 338-346.
    Liu Y, Wang Z W, Tay J H. A unified theory for upscaling aerobic granular sludge sequencing batch reactors[J]. Biotechnol. Adv. 2005, 23:335-344.
    Liu Y, Tay J H. State of the art of biogranulation technology for wastewater treatment [J]. Biotechnol. Adv. 2004a, 22:533-563.
    Liu Y, Yang S F, Tay J H. Improved stability of aerobic granules by selecting slow-growing nitrifying bacteria [J]. J. Biotech. 2004b, 108:161-169.
    Li Z H, Kuba T, Kusuda T. Selective force and mature phase affect the stability of aerobic granule: an experimental study by applying different removal methods of sludge [J]. Enzyme Microb. Technol. 2006, 39:976-981.
    Mahne I, Princic A, Megusar F. Nitrification/denitrification in nitrogen high-strength liquid wastes [J]. Wat. Res. 1996,30:2107-2111.
    Mallin M A. Impacts of industrial animal production on rivers and estuaties [J]. Anim. Sci., 2000, 88(1):26-37.
    McSwain B S, Irvine R L, Wilerer P A. The effect of intermittent feeding on aerobic granule structure[J]. Wat. Sci. Tech. 2004, 49 (11-12):19-25.
    McSwain B S, Irvine R L, Hausner M., et al. Composition and distribution of extracellular polymeric substances in aerobic flocs and granular sludge [J]. Appl. Environ. Microb. 2005, 71:1051-1057.
    Metcalf and Eddy, Wastewater Engineering: Treatment Disposal and Reuse [M]. New York: McGraw Hill Inc., 1991.
    Morgenroth E, Sherden T, van Loosdrecht M C M. Aerobic granular sludge in a sequencing batch reactor [J]. Wat. Res. 1997, 31(12):3191-3194.
    Mosquera-Corral A, de Kreuk M K, Heijnen J J, et al. Effects of oxygen concentration on N-removal in an aerobic granular sludge reactor [J]. Wat. Res. 2005, 39: 2676-2686.
    Obaja D, Mace S, Costa J, et al. Nitrification, denitrification and biological phosphorus removal in piggery wastewater using a sequencing batch reactor [J]. Biores. Tech. 2003, 87(1): 103-111.
    Obaja D, Mace S, Mata-Alvarez J. Biological nutrient removal by a sequencing batch reactor (SBR) using an internal organic carbon source in digested piggery wastewater [J]. Biores. Tech. 2005, 96(1):7-14.
    Oles J, Wilder P A. Computer aided design of sequencing batch reactors based on the IAWPRC activated sludge model [J]. Wat. Sci. Tech. 1991, 23(4-6):1087-1095.
    Plisson-Saune S, Capdeville B, Mauret M, et al. Real-time control of nitrogen removal using three ORP bending points: signification, control strategy and results [J]. Wat. Sci. Tech. 1996, 33: 275-280.
    Poach M E, Hunt P G, Vanotti M B, et al. Improved nitrogen treatment by constructed wetland receiving partially nitrified liquid swine manure [J]. Ecol. Eng. 2003, 20:183-197.
    Poo K M, Jun B H, Lee S H, et al. Treatment of strong nitrogen swine wastewater in a full-scale squecing batch reactor [J]. Wat. Sci. Tech. 2004,49(5-6):315-323.
    Puig S, Vives M T, Corominas L I, et al. Wastewater nitrogen removal in SBRs, applying a step-feed strategy: from lab scale to pilot-plant operation [J]. Wat. Sci. Tech. 2004, 50(10):89-96.
    Qin L, Liu Y, Tay J H. Effect of settling time on aerobic granulation in sequencing batch reactor [J]. Biochem. Eng. J. 2004, 21:47-52.
    Ra C S, Lo K V, Shin J S, et al. Biological nutrient removal with an internal organic carbon source in piggery wastewater treatment [J]. Wat. Res. 2000, 31(3):965-973.
    Ra C S, Lo K V, Mavinic D S. Real-time control of two-stage sequencing batch reactor system for the treatment of animal wastewater [J]. Environ. Technol. 1998, 19:343-356.
    Saikaly P. The impact of step-feeding on rotating biological contactors, M.Sc [Thesis]. Beirut , Lebanon: American University of Beirut, 2001.
    Schwarzenbeck N, Borges J M, Wilderer P A. The treatment of dairy effluents in an aerobic granular sludge sequencing batch reactor [J]. Appl. Microbiol. Biotechnol. 2005, 66:711-718.
    Schwarzenbeck N, Erley R, Mc-Swain B S, et al. Treatment of malting wastewater in a granular sludge sequencing batch reactor (SBR) [J]. Acta Hydrochim. Hydrobiol. 2004, 32(1): 16-24.
    Su K Z, Yu H Q. Formation and characterization of aerobic granulation in sequencing batch reactor treating soybean-processing wastewater [J]. Environ. Sci. Technol., 2005, 39(8):2818-2828.
    Su J J, Liu Y L, Shu F J, et al. The treatment of piggery wastewater by contact aeration treatment in coordination with the anaerobic fermentation of three-step piggery wastewater treatment (TPWT) [J]. J Environ Sci Health, 1997, 32 A(1):55-73.
    
    Sun G, Zhao Y, Allen S. Enhanced removal of organic matter and ammoniacal-nitrogen in a column experiment of tidal flow constructed wetland system [J]. J. Biotechnol. 2005, 115:189-197.
    
    Sutherland I W. Polysaccharases for microbial exopolysasscharides [J]. Carbohydr. Polym. 1999, 38:319-328.
    
    Szogi A A, Vanotti M B, Stansbery A E. Reduction of ammonia emission from treated anaerobic swine lagoon. In: Habenstein G (Ed.) [A]. Proceedings of the 2005 Animal Waste Management Symposium. October 5-7, 2005, Sheraton Imperial Hotel, Research Triangle Park, North Carolina. NCSU, NC, USA.
    
    Tay J H, Liu Q S, Liu Y. Microscopic observation of aerobic granulation in sequencing aerobic sludge blanket reactor [J]. J. Appl. Microbiol. 2001a, 91:168-175.
    
    Tay J H, Liu Q S, Liu Y. The effects of shear force on the formation, structure, and metabolism of aerobic granules [J]. Appl. Microbiol. Biotechnol. 2001b, 57:227-233.
    
    Tay J H, Yang S F, Liu Y. Hydraulic selection pressure-induced nitrifying granulation in sequencing batch reactors [J]. Appl. Microbiol. Biotechnol. 2002, 59:332-337.
    
    Tilche A, Bacilieri E, Bortone G, et al. Biological phosphorus and nitrogen removal in a full scale sequencing batch reactors treating piggery wastewater [J]. Wat. Res. Tech. 1999, 40 (1):199-206.
    
    Tilche A, Bortone G, Malaspina F, et al. Biological nutrient removal in a full-scale SBR treating piggery wastewater: results and modeling [J]. Wat. Sci.Tech. 2001, 43(3):363-371.
    
    Tremblay C V, Beaubien A, Charles P, et al. Control of biological iron removal from drinking water using oxidation-reduction potential [J]. Wat. Sci. Tech. 1998, 38(6): 121-128.
    
    Vanotti M B, Szogi A A, Hunt P G, et al. Developmnet of environmentally superior treatment system to replace anaerobic swine lagoons in the USA [J]. Biores. Tech. 2007, 98:3184-3194.
    
    Wang H L, Yu G L, Liu G S, et al. A new way to cultivate aerobic granules in the process of papermaking wastewater treatment [J]. Biochem. Eng. J. 2006a, 28: 99-103.
    
    Wang Q, Du G, Chen J. Aerobic granular sludge cultivated under the selective pressure as a driving force [J]. Process Biochem. 2004, 39:557-563.
    
    Wang Z W, Liu Y, Tay J H. Distribution of EPS and cell surface hydrophobicity in aerobic granules [J]. Appl. Microb. Biotech. 2005, 69:469-473.
    
    Wang Z W, Liu Y, Tay J H. The role of SBR mixed liquor volume exchange ratio in aerobic granulation [J]. Chemosphere. 2006b, 62:767-771.
    
    Wang Z W, Li Y, Zhou J Q, et al. The influence of short-term starvation on aerobic granules [J]. Process Biochem. 2006c, 41:2373-2378.
    
    Wang S G, Liu X W, Gong W X, et al. Aerobic granulation with brewery wastewater in a sequencing batch reactor[J]. Biores. Tech. 2007, 98(11):2142-2147.
    Yang S F, Tay J H, Liu Y. A novel granular sludge sequencing batch reactor for removal of organic and nitrogen from wastewater[J]. J. Biotech. 2003, 106: 77-86.
    Yang S F, Tay J H, Liu Y. Inhibition of free ammonia to the formation of aerobic granules [J]. Biochem. Eng. J. 2004, 17:41-48.
    Zhang Z, Zhu J, King J, et al, A two-step fed SBR for treating swine manure [J]. Process Biochem. 2006, 41(4):892-900.
    Zheng Y M, Yu H Q, Shen G P. Physical and chemical characteristics of granular sludge from a sequencing batch airlift reactor [J]. Process Biochem. 2005,40:645-650.
    Zhu J, Zhang Z J, Miller C. A laboratory scale sequencing batch reactor with the addition of acetate to remove nutrient and organic matter in pig slurry [J]. Biosyst. Eng. 2006, 93(4): 437-446.
    Zhu G B, Peng Y Z. Theoretical evaluation on nitrogen removal of step-feed anoxic/oxic activated sludge process[J].Journal of Harbin Insititute of Technology(New Series). 2006, 13(3):263-266.
    Zitomer D H, Duran M, Albert R, et al. Thermophilic aerobic granular biomass for enhanced settleability [J]. Water Res. 2007, 41:819-825.
    曹从容,章漫.规模化畜禽养殖粪污处理模式的选择[J].中国环保产业.2004(5):29-31.
    邓良伟,郑平,李淑兰,等.添加原水改善SBR工艺处理猪场废水厌氧消化液性能[J].环境科学.2005,26(6):105-109.
    邓仕槐,肖德林,李宏娟,等.畜禽废水胁迫对芦苇生理特性的影响[J].农业环境科学学报.2007,26(4):1370-1374.
    丁晔,韩志英,吴坚阳,陈英旭,吴伟祥.不同基质垂直流人工湿地对猪场污水季节性处理效果研究[J].环境科学学报.2006,26(7):1093-1100.
    冯培勇,陈兆平,靖元孝.人工湿地及其去污机理研究进展[J].生态科学.2002,21(3):264-268.
    George L,Jim G,尚爱安,等.工艺优化诊断技术用于污水厂的改造[J].中国给水排水.2006,22(2):29-30.
    高春娣,王淑莹,彭永臻,等.DO对有机物降解速率及污泥沉降性能的影响[J].中国给水排水.2001,17:12-16.
    高景峰,彭永臻,王淑莹,等.以DO、ORP、pH控制SBR法的脱氮过程[J].中国给水排水.2001,17(4):6-11.
    高景峰,彭永臻,王淑莹.DO和ORP与SBR法硝化反硝化的相关关系[J].哈尔滨建筑大学学报.2002,35(1):61-65,93.
    郭建华,脉冲SBR处理城市污水深度脱氮的工艺特性[J].中国环境科学,2007,27(1):62-66.
    顾夏声.废水生物处理数额模式(第二版)[M].北京:清华大学出版社,1993.
    黄武.UASB-SBR工艺和Lipp制罐技术处理高浓度酒精废水的研究[J].工业水处理.2001,21(9):37-40.
    黄武.高浓度豆制品废水处理的工艺选择和设计[J].中国给水排水.2001,17(7):33-35.
    郝晓地,陈新华,戴吉,等.极具工程化潜力的好氧颗粒污泥技术[J].中国给水排水.2006,22(8):1-7.
    郝晓地,甘一萍,周军,等.数学模拟技术在污水处理工艺设计、优化、研发中的应用(上)[J].给水排水.2004,30(5):33-36.
    廖新佛,骆世明,吴银宝,等.人工湿地植物筛选的研究[J].草业学报.2004,13(5):14-45.
    廖新俤,骆世明,吴银宝,等.风车草和香根草在人工湿地中迁移养分能力的比较[J].应用生态学报.2005,16(1):156-160.
    卢少勇,桂萌,余刚,等.人工湿地中沸石和土壤的氮吸附与再生试验研究[J].农业工程学报.2006,22(11):64-68.
    彭永臻,绍剑英,周利,等.利用ORP作为SBR法反应时间的计算机控制参数[J].中国给水排水,1997,13(6):6-9.
    邱慎初,丁堂堂.分段进水的生物除磷脱氮工艺[J].中国给水排水.2003,19(4):32-36.
    钱靖华,田宁宁,任远.规模化猪场粪污治理存在的问题及对策[J].中国畜牧杂志.2006,42:57-59.
    苏杨.我国集约化畜禽养殖场污染问题研究[J].中国生态农业学报.2006,14(2):15-18.
    宋灿辉,肖波,史晓燕,等.沼气净化技术现状[J].中国沼气.2007,25(4):23-27.
    王岩,王可科,赵颖.模拟潜流人工湿地处理主场废水的实验研究[J].农业工程学报.2006,22(S2):260-263.
    熊国祥,罗建中,冯爱坤.人工湿地中磷的行为及其去除方法研究[J].环境科学与管理.2006,31(6):16-118.
    杨正丹,孙培德.活性污泥模型研究及其应用新进展[J].环境科学动态.2004,(3):24-27.
    杨岸明,王淑莹,杨庆,等.以pH和ORP作为脉冲SBR工艺的实时控制参数[J].环境污染防治技术与设备[J].2007,7(12):32-35.
    姚来银,许朝晖.养猪废水氮磷污染及其深度脱氮除磷技术探讨[J].中国沼气.2003,21(1):28-29.
    姚重华.废水处理计量学导论[M].北京:化学工业出版社,2002.
    羽中.“十五”期间我国投入35亿元发展农村新能源[J].能源与环境.2006,(5):12-12.
    曾薇,彭永臻,王淑莹.以DO、ORP、pH作为两段SBR 工艺的实时控制参数[J].环境科学学报.2003,23(2):252-256.
    张充,肖弘建,陈伟,等.红泥塑料贮气和供气装置在沼气工程中的应用[J].福建农业科技.2006,(2):73-74.
    张克强,高怀友.畜禽养殖液污染物处理与处置[M].北京:化学工业出版社,2004.
    张树清,张夫道,刘秀梅,等.规模化养殖畜禽粪主要有害成分测定分析研究[J].植物营养与肥料学报.2005,11(6):822-829.
    张自杰.排水工程(第三版)[M].北京:中国建筑工业出版社,1996.
    张政,付融冰,顾国维,等.人工湿地脱氮途径及其影响因素分析[J].生态环境.2006,15(6):1385-1390.
    张希衡.废水厌氧生物处理工程[M].北京中国环境科学出版社,1996.
    郑兴灿,李亚新.污水除磷脱氮技术[M].北京:中国建筑工业出版社,1998.
    祝贵兵,彭永臻,吴淑云,等.碳氮比对分段进水生物脱氮的影响[J].中国环境科学.2005,25(6):641-645.
    祝贵兵,彭永臻,周利,等.优化分段进水生物脱氮工艺设计参数[J].中国给水排水.2004,20(9):62-64.
    Artan N, Wilderer P, Orhon D, et al. The mechanism and design of sequencing batch reactor systems for nutrient removal-the state of the art [J]. War. Sci. Tech. 2001,43(3):53-60.
    Metcalf & Eddy, Wastewater Engineering: Treatment Disposal and Reuse [M]. New York: McGraw Hill Inc., 1991.
    王凯军,贾立敏.城市污水生物处理新技术开发与应用[M].北京:化学工业出版社,2001.
    许保玖,龙腾锐.当代给水排水与废水处理原理(第二版)[M].北京:高等教育出版社,2000.
    APHA, Standard Methods for the Examination of Water and Wastewater, 20th Ed.[M]; American Public Health Association: Washington, DC, USA, 1998.
    Artan N, Tasli R, Orhon D. Rational basis for optimal design of sequencing batch reactors with multiple anoxic filling for nitrogen removal [J]. Proc. B iochem. 2006, 41(4): 901-908.
    Beun J J, Verhoef E V, van Loosdrecht M C M, et al. Stoichiometry and kinetics of poly-β -hydroxybutyrate metabolism under denitrification conditions in activated sludge cultures [J]. Biotech. Bioeng. 2000, 68(5): 496-507.
    Bortone G, Gemelli S, Rambaldi A, et al. Nitrification, denitrificaiton and biological phosphorus removal in sequencing batch rectors treating piggery wastewater [J]. Wat. Res. Tech. 1992, 26(5-6):977-985.
    Chang C H, Hao O J. Sequencing batch reactor system for nutrient removal: ORP and pH profiles [J]. J. Chem. Tech. Biotechnol. 2006, 67: 27-38.
    Daigger G T, Littleton H X. Characterization of simultaneous nutrient removal in staged, closed-loop bioreactors[J]. Wat. Environ. Res. 2000, 72(3):330-339.
    Grady C P L, Daigger G T, Lim H C. Multiple microbial activities in a single continuous stirred tank reactor, Biological Wastewater Treatment [M]. Marcel Dekker, Inc.: New York, 1999: 208-220.
    Guo J, Yang Q, Peng Y. Biological nitrogen removal with real-time control using step-feed SBR technology [J]. Enzyme Microb. Technol. 2007, 40(6):1564-1569.
    Hach, DR/3000 Spectrophotometer Procedure Manual [M], Loveland, CO: Hach Company, 1993.
    Kargi F, Uygur A. Effect of carbon source on biological nutrient removal in a sequencing batch reactor [J]. Biores. Technol. 2003, 89(1): 89-93.
    Kim J H, Chen M, Kishida N, et al. Integrated real-time control strategy for nitrogen removal in swine wastewater using sequencing batch reactors [J]. Wat. Res. 2004. 38(14-15): 3340-3348.
    Kishida N, Kim J H, Chen M, et al. Effectiveness of oxidation-reduction potential and pH as monitoring and control parameters for nitrogen removal in swine wastewater treatment by sequencing batch reactors [J]. J. Biosci. Bioeng. 2003, 96(3): 285-290
    Kuba T, Wachtmeister A, van Loosdrecht M C M, et al. Effect of nitrate on phosphorus release in biological phosphorus removal systems [J]. Wat. Sci. Tech. 1994, 30:263-269.
    Laridi R, Drogui P, Benmoussa H, et al. Removal of refractory organic compounds in liquid swine manure obtained from a biofiltration process using an electrochemical treatment [J]. J. Environ. Eng. 2005, 131(9):1302-1310.
    Leenheer J A, Rosta C E. Fractionation and characterization of organic matter in wastewater from a swine waste-retention basin. http://pubs.water.usgs.gov/sir20045217/. (accessed 12 March 2006)
    Metcalf and Eddy. Wastewater Engineering: Treatment Disposal and Reuse [M]. New York: McGraw Hill, 1991.
    Park H D, Noguera DR. Evaluating the effect of dissolved oxygen on ammonia oxidizing bacterial communities in activated sludge [J]. Wat. Res. 2004, 38(14-15): 3275-3286.
    Park H D, Regan, J M, Noguera D R. Molecular analysis of ammonia-oxidizing bacterial populations in aerated-anoxic Orbal processes [J]. Wat. Sci. Tech. 2002, 46 (1-2):273-280.
    Paul E, Plisson-Saune S, Mauret M, et al. Process state evaluation of alternating oxic-anoxic activated sludge using ORP, pH and DO [J]. Wat. Sci. Tech. 1998, 38(3), 299-306.
    Plisson-Saune S, Capdeville B, Mauret M, et al. Real-time control of nitrogen removal using three ORP bending points: signification, control strategy and results [J]. Wat. Sci. Tech. 1996, 33, 275-280.
    Ra C S, Lo K V, Mavinic D S. Real-time control of two-stage sequencing batch reactor system for the treatment of animal wastewater [J]. Environ. Technol. 1998, 19:343-356.
    Ra C S, Lo K V, Mavinic D S. Control of a swine manure treatment process using a specific feature of oxidation reduction potential [J]. Biores. Tech. 1999, 70(2): 117-127.
    Saito T, Brdjanovic D, van Loosdrecht MCM. Effect of nitrite on phosphate uptake by phosphate accumulating organisms[J]. Wat Res. 2004, 38(17): 3760-3768
    Silverstein J, Schroeder E D. Performance of SBR activated sludge process with nitrification/denitrification [J]. J. Wat. Pollut. Control. Fed. 1983, 55:377-384
    Weon S Y, Lee C W, Lee S I, et al. Nitrite inhibition of aerobic growth of Acinetobacter sp [J]. Wat. Res. 2002, 36(18): 4471-4476.
    Zhang Z, Zhu J, King J, et al. A two-step fed SBR for treating swine manure [J]. Process Biochem. 2006,41(4):892-900.
    Zhu J, Zhang Z J, Miller C. A laboratory scale sequencing batch reactor with the addition of acetate to remove nutrient and organic matter in pig slurry [J]. Biosyst. Eng. 2006, 93(4): 437-446.
    顾夏声.废水生物处理模式(第二版)[M].北京:清华大学出版社,1993.
    许保玖,龙腾锐.当代给水与废水处理原理(第二版)[M].北京:高等教育出版社,2000.
    杨麒,李小明,曾光明,等.同步硝化反硝化机理的研究进展[J].微生物学通报.2003,30(4):88-91.
    郑平,冯孝善.废水生物处理[M].北京:高等教育出版社,2006.
    姚重华.废水处理计量学导论[M].北京:化学工业出版社,2002.
    APHA, Standard Methods for the Examination of Water and Wastewater, 20th Ed.[M]; American Public Health Association: Washington, DC, USA, 1998.
    Andreottola G, Foladori P, Ragazzi M, et al. On-line control of a SBR system for nitrogen removal from industry wastewater [J]. War. Sci. Tech. 2001, 43(3):93-100.
    Arrojo B, Mosquera-Corral A, Garrido J M, et al. Aerobic granulation with industrial wastewater in sequencing batch reactors [J]. Wat. Res. 2004, 38:3389-3399.
    Artan N, Tasli R, Orhon D. Rational basis for optimal design of sequencing batch reactors with multiple anoxic filling for nitrogen removal [J]. Process Biochem. 2006, 41:901-908.
    Artan N, Wilderer P, Orhon D, et al. The mechanism and design of sequencing batch reactor systems for nutrient removal- the state of the art [J]. Wat. Sci. Tech. 2001, 43(3):53-60.
    Artan N, Orthon D, Sozen S. Conceptual basis of nutrient removal from sensitive coastal areas [J]. Wat. Sci. Tech. 1995, 32(11):77-84.
    Beun J J. Aerobic granulation in a sequencing batch reactor [J]. Wat. Res. 1999, 33:2283-2290.
    Bortone G, Gemelli S, Rambaldi A, et al. Nitrification, denitrificaiton and biological phosphorus removal in sequencing batch rectors treating piggery wastewater [J]. Wat. Res. Tech. 1992, 26(5-6):977-985.
    Grady C P L, Daigger G T, Lim H C. Multiple microbial activities in a single continuous stirred tank reactor, Biological Wastewater Treatment [M]. New York: Marcel Dekker Inc., 1999: 208-220.
    Hach, DR/3000 Spectrophotometer Procedure Manual [M], Loveland, CO: Hach Company, 1993.
    Her J J, Huang J S. Influences of carbon source and C/N ratio on nitrate/nitrite denitrification and carbon breakthrough. Biores. Tech.. 1995, 54:45-51.
    Jenkins D, Richard M G, Daigger G T. Manual on the causes and control of activated sludge bulking and foaming (3rd ed) [M]. USA: Lewis Publishers, 2003.
    Laguna A, Quattara A, Gonzalez R O et al. Asimple and low cost technique for determining the granulometry of upflow anaerobic sludge blanket reactor sludge [J], Wat. Sci. Tech. 1998, 40(8):1-8.
    McSwain B S, Irvine R L, Wilerer P A. The effect of intermittent feeding on aerobic granule structure[J]. Wat. Sci. Tech. 2004, 49 (11-12):19-25.
    Paul E, Plisson-Saune S, Mauret M, et al. Process state evaluation of alternating oxic-anoxic activated sludge using ORE pH and DO. Wat. Sci. Tech. 1998, 38(3):299-306.
    Puig s, Vives M T, Corominas L I, et al. Wastewater nitrogen removal in SBRs, applying a step-feed strategy: from lab scale to pilot-plant operation [J]. Wat. Sci. Tech. 2004, 50(10):89-96.
    Rene E R, Kim S J, Park H S. Effect of COD/N ratio and salinity on the performance of sequencing batch reactors. Biores. Tech. 2008, 99(4):839-846.
    Shannon C F, Weaver W. The mathematical theory of communication. Urbana and Chicago, USA: University of Illinois Press, 1963.
    Stensel H D, Barnard J L. Principles of biological nutrient removal. In: Randall C W, Barnard J L, Stensel H D, editors. Desingn and retrofit of wastewater treatment plants for biological nutrient removal [M].Lancaster PA, USA: Technomic Publishing Company Inc., 1992, 5:25-84.
    Yang S E Tay J H, Liu Y. A novel granular sludge sequencing batch reactor for removal of organic and nitrogen from wastewater [J]. J. Biotechnol. 2003, 106: 77-86.
    Yang S F,Tay J H, Liu Y. Inhibition of free ammonia to the formation of aerobic granules [J]. Biochem. Eng. J. 2004, 17:41-48.
    Tay J H, Liu Q S, Liu Y. The effects of shear force on the formation, structure, and metabolism of aerobic granules [J]. Appl. M icrobiol. Biotechnol. 2001, 57(1-2):227-233.
    Zhang Z, Zhu J, King J, et al. A two-step fed SBR for treating swine manure [J]. Process Biochem. 2006, 41(4):892-900.
    Zhu S, Chen S. Effects of organic carbon on nitrification rate in fixed film biofilters [J]. Aquac. Eng. 2001, 25:1-11
    赵阳国.生态因子对硫酸盐还原系统中微生物群落动态影响的表征[D].哈尔滨:哈尔滨工业大学,2006.
    张希衡.废水厌氧生物处理工程[M].北京中国环境科学出版社,1996.
    张自杰.排水工程(第三版)[M].北京:中国建筑工业出版社,1996.
    郑平,冯孝善.废水生物处理[M].北京:高等教育出版社,2006.
    Artan N, Tasli R, Orhon D. Rational basis for optimal design of sequencing batch reactors with multiple anoxic filling for nitrogen removal [J]. Process Biochem. 2006, 41(4): 901-908
    Beatriz Paz, Vazquez J A, Riobo P, et al. Study of the effect of temperature, irradiance and salinity on growth and yessotoxin production by the dinoflagellate Protoceratium reticulatum in culture by using a kinetic and factorial approach [J]. Mar. Environ. Res. 2006, 62(4): 286-300
    Beun J J, Hendriks A, van Loosdrecht M C M, et al. Aerobic granulation in a sequencing batch reactor[J]. Wat. Res. 1999, 33(10): 2283-2290
    Bortone G, Gemelli S, Rambaldi A, et al. Nitrification, denitrificaiton and biological phosphorus removal in sequencing batch rectors treating piggery wastewater [J]. Wat. Sci. Tech. 1992, 26(5-6):977-985.
    Dionisi D, Dionisi M, Tandoi V, et al. Sequencing batch reactor: influence of periodic operation on performance of activated sludges in biological wastewater treatment [J]. Ind. Eng. Chem. Res. 2001,40:5110-5119
    Eikelbom D H, van Buijsen H J J. Microscopic Sludge Investigation Manual (2nd ed) [M]. Delft, Netherlands: TNO Research Insitute for Environmental Hygiene, 1983.
    LaPara T M, Nakatsu C H, Pantea L M, et al. Stability of the bacterial communities supported by a seven-stage biological process treating pharmaceutical wastewater as revealed by PCR-DGGE [J]. Wat. Res. 2002, 36: 638-646.
    Leenheer J A, Rosta C E. Fractionation and characterization of organic matter in wastewater from a swine waste-retention basin. http://pubs.water.usgs.gov/sir20045217/. (accessed 12 March 2006).
    Li Z H, Kuba T, Kusuda T. The influence of starvation phase on the properties and the development of aerobic granules [J]. Enzyme. Microb. Technol. 2006, 38(5): 670-674.
    Liu R H, Shen F. Impacts of main factors on bioethanol fermentation from stalk juice of sweet sorghum by immobilized Saccharomyces cerevisiae (CICC 1308) [J]. Biores. Tech. 2008, 99(4):847-854.
    Liu Y, Liu Y Q, Wang Z W, et al. Influence of substrate surface loading on the kinetic behaviour of aerobic granules [J]. Appl. Microbiol. Biotechnol. 2005, 67: 484-488.
    Liu Y, Tay J H. State of the art of biogranulation technology for wastewater treatment [J]. Biotech. Adv. 2004, 22:533-563.
    Liu Y, Tay J H. The essential role of hydrodynamic shear force in the formation of biofilm and granular sludge [J]. Wat. Res. 2002, 36(7): 1653-1665.
    Kim I S, Kirn S M, Jang A. Characterization of aerobic granules by microbial density at different COD loading rates [J]. Biores. Tech. 2008, 99(1): 18-25.
    McSwain B S, Irvine R L, Wilerer P A. The effect of intermittent feeding on aerobic granule structure[J]. Water Sci Technol. 2004, 49 (11-12): 19-25.
    Mosquera-Corral A, de Kreuk M K, Heijnen J J, et al. Effects of oxygen concentration on N-removal in an aerobic granular sludge reactor[J]. Wat. Res. 2005, 39: 2676-2686.
    
    Martins A M P, Heijnen J J, van Loosdrecht M C M. Effect of feeding pattern and storage on the sludge settleability under aerobic conditions [J]. Wat. Res. 2003, 37(11): 2555-2570.
    Moy B Y P, Tay J H, Toh S K, et al. High organic loading influences the physical characterics of aerobic granules [J]. Lett. Appl. Microbiol. 2002, 34:407-412.
    Pan S, Tay J H, He Y X, et al. The effect of hygranlic retention time on the stability of aerobically grown granules [J]. Lett. Appl. Microbiol. 2004, 38: 409-415.
    Saudagar P S, Singhal R S. Optimization of nutritional requirements and feeding strategies for clavulanic acid production by Streptomyces clavuligerus [J]. Biores. Tech. 2007, 98(10): 2010-2017
    
    Singh R P, Kumar S, Ojha C S P. A critique on operational strategies for start-up of UASB reactors: effects of sludge loading rate and seed/biomass concentration [J]. Biochem. Eng. J. 1998, 1(2): 107-119
    Tay J H, Liu Q S, Liu Y. Microscopic observation of aerobic granulation in sequencing aerobic sludge blanket reactor [J]. J. Appl. Microbiol. 2001 a, 91:168-175
    Tay J H, Liu Q S, Liu Y. The effects of shear force on the formation, structure and metabolism of aerobic granules [J]. App. Microbiol. Biotechnol. 2001 b, 57: 227-233.
    Wang Z W, Li Y, Zhou J Q, et al. The influence of short-term starvation on aerobic granules [J]. Process. Biochem. 2006, 41(12):2373-2378
    Zhou W, Imai T, Ukita M, et al. Effect of loading rate on the granulation process and granular activity in a bench scale UASB reactor [J]. Biores. Tech. 2007, 98(7): 1386-1392.
    方萍,何延.实验设计与统计[M].杭州:浙江火学出版社,2003.
    袁丙,叶兆杰.简明环境统计学[M].杭州:浙江农业大学农牧渔业能源办公室,1984.
    Andreottola G, Foladori P, Ragazzi M. On-line control of a SBR system for nitrogen removal from industry wastewater [J]. Wat. Sci. Tech. 2001, 43(3): 93-100.
    Artan N, Tasli R, Orhon D. Rational basis for optimal design of sequencing batch reactors with mutiple anoxic filling for nitrogen removal [J]. Process Biochem. 2006, 41(4): 901-908.
    Beun J J, Verhoef E V, van Loosdrecht M C M, et al. Stoichiometry and kinetics of poly-β-hydroxybutyrate metabolism under denitrification conditions in activated sludge cultures [J]. Biotech. Bioeng. 2000, 68(5): 496-507.
    Cervantes F J, Rosa D A, Gomez J. Nitrogen removal from wastewaters at a low C/N ratios with ammonia and acetate as electron donors[J]. Biores. Tech., 2001, 79(2): 165-170.
    Charpentier J, Martin G, Wacheux H, et al. ORP regulation and actived sludge:15 years of experience[J]. Wat. Sci. Tech. 1998, 38(3): 197-208.
    Kishida N, Kim J H, Chen M, et al. Effectiveness of oxidation-reduction potential .and pH as monitoring and control parameters for nitrogen removal in swine wastewater treatment by sequencing batch reactors[J]. J. Biosci. Bioeng. 2003, 96(3): 285-290.
    Lee S l, Park J H, Ko K B, et al. Effect of fermented swine wastes on biological nutrient removal in sequencing batch reactors[J]. Wat. Res. 1997, 31 (7): 1807-1812.
    Leenheer J A, Rosta C E. Fractionation and characterization of organic matter in wastewater from a swine waste-retention basin, http://pubs.water.usgs.gov/sir20045217/(2006, 12 March)
    Lin Y F, Jing S R. Characterization of denitrification and nitrification in a step-feed alternating anoxic-oxic sequencing batch reactor [J]. Water Environ. Res. 2001, 73(5):526-533
    Metcalf, Eddy. Wastewater Engineering: Treatment Disposal and Reuse (3rd ed) [M]. New York: McGraw Hill, 1991.
    Ra C S, Lo K V, Mavinic D S. Real-time control of two-stage sequencing batch reactor system for the treatment of animal wastewater [J]. Environ. Tech. 1998, 19: 343-356.
    Ra C S, Lo K V, Mavinic D S. Control of a swine manure treatment process using a specific feature of oxidation reduction potential [J]. Biores. Tech. 1999, 70(2): 117-127.
    Snoeyink V L and Jenkins D. Water chemistry [M]. New York, USA: John Wiley and Sons Inc., 1980.
    Tuttle J H, Dugan P R, Randles C I. Microbial sulfate reduction and its potential utility as an acid mine water pollution abatement procedure [J]. Appl. Microbiol. 1969, 17(2): 297-302.
    高大文,彭永臻.实时控制技术在污水生物处理中的研究进展[J].应用与环境微生物学报,2004,10(6):821-825.
    杨岸明,王淑莹,杨庆,等.以pH和ORP作为脉冲SBR工艺的实时控制参数[J].环境污染治理技术与设备.2006,7(12):32-35.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700