高速列车通过桥梁时相互气动性能的数值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国高速铁路的发展和列车车速的日益提高,列车空气动力学问题越来越受到重视。高速列车在桥梁上运行时的空气动力作用不仅是一个关系高速列车安全运行的重要工程技术问题,而且也是关系到旅客乘坐舒适性的问题,因此,研究高速列车在桥梁上运行时相互气动特性具有重要意义。
     针对高速列车在桥梁上运行时的气动特性问题,本论文以三维不可压缩的Navie-Stokes方程和RNGκ-ε两方程湍流模型为基础,采用有限体积法和动网格技术建立了列车空气动力学数值计算模型,综合桥梁、轨道板等因素,研究了不同风环境下列车在桥梁上运行时的相互气动特性。主要概括为以下几个方面:
     (1)建立高速列车——桥梁系统三维仿真模型,对比了静网格格模型和动网格模型的计算结果,二者结果相差不大,但动网格模型更加与列车实际运行相符,所以本文模拟列车运行采用动网格技术。
     (2)按照风洞实验的要求,利用静网格技术模拟1:20缩尺比模型下列车在不同位置时对桥梁节段的气动性能影响,总结分析其各气动系数的变化规律;此外还研究了列车在不同风偏角工况下,列车气动系数的变化规律。
     (3)研究列车在桥梁上运行时的相互气动特性。分别研究了列车车速和侧风风速对列车在桥梁上运行时的相互气动特性影响,同时对比了列车在迎风侧和背风侧运行时的气动力系数,研究了不同梁高对列车运行的气动性能影响,最后研究得出了列车气动力系数随风偏角的变化规律,为风作用下列车通过桥梁时的动力响应及行车安全性、舒适性研究提供基础数据。
     (4)研究了静风和不同侧风速度下列车等速会车时列车和桥梁的相互气动特性,总结对比了各气动力系数的变化规律和原因。
With the development of high speed railway and train speed, The aerodynamic characteristics of train/vehicles are being getted increasingly serious. The aerodynamic characteristics of high speed trains on bridge become an important engineering problem not only related to running safety, but also related to passenger riding comfort of vehicles. Therefore, it is greatly significant to study the aerodynamic characteristics of vehicle and bridge when trains run on the bridge.
     For the issue of aerodynamic characteristics of high-speed train running on the bridge, based on 3-D steady and incompressible Navier-Stokes equation, and RNGκ-εturbulence model, this thesis establishes a dynamic simulation model of high-speed trains with the help of the Finite Volume Method(FVM) and the dynamic grid technology, then study the aerodynamic characteristics of vehicles and bridge, considering the factors of bridge and rail board. The main contents and achievements of this thesis are as follows:
     1.The high-speed train and bridge system dynamic model is established. Compared the result of static gird model with dynamic gird model, both results have little difference. But dynamic gird model is more consistent with the train actual operation. Therefore, the simulation method of train-bridge system model uses dynamic grid technology.
     2.According to the requirement of wind tunnel experiments, the aerodynamic characteristics of bridge section are calculated through simulating the scale 1:20 model using static grid technology, then this thesis summarizes and analyses the trend of change of the aerodynamic coefficients; Additional, it is also being studied the changing regularity aerodynamic coefficients of vehicles in different wind yaw angle.
     3.The aerodynamic characteristics of vehicle and bridge are analyzed when trains run on the bridge.the aerodynamic characteristics of each other are calculated in different train speed or crossing wind speed, meanwhile, the aerodynamic coefficients of trains located in the windward and leeward are compared and the aerodynamic characteristics of trains running in different high beam are discussed, finally, this thesis presents the changing regularity of aerodynamic coefficients of vehicles in different wind yaw angle, which can provide for the studying of dynamic responses of train moving on bridge under the crossing wind and analyzing running safety and riding comfort of vehicles.
     4.A simulation analyzes on the aerodynamic characteristics of each other when two high-speed trains passing each other researched by dynamic grid technology in the static wind and different velocity of crossing wind, then this thesis summarizes the changing regularity of aerodynamic coefficients of vehicles.
引文
[1]郎茂祥.世界高速铁路的发展趋势.世界铁路报道,1997,(2)
    [2]王晓刚.国外高速铁路建设及发展趋势.建筑机械,2007,5(3):30~36.
    [3]谢贤良.时速574.8公里—法国高速列车再创世界纪录.铁道知识,2007,(5):32-37.
    [4]Ellwanger G.,Wilckens M.. European high-speed transport:A service with future. Rail International,1994,(1):2-12
    [5]孙彤,孙翔译.采用高新技术的德国铁路ICE高速列车.成都:西南交通大学出版社,1992.
    [6]Jerome C, Raoul. A Train for the 21st century, Rail International,1994(4):2-8.
    [7]郎茂祥.世界高速铁路的发展趋势世界铁路报道,1997,(2).
    [8]李树德.京沪高速铁路研究历程和主要工程概况.铁道标准设计,2006,(增刊):1-5
    [9]Anderssonl E, Haggstrom J, Sima M, Assessment of train-overtuning risk due to strong cross-winds, J. Rail and Rapid Transit, Proe. Instn Meeh. Engrs, 2004(218)Part, F:213-223.
    [10]王厚雄,何德昭,徐鹤寿.准高速东风型列车风速度场特性初探.中国铁道科学.1993,14(2):100~110
    [11]京沪高速铁路技术研究总体组.京沪高速铁路侧向风、强降雨对行车的影响及安全限值的调查研究,北京:铁道科学研究院,2002
    [12]王厚雄,尹永顺,高注.车顶外形对车辆气动横向稳定性等气动特性的影响.空气动力学学报,1993,11(1):98-101.
    [13]Baker,J.Jones,F.Lopez-Calleja,Measurements of the cross wind forces on trains. Journal of Wind Engineering and Industrial Aerodynamics,2004,92(7-8):547-563.
    [14]N.DHumphreys,C.J.Baker. Foreces on Vehicles in Cross Winds from Moving Model Tests. Journal of Wind Engineering and Industrial Aerodynamics,41-44(1992):2673-2684
    [15]T.W.Chiu. Prediction of the aerodynamic loads on a railway train in a cross-wind a large yaw angles using an integrated two-and three-dimensional source-vortex panel method.Journal of wind Engineering and Industrian Aerodynamics,1995,57(1):19-39.
    [16]A.Orellano. M.Schober, On side-wind stability of high speed trains, Vehicle System Dynamics Supplement 40(2003),143-160.
    [17]Anderssonl E, Haggstrom J, Sima M, Assessment of train- overtuning risk due to strong cross-winds, J. Rail and Rapid Transit, Proe. Instn Meeh. Engrs, 2004(218)Part, F:213-223.
    [18]B Diedrichs, M Sima, A Orellano, H Tengstrand, Crosswind stability of a high speed train on a high enbankment, Journal of Rail and Rapid Transit,2007,221 (2),205-225.
    [19]Neppert,H.Sanderson,R..Unersuchungen zur schnellbahn aerodynamik,z.Flugwiss, Bd22(1974),7-12.
    [20]Neppert,H,Sanderson,R..Untersuchungen zur zugbegnung.bauwerkund personerpassage in wasserkanal,vortrag wahrend des seminars "schuellbanhn aerodynamic",am 7,8.Juni 1978 in DFVLR Forschungszentrum AVA-Gottingen.
    [21]Koze Fujii,Takanobu Ogawa. Aerodynamics of high speed trains passing by each other[J]. Compututer & Fluids,1995,24(8),897-908.
    [22]JaehoHwang, Donghe Lee..Numerical Simuation of flow field around high speed trains passing by each other[C]. American Insitute of Aeronautics & Astronautics,1999:422-432.
    [23]T.Berenge, A.Kessler,R.Grgeoire.Panel method applied to the prediction of unsteady effects caused by high speed train passing in the open air[M].TRANSAERO:a European initiative on traisient aerodynamics for railway system optimistation.Burkhard Schulte-Werning.Berlin. Springer,2002:136-147
    [24]T.Berenge, R.Grgeoire.Panel method applied to problems of European high train interoperability [M]. TRANSAERO:a European initiative on transient aerodynamics for railway system optimistation.Burkhard Schulte Werning.Berlin.Spring,2002:148-159
    [25]Minoru Suzuki, Katsuji Tanemoto, Tatsuo Maeda, Aerodynamic characteristics of train/vehicles under cross winds, Journal of wind Engineering and Industrial Aerodynamics 2003,91 (2003):209-218
    [26]Kozo Fujii, Takanobu Ogawa, Aerodynamics of high speed trains passing by each other[J]. Computers & Fluids, Vol.24,No.8,pp.897-908,1995
    [27]李人宪,翟婉明.磁悬浮类车横向稳定性的数值分析[J].交通运输工程学报,2001,1(1): 99~101
    [28]李人宪,刘应清.高速列车紊态外流场数值模拟研究[J].应用力学学报,2001,18(1);6-13
    [29]李人宪,刘应清,翟婉明.高速磁悬浮列车纵向和垂向气动力数值分析[J].中国铁道科学,2004,25(1);8-12
    [30]祝志文,陈政清.单、双层客车车辆在铁路桥梁上的横向气动力特性.中南工业大学学报,2001.8,4
    [31]祝志文.陈政清.YZ22型车辆与铁路T型简支梁桥的风载荷研究.湖南大学学报,2001,2
    [32]祝志文,陈伟芳,陈政清.横风中双层客车车辆的风载荷研究.国防科技大学学报,2001,23(5):117~121
    [33]田红旗,高广军.270km/h高速列车气动力性能研究.中国铁道科学,2003,24(2):14~18
    [34]田红旗,梁习锋.“中华之星”高速列车综合空气动力性能研究.机车电传动,2003,(5):40~45
    [35]高广军,田红旗,姚松,等.兰新线强横风对车辆倾覆稳定性的影响[J],铁道学报,2004,26(4):36-40
    [36]黄林,廖海黎,李勇乐.横向风和列车风联合作用下车桥系统绕流分析[J],铁道科学与工程学报.2006,3(6),6]-65
    [37]杨明智,袁先旭,鲁赛军,黄汉杰.强侧风下青藏线列车气动性能风洞实验研究[J].实验流体力学.2008,22(1)77-80
    [38]高广军.强侧风作用下列车运行安全性研究.博士学位论文,中南大学.2008
    [39]杨吉忠.考虑空气动力效应时高速列车运行安全平稳性研究.博士学位论文,西南交通大学.2009
    [40]田红旗.中国列车空气动力学研究进展.[J].交通运输工程学报.2006.,6(1)
    [41]田红旗中国恶劣风环境下铁路安全行车研究进展[J].中南大学学报(自然科学版).2010,41(6)
    [42]张斌,梁习锋.准高速列车表面压力分布测量实车试验研究.铁道车辆,2000.10,]0
    [43]武青海.列车空气动力学数值仿真研究.博士学位论文,铁道部科学研究院,北京,2002
    [44]梁习锋,田红旗,邹建军.动力车纵向气动力风洞试验及数值模拟.国防科技大学学报,2003,6
    [45]葛玉梅,李永乐,何向东.作用在车—桥系统上风荷载的风洞试验研究.西南交通大学学报,2001,(6):
    [46]张健.高速列车动车头形风洞试验研究.流体力学实验与测量,1997 11(2):85~89
    [47]西南交通大学.准高速列车风洞试验内容及结果.国家“八五”重点攻关项目分专题研究报告,1996.3
    [48]刘志燕,侧风下高速列车—简支梁系统气动性能的数值研究.硕士学位论文,中南大学2010.
    [49]张健.高速列车动车头形风洞试验研究.流体力学实验与测量,199711(2):85~89.
    [50]张健,梁习锋.铁道车辆通过桥梁的横风气动特性试验研究[J].试验研究,(2003)03-0023-03.
    [51]林荣生,胡竞嵘,王厚雄等.用风洞试验测定车辆的横风气动特性[J].铁道学报,1984,6(1):104~108.
    [52]Fung Y. C. An introduction to the theory of aeroelasticity. New York:Dover Publications, Inc.,1993,160-245.
    [53]李薇CFD方法研究桥梁断面三分力系数的雷诺数效应.硕士学位论文,长安大学,2007.
    [54]王福军.计算流体动力学分析CFD软件原理与应用.北京:清华大学出版社,2004
    [55]John D. Anderson著.吴颂平,刘赵淼译.计算流体力学基础及其应用.北京:机械工业出版社,2007
    [56]李桂林.扁平箱梁断面颤振导数的数值分析:[硕士学位论文].长沙:中南大学,2009
    [57]吴江航,朱怀球.计算流体力学、CFD软件与工程服务.北京大学:,湍流研究国家重大科研项目,2002.
    [58]Murakami.S,Mochida.A,Hibi,K,(1987),3-dimentional numerical simulations of air-flow around a cubic model by means of large eddy simulation,Jourmal of Wind Engineering and Industrial Aerodynamics,25(3),1987,291-305.
    [59]D.laurence,J.D Mattei.Current state of computational bluff body aerodynamics,Journal of Wind Engneering and Industrial Aerodynamics,Volume 49,Issues 1-3,December 1992,Papers 23.-43.
    [60]项海帆.进入21世纪的桥梁风工程研究.同济大学学报,2002,30(5).
    [61]项海帆.进入21世纪的桥梁风工程研究.同济大学学报,2002,30(5)
    [62]任尊松,徐宇工,王璐雷,邱英政.强侧风对高速列车运行安全性影响研究.铁道学报.2006,28(6):46-50.
    [63]宋洋,任尊松.强侧向风作用下的高速列车动力学性能研究.铁道车辆, 2006,44(10):4-7.
    [64]祝志文,陈政清,陈伟芳.用动网格法计算理想平板的颤振导数.国防科技大学学报,2002,24(3):13~17
    [65]戚振宕.高速列车明线会车气动特性研究.硕士学位论文.西南交通大学.2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700