重组Sap2蛋白接种对免疫抑制小鼠系统感染白念珠菌的保护作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景
     随着新治疗技术如骨髓移植、器官移植和强化治疗的开展及广谱抗生素和免疫抑制药物的广泛应用,临床上发生念珠菌感染的现象越来越普遍,而抗真菌药物由于其毒副作用和易产生耐药的局限性,使得白念珠菌在免疫低下患者中的发病率依然居高不下。由此,为了探索免疫低下患者中预防白念珠菌感染的措施,有必要建立适当的免疫抑制后系统感染念珠菌的动物模型,来模拟免疫功能低下患者的情况。我们同时也研究了重组念珠菌天冬氨酰蛋白酶(screted aspartyl proteinase, Sap)预防接种对免疫功能低下时系统感染念珠菌的保护作用。
     第一部分
     目的
     建立免疫抑制小鼠系统感染白念珠菌模型,并观察其主要影响因素。
     方法
     1)以环磷酰胺(CTX)100mg/kg和200mg/kg两个剂量水平分别对6周龄BALB/c小鼠进行单次腹腔注射(各3组),48h后各对应组分别经尾静脉注射1×105、106、107/ml的白念珠菌,通过各组的死亡率来确定半数致死量。2)以50、100mg/kgCTX单次腹腔注射,观察外周血中白细胞、淋巴细胞计数被抑制的程度。3)分别采用4和8周龄小鼠来观察周龄对死亡率的影响。4)通过组织病理检查和肾组织真菌培养来验证模型。
     结果
     1)100mg/kgCTX+1×105/ml白念珠菌作用后,小鼠的死亡率接近50%。2)100mg/kgCTX单次腹腔注射后,外周血中白细胞、淋巴细胞计数下降超过30%。3)4周龄小鼠对模型建立条件的耐受性较差,死亡率高。4)组织病理检查和肾组织真菌培养结果表明模型小鼠肾脏中有菌丝生长或局灶性脓肿形成。
     结论
     1)成功建立了免疫抑制后系统感染白念珠菌的小鼠模型。2)模型建立条件下,白念珠菌对小鼠肾组织有高亲嗜性。
     第二部分
     目的
     观察重组Sap2蛋白免疫接种3次(间隔1周)对模型小鼠抗白念珠菌系统感染的保护作用。
     方法
     6周龄BALB/c小鼠随机分成3组:1)间隔1周,重组Sap2+弗氏完全佐剂(CFA)胫前肌注射3次,第3次免疫后1周时,按体重单次腹腔注射100mg/kgCTX,48h后经尾静脉注射1×105/ml的白念珠菌,剂量为0.01ml/g。2)间隔1周,CFA胫前肌注射3次,其余干预同第1组。3)间隔1周,PBS胫前肌注射3次,其余干预同第1组。分别以这3种分组方式饲养小鼠,并在不同时间点检测下列指标,探讨模型小鼠的免疫功能动态变化:1)白念珠菌感染后21天内各组小鼠的死亡率。2)间接ELISA法测定各组小鼠血清特异性IgG抗体水平。3)ELISA法测定小鼠血清中IL-2、IL-4、IFN-γ、TNF-α的含量。4)流式细胞仪分析小鼠脾淋巴细胞中的CD4+/CD8+T细胞比例。5)测定各组小鼠肾脏中的荷菌量。6)比较各组小鼠脾脏重量。7)对各组小鼠的肾、肝、肺组织进行组织病理检查。
     结果
     1)免疫组小鼠的死亡率显著低于对照组。2)免疫组小鼠血清中的特异性IgG抗体水平的显著高于对照组。3)念珠菌攻击后的第1、4、7天期间,IL-2、IL-4、IFN-γ知TNF-α在第4天时的测量值高于第1和第7天水平。其中TNF-α的测量值始终低于正常对照水平。4)念珠菌攻击后的第1、4、7天期间,各组小鼠的CD4+/CD8+比值呈现相似的变化,其中第4天时的测量值低于第1和第7天水平。5)免疫组小鼠的肾脏荷菌量显著低于对照组。6)免疫组小鼠的脾脏重量显著高于对照组。7)免疫组小鼠肾组织中检出菌丝和局灶性脓肿的发生率低于对照组。
     结论:
     1)重组Sap2蛋白间隔1周免疫接种3次对模型小鼠抗白念珠菌系统感染具有一定的保护作用。
     2)重组Sap2蛋白间隔1周免疫接种3次后会导致小鼠出现脾大。
Background
     With such developments of novel treatment technologies as bone marrow transplantation, organ transplantation and intensive treatment and the wide use of broad spectrum antibiotics and immunosuppressors, the phenomenon of clinical infection of candida becomes more and more widespread, meanwhile the limitation of antifungal agents derived from the side effects and drug resistance makes prevalence of candida albicans high in the patients of low immunity. Thus, in order to explore the preventive measures against the infection of candida albicans in the low immune patients, it's necessary to establish certain animal model of the infection of candida albicans after immunosuppression, which mimicking the conditions of the low immune patients, and followed by further investigation of the protection of vaccination for the systemic candida albicans infection in the low immune patients.
     Part one
     Objectives
     To establish the immunosuppressive mouse model of systemic infection of candida albicans and observe the main influence factors.
     Methods
     1)6-week old BALB/c mice were injected intraperitoneally with two different dosages of cyclophosphamide, 100mg/kg and 200mg/kg respectively, then 48 hours later candida albicans were injected into the caudal veins at the following concentrations as 1×105、106、107/ml.the median lethal dose was defined by the mortality of each group.2)The inhibitory degrees of the white blood cell count,lymphocytes count in peripheral blood were observed after single intraperitoneal injection of cyclophosphamide with a dosage of 50 mg/kg orl00mg/kg.3)4- and 8-week old mice were used to observe the influence of week age on the mortality.4)The mouse model was validated by histopathological examination and fungal culture of renal tissues.
     Results
     1)The mortality of 6-week old balb/c mice was close to 50%,which were injected intraperitoneally with a single dose of 100mg/kg cyclophosphamide,followed by injection of candida albicans into caudal vein 48 hours later.2)The decreases of the white blood cells and lymphocytes in peripheral blood were more than 30% after single intraperitoneal injection of 100mg/kg cyclophosphamide.3)The mortality of 4-week old mice was high because of bad tolerability to all the conditions required for the mouse model.4)The results of histopathological examinations and cultures of fungi in renal tissue indicated that there were hypha growth and focal abcesse formation in the kidney of the mouse model.
     Conclusions
     1) The mouse model of systemic infection of candida albicans after immunosuppression was successfully established.2) High affinity of candida albicans to renal tissues was observed in the conditions of the mouse model.
     Part two
     Objectives
     To observe the protection profile of recombinant Sap2 protein, with which the model mice were inoculated for 3 times (every 2 weeks), from systemic infection of candida albicans.
     Methods
     6-week old balb/c mice were randomized into three groups:1)recombinant Sap2 combined with complete Freund's adjuvant(CFA) were injected intramuscularly for 3 times at one week interval in the tibial anterior area, then single dose of 100mg/kg cyclophosphamide was injected intraperitoneally according to body weight one week after the third inoculation,48 hours after which 1×105/ml candida albicans were injected into caudal vein at a dosage of 0.01ml/g.2) CFA were injected intramuscularly for 3 times at one week interval in the tibial anterior area at the same other interventions as group one.3)PBS were injected intramuscularly for 3 times at one week interval in the tibial anterior area at the same other interventions as group one. Mice were raised by the above three grouping ways and were determined at different time point the following indexes:1)mortality of each group within 21 days after infection of candida albicans.2)levels of specific IgG antibody in the sera of each group of mice determined by indirect ELISA.3)serous levels of IL-2、IL-4、IFN-γ、 TNF-αdetermined by ELISA.4)the ratio of CD4+/CD8+T cells in the spleen by flow cytometry.5)fungal quantity in the kidney of each group of mice.6)comparison of splenetic weight of each group of mice.7)histopathological examination of the kidney, liver and lung of each group of mice.
     Results
     1)Mortality of the inoculated mice group was significantly lower than that of control.2)The specific serous IgG antibody was significantly higher than that of control.3)At the test time point of day1/4/7 after candida albicans challenge, the serous levels of IL-2、IL-4、IFN-γand TNF-αat day4 were higher than that at dayl and day7.of note, the levels of TNF-αkept lower than that of normal control throughout the experiment.4) At the test time point of day1/4/7 after candida albicans challenge, the ration of CD4+/CD8+T cells in all groups presented with similar changes, of which the measured values at day4 were lower than that at dayl and day7. 5)The fungal quantities of inoculated mice were significantly lower that of control. 6)The splenic weight of the inoculated mice were significantly higher than that of control.7) The prevalence of hypha and focal abcesses in the kidney of inoculated mice was lower than that of control.
     Conclusions
     1)Three-time inoculation of these model mice (every 2 weeks) with recombinant Sap2 protein had certain protection against systemic infection of candida albicans.
     2) Three-time inoculation of the model mice (every 2 weeks) with recombinant Sap2 protein led to splenomegaly.
引文
1.吴绍熙.真菌病的研究现状与对策[J].第二军医大学学报,2001,22(11):1001-1002.
    2. Heelan J S, Siliezar D, Coon K. J ClinMicrobid,1996,34 (11):2847-2849.
    3. Ibrahim AS, Spellberg BJ, Avenissian V,et al.Vaccination with recombinant N-terminal domain of Alslp improves survival during murine disseminated candidiasis by enhancing cell-mediated,not humoral,immuty. Infect Immun. 2005;73(2):999-1005.
    4. Romanil. Immunity to fungal infections[J]. Nat Rev Immunol,2004;4(1):1-23.
    5. Cardenas-Freyt ag L, Cheng E, Mayeux P, et al. Infect Immun,1999,69 (2):826-833.
    6.章涛,滕维亚,宋绍辉.呼吸道真菌感染临床特点及防治对策[J].临床荟萃,2000,5(10):558-561.
    7. Darouiche R. Oropharyngeal and esophageal candidiasis in immunocompromised patients treatment issues[J]. Clin Infect Dis,1998,26:259-272.
    8. Pfaller MA,Diekema DJ.Epidemiology of invasive candidiasis:a persistent public health problem.Clin Microbiol Rev 2007;20:133-63
    9.刘永碧,马厚勋,曾凡荣.深部念珠菌感染280例临床分析[J].中华医院感染学杂志,1998,8(1):31-32.
    10. Bromuro C, Torosantucci A, Chiani P, et al. Interplay between protective and inhibitory antibodies dictates the out come of experiment ally disseminated candidiasis in recipient s of a Candida albicans Vaccine [J]. Infection and Immunity,2002,70(10):5462-5470.
    11. Bromuro C, La Valle R, Sandini S, et al. A 70-Kilodalt on recombinant heat shock protein of Candid a albicans is highly immunogenic and enhances systemic murine candidiasis[J]. Infect Immun,1998,66 (5):2154-2162.
    12. Byst ricky S, Paulovicova E, Machova E. Candida albicans mannan protein conjugate as vaccine candidate[J]. Immunol Let t,2003,85(3):251-255.
    13. Matthew s R, Hodgetts S, Burnie J. Preliminary assessment of a human recombinant antibody fragment to hsp90 in murine invasive candidiasis[J]. J Infect Dis,1995,171(6):1668-1671.
    14. Shadkchan Y, Segal E. Antifungal activity of amphot ericin B- lipid admixtures in experiment al systemic can dido sis in naive mice [J]. J Antimicrobial Chemotherapy,1999,44(6):787-790.
    15.刘香梅,张钰,闵凡贵,等.环磷酰胺对近平滑念珠菌感染小鼠白细胞的影响[J].实验动物与比较医学,2007,27(2):116-118.
    16.MCCORMICK S, DOWLER K, ARMSTRONG J A, et al. Cyclophosphamide immunosuppression during lymph tropic herpes virus infection in the guinea pig model. a histopathology and virology study [J]. Am J Patrol,1987,127(3): 538-548.
    17.周顺长,史宵燕,辛华雯,等.不同途径给以环磷酰胺诱发BALB/c小鼠免疫低下的结果比较[J].实验动物与比较医学,2006,(1):38-39.
    18.高芃,钱嘉林,刘长喜,等.环磷酰胺对小鼠免疫抑制的动物模型建立[J]。环境与职业医学,2004,(4):314-318.]
    19.PELAEZ B, CAMPILLO J A, LOPEZ-ASENJO J A, et al. Cyclophosphamide induces the development of early myeloid cells suppressing tumor cell growth by a nitric oxide-dependent mechanism[J]. J Immunol,2001,166(11):6608-6615.
    20. Yang Q, W nag L, Lu DN, et al. Prophylactic vaccination with phage displayed epitome of C. a lbicans elicits protective immune responses against systemic candidiasis in C57BL/6 mice. V accine,2005,23:4088-4096.
    21.傅颖媛,丁务高,陈开森,况南珍,曾小平,周智兴,许静.系统感染白念珠菌的Balb/c小鼠免疫功能探讨.[J]免疫学杂志,2008,24(1):53-55]
    22.王革新,王馥香,刘安丽.免疫抑制小鼠肺白念珠菌病病理研究。[J]包头医学院学报。2010,26(1):8-11]
    23.周光耀,何今贤,汪爽等.白念珠菌对人肺上皮细胞的黏附作用及其影响因素[J].广东医学,2000,12;21(12):1012-1014.
    24.燕华玲,王爱平,李若瑜.培养白念珠菌菌丝相的条件及影响因素[J].中国麻风皮肤病杂志.2003,10;19(5):475-476.
    25. Okamoto K, Ashimoto A. Germ tube formation and protein activity of candida albicans in relation to virulence for mice. Kansenshogaka Zasshi,1993; 67(5) 466-4728.
    26.孔小锋,陈琢,昆明小鼠白念珠菌性阴道炎模型构建条件的摸索,中西医结合研究,2009,10(5):236-240
    27.赵喜新,阎杜海,王和平,等.环磷酰胺引致的小鼠白细胞减少模型及动力学分析[J].上海实验动物科学,1998,18(1):12-14.
    28.刘香梅,张钰,闵凡贵,等.环磷酰胺对近平滑念珠菌感染小鼠白细胞的影响[J].实验动物与比较医学,2007,27(2):116-118.
    29. MOSER SA, DOMER JE. Effects of Cyclophospdamide on murine candidiasis[J]. Infect Immun,1980,27(2):376-386.
    30. Moser, SA, Domer JE. Effects of cyclophosphamide on murine candidiasis[J].Infect Immun,1980,27(2).376-386.
    31.丁传林,吴旭东.β-胡罗卜素立体异构体对环磷酰胺处理小鼠免疫功能的比较研究[J].中国生化药物杂志,1997,187(1):19-21.
    32. Turk JL, Poulter LW. Selective depletion of lymphoid tissue by cyclophos phamide [J].Clin Exp Immunol,1972,10:285-296.
    33. Poulter LW, Turk JL. Proportional increase in the carrying lymphocyte in peripheral lymphoid tissue following treatment with cyclophosphamide[J] Nature New Biol,1972,238:17.
    34.刘卫军,顾振纶.一叶秋碱的抑瘤和拮抗环磷酰胺毒性作用[J].中国药理学通报,1997,13(6):529-532.
    35. Turk JL, Parken D. Effect of cyclophosphamide on immunological control mechanisms[J]. Immunological Rev,1982,65:99□113.
    36.徐海帆,李汉贤,免疫抑制小鼠不同时间环磷酰胺的血药浓度与免疫功能,[J]南华大学学报医学版,2001,29(6):562-564
    37.齐丽娟,宋雁,王伟,崔文明,张馨,刘兆平,孙拿拿,李宁,用环磷酰胺建立小鼠免疫抑制动物模型[J],卫生研究.2010,39(3):313-315
    38.熊延靖,王萍,董群,免疫抑制小鼠系统性白念珠菌感染模型建立的研究[J],皖南医学院学报,2008,27(6):403-405
    39. Romani I, Howard DH. Mechanism of resistance to fungal infection. Curr Opin Immunol 1995; 7:517-523.
    40. Marzo AL, Vezys V, Williams K, et al. Tissue- level regulation of Thl and Th2 primary and memory CD4 T cells in response to Listeria infection. J Immunol 2002; 168:4504-4510.
    41. Brad S, Douglas J,Quynh TP, et al.Parenchymal Organ, and Not Splenic, Immunity Correlates with Host Survival during Disseminated Candidiasis. Infect Immun.2003;71(10):5756-5764.
    1. Pagano L,Caira M,Candoni A,et al.The epidemiology of fungal infections in patients with hematologic malignancies:the SEIFEM-2004 study.Hematologica 2006;91:1068-75.
    2. Alonso-Valle H,Acha O,Garcia-Palomo JD,et al. Candidemia in a tertiary care hospital:epidemiology and factors influencing mortality. Eur.J.Clin.Microbiol. Infect.Dis 2003;22:254-257
    3. Moore NJ, Leef JL, Pang Y. Systemic Candidiasis [J]. Radiographics,2003, 23(5):1287-1890.
    4. Grabowski R, Dugan E. Disseminat ed candidiasis in a patient with acute mylogenous leukemia[J]. Cutis,2003,71(6):466-468.
    5. Naglik J R,Rodgers C A,Shi rlaw P J,et al.Differntial expression of Candida albicans secreted aspartyl proteinase and phospholipase B genes in humans correlates with active oral and vaginal infections J Infect Dis 2003; 188(3):469-479.
    6. Murad AM, d Enf ert C, Gaillardin C, et al. Transcript profiling in Candida albicans reveals new cellular functions for the transcriptional repressors CaTupl, CaMigl and CaNrgl[J]. Mol Microbiol,2001,42(4):981-993.
    7. Colina AR, Aumont F, Deslauriers N, Belhumeur P, de Repentigny L. Evidence for degradation of gastrointestinal mucin by Candida albicans secretory aspartyl proteinase. Infect Immun 1996; 64:4514-9.
    8. Schaller M, Korting HC, Schafer W, Bastert J, Chen W, Hube B. Secreted aspartic proteinase (Sap) activity contributes to tissue damage in a model of human oral candidosis. Mol Microbiol 1999; 34:169-80.
    9. Hube B, Sanglard D, Odds FC, Hess D, Monod M, Schafer W, Brown AG, Gow NA. Gene disruption of each of the secreted aspartyl proteinase genes SAP1, SAP2, and SAP3 in Candida albicans attenuates virulence. Infect Immun 1997; 65:3529-38.
    10. Sanglard D, Hube B, Monod M, Odds FC, Gow NAR. A triple deletion of the secreted aspartyl proteinase genes SAP4, SAP5, and SAP6 of Candida albicans causes attenuated virulence. Infect Immun 1997; 65:3539-46.
    11. Ollert MW, Wende C, Gorlich M, McMullan-Vogel CG, Borg-von Zepelin M, Vogel C-W, Korting HC. Increased expression of Candida albicans secretory proteinase, a putative virulence factor, in isolates from human immunodeficiency virus-positive patients. J Clin Microbiol 1995; 33:2543-9.
    12. De Bernardis F, Chiani P, Ciccozzi M et al. Elevated aspartic proteinase secretion and experimental pathogenicity of Candida albicans isolated from oral cavities of subjects infected with human immunodeficiency virus. Infect Immun 1996; 64:466-71.
    13. Na BK, Chung GT, Song CY. Producti on, characterization and epitope mapping of a monoclonal antibody against aspartic proteinase of Candida albicans [J]. Clin Diagn Lab Immun ol,1999,6(3):429-433.
    14. Louie A, Dixon DM, Burnett JW. Relationship between Candida albicans spidermoytic protein activ ity and virulence in mice. J Med Vet Mycol,1994; 32 (1):59-64
    15. Vilanova M, eixeira L, Caram alho I, et a.l P rotection against systemic candidiasis in mice immunized with secreted aspartic proteinase 2. Immunology,2004, 111(3):334-342.
    16.沈继川,谢奇峰,姚集鲁.真菌DNA免疫的研究进展[J].国外医学.流行病学传染病学分册,2002,29(1):24.
    17.李蕾,邹宪彪,杨宇光,白假丝酵母菌天冬氨酸蛋白酶真核表达质粒pcDNA3.1/SAP2的构建,[J],中国感染控制杂志,2008,7(4)233-235]
    18.廖万清.真菌病学[M].北京:人民卫生出版社,1989.226-229.
    19. Ibrahim AS, Fu Y, Spel lbery B J, e t al.2005 Vaccination with recombinant N-terminal Domain of alslpim proves survival during murine disseminated candidias is by enhancing cell-mediated, not humora, limmunity[J]. In fect Immun,2005,73(2):999.
    20. VilanovaM, eixeira L, Caram alho I, et a.l Protection against systemic candidiasis in mice immunized with secreted aspartic proteinase 2. Immunology,2004, 111(3):334-342.
    21.齐丽娟,宋雁,王伟,崔文明,张馨,刘兆平,孙拿拿,李宁,等.用环磷酰胺建立小鼠免疫抑制动物模型[J].卫生研究,2010,39(3):313-315.
    22.莫冰,傅颖媛,曾小平,等.抗白念珠菌感染特异性免疫实验研究[J].中国皮肤病杂志,2003,17(2):88-90.
    23.张晓艳,潘德海,宋佩华,张晓宁特异性抗体在系统性念珠菌感染中作用的研究,[J].中日友好医院学报,2004,18(6):357-359
    24. Wiesner SM, Bendel CM,Hess DJ, et al.Aderence of yeast and filamentous forms of candida albicans to cultured enterocytes[J]. Critical Care Medicine,2002, 30(3):677-683.
    25. Gale C, Finkel D, Tao N, et al. Linkage of adhesion, f ilamentous growth and virulence in Candida albicans to a single gene INT1[J].Science,1998,279: 1355-1358.
    26. Wiesner SM, Jechorek RP, Garni RP, et al. Gastrointestinal colonization by Candida albicans mutant strains in antibiotic treated mice[J]. Clin Diagn Lab Immunol,2001,8:192-195.
    27. Moser, SA, Domer JE. Effects of cyclophosphamide on murine candidiasis[J]. Infect Immun,1980,27(2)376-386.
    28. Pitarch A, Diez Orejas R,Molero G, et al.Analysis of the serologic response to systemic candida albicans infection in a murine model [J].Protemics,2001,1(4): 550-559.
    29. Bromuro C, Torosantucci A, Chiani P et al. Interplay between protective and inhibitory antibodies dictates the outcome of experimentally disseminated Candidiasis in recipients of a Candida albicans vaccine [J]. Infect Immun,2002; 70 (10):5462-70.
    30. Ng S c, Wan S. Yim AP. Pulmonary ischaemia reperfusion injury:role of apoptosis [J]. Eur Respir J,2005,25(2):356-363.
    31. Mencacci A, Cenci E, Bacci A, et al. [J]. Curr Pharm Biot echnol2000,1(3): 235-251.
    32. Cenci E, Mencacci A, Del Sero G, et al. [J]. J Immunol 1998,161(7): 3543-3550.
    33. Mencacci A, Spaccapelo R, Del Sero G, et al. [J]. Infect Immun,1996,64(12): 4907-4914.
    34. Park H,Li Z,Yang XO,et al.A distinct lineage of CD4+T cells regulates tissue inflammation by producing interleukin 17[J].Nat Immunol,2005,6(11):1133-1141
    35. Harrington LE,Hatton RD,Mangan PR,et al.Interleukinl7-producing CD4+ effector T cells develop via a lineage distinct from the T helpertype 1 and 2 lineages[J].Nat Immunol,2005,6(11):1123-1133
    36. Cenci E, Mencacci A, Del Sero G, et al. [J]. J Immunol 1998,161(7): 3543-3550.
    37. Londono LP, Jones HB, Vie AT, et al. [J]. FEMS Immunol Med Microbiol,2000, 27(2):117-125.
    38. Fratt i RA, Ghannoum MA, Edwards JE Jr, et al. [J]. Infect Immun,1996, 64(11):4714-4718
    39. Roilides E, Kadiltsoglou I, Dimitriadou A, et al. [J]. FEMS Immunol Med Microbiol,1997,19(2):169-180
    40. Cenci E, Mencacci A, Del Sero G, et al. [J]. J Immunol 1998,161(7): 3543-3550.
    41.金伯泉.细胞和分子免疫学,第2版[M].北京:科学出版社,2001:39
    42.翟雪琼,MP65和Sap2重组表达质粒对小鼠系统性白念珠菌感染的免疫保护作用研究
    43. Leslie van der Fits, Sabine Mourits, Jane S. A. Voerman, Marius Kant, Louis Boon Imiquimod-Induced Psoriasis-Like Skin Inflammation in Mice Is Mediated via the IL-23/IL-17 Axis, [J],Journal of Immunology,2009(9):5836-5845
    1. Ruhnke, M. Skin and mucous membrane infections.In Candida and Candidiasis. Calderone, R.A. Washington, DC:American Society for Microbiology Press, 2002(25):307-325.
    2. Sobel, J.D. Pathogenesis and epidemiology of vulvovaginal candidiasis. Ann NY Acad Sci.1988 (544):547-557.
    3. Sobel, J.D. Pathogenesis and treatment of recurrent vulvovaginal candidiasis. Clin Infect Dis.1992 (14):S148-S153.
    4. Fidel, P.L., Jr, Vazquez, J.A., and Sobel, J.D. Candida glabrata:review of epidemiology, pathogenesis, and clinical disease with comparison to C. albicans. Clin Microbiol Rev.1999 (12):80-96.
    5. Sweet, S.P. Selection and pathogenicity of Candida albicans in HIV infection. Oral Dis.1997(3):S88-S95.
    6. Hube, B., Monod, M., Schofield, D.A., Brown, A.J.P., and Gow, N.A.R. Expression of seven members of the gene family encoding secretory aspartyl proteinases in Candida albicans. Mol Microbiol.1994 (14):87-99.
    7. Cunningham, E.L., and Agard, D.A. Disabling the folding catalyst is the last critical step in alpha-lytic protease folding. Protein Sci.2004 (13):325-331.
    8. Klemba, M., and Goldberg, D.E. Biological role of proteases in parasitic protozoa. Ann Rev Biochem.2002 (71):275-305.
    9. Monod, M., and Borg-von Zepelin, M. Secreted proteinases and other virulence mechanisms of Candida albicans. Chem Immunol.2002 (81):114-128.
    10. Rasmussen, M., and Bjorck, L. Proteolysis and its regulation at the surface of Streptococcus pyogenes. Mol Microbiol.2002 (43):537-544.
    11. Rossetto, O., de Bernard, M., Pellizzari, R., Vitale, G., Caccin, P., Schiavo, G., and Montecucco, C. Bacterial toxins with intracellular protease activity. Clin Chim Acta.2000 (291):189-199.
    12. Barrett, A.J. Introduction:the classification of proteinases. In Symposium on Protein Degradation in Health and Disease (1979:Ciba Foundation). Amsterdam: Excerpta Medica, pp.1-13.
    13. Davies, D.R. The structure and function of aspartic proteinases. Annu Rev Biophys Chem.1990(19):189-215.
    14. Hube, B., Monod, M., Schofield, D.A., Brown, A.J.P., and Gow, N.A.R. Expression of seven members of the gene family encoding secretory aspartyl proteinases in Candida albicans. Mol Microbiol.1994 (14):87-99.
    15. Naglik, J.R., Challacombe, S.J., and Hube, B. Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiol Mol Biol Rev.2003(67): 400-428.
    16. Monod, M., Hube, B., Hess, D., and Sanglard, D. Differential regulation of SAP8 and SAP9, which encode two new members of the secreted aspartic proteinase family in Candida albicans. Microbiology.1998 (144):2731-2737.
    17. Felk, A., Schafer, W., and Hube, B. Candida albicans secretory aspartic proteinase (SAP 10) gene. Accession No. AF146440.
    18. Hube, B., and Naglik, J. Candida albicans proteinases:resolving the mystery of a gene family. Microbiology 2001 (147):1997-2005.
    19. von Heijne, G. Signal sequences. The limits of variation. J Mol Biol,1985 (184): 99-105.
    20. Julius, D., Brake, A., Blair, L., Kunisawa, R., and Thorner, J. Isolation of the putative structural gene for the lysine-arginine-cleaving endopeptidase required for processing of yeast prepro-alpha-factor. Cell,1984 (37):1075-1089.
    21. Hube, B., Turver, C.J., Odds, F.C., Eiffert, H., Boulnois, G.J., Kochel, H., and Ruchel, R. Sequence of the Candida albicans gene encoding the secretory aspartate proteinase. J Med Vet Mycol,1991 (29):129-132.
    22. Cutfield, S.M., Dodson, E.J., Anderson, B.F., Moody, P.C., Marshall, C.J., Sullivan, P. A., and Cutfield, J.F. The crystal structure of a major secreted aspartic proteinase from Candida albicans in complexes with two inhibitors. Structure,1995 (3):1261-1271.
    23. Jaswal, S.S., Sohl, J.L., Davis, J.H., and Agard, D.A. Energetic landscape of alphalytic protease optimizes longevity through kinetic stability. Nature,2002 (415):343-346.
    24. Beggah, S., Lechenne, U., Reichard, U., Foundling, S., and Monod, M. Intra-and intermolecular events direct the propeptide-mediated maturation of the Candida albicans secreted aspartic proteinase Saplp. Microbiology,2000 (146): 2765-2773.
    25. Schaller, M., Hube, B., Ollert, M.W., Schafer, W., Borg-von Zepelin, M., Thoma-Greber, E., and Korting, H.C. In vivo expression and localization of Candida albicans secreted aspartyl proteinases during oral candidiasis in HIV-infected patients. J Invest Dermatol,1999 (112):383-386.
    26. Albrecht, A., Felk, A., Pichova, I., Schaller, M., Kretschmar, M., Nichterlein, T., et al. (2004) Sap9 and Sap10 of Candida albicans:localization, function and their relevance for virulence. ASM Conference on Candida and Candidosis,18-22 March 2004, Austin, Texas.
    27. Staib, P., Kretschmar, M., Nichterlein, T., Hof, H., and Morschhauser, J. Host versus in vitro signals and intrastrain allelic differences in the expression of a Candida albicans virulence gene. Mol Microbiol,2002(44):1351-1366.
    28. Morrow, B., Srikantha, T., and Soll, D.R. Transcription of the gene for a pepsinogen, PEP1, is regulated by whiteopaque switching in Candida albicans. Mol Cell Biol,1992(12):2997-3005.
    29. Monod, M., Hube, B., Hess, D., and Sanglard, D. Differential regulation of SAP8 and SAP9, which encode two new members of the secreted aspartic proteinase family in Candida albicans. Microbiology 1998 (144):2731-2737.
    30. Naglik, J.R., Rodgers, C.A., Shirlaw, P.J., Dobbie, J.L.,Fernandes-Naglik, L.L., Greenspan, D., et al. Differential expression of Candida albicans secreted aspartyl proteinase and phospholipase B genes in humans correlates with active oral and vaginal infections. J Infect Dis 2003(188):469-479.
    31. Ripeau, J.S., Fiorillo, M., Aumont, F., Belhumeur, P., and de Repentigny, L. Evidence for differential expression of Candida albicans virulence genes during oral infection in intact and human immunodeficiency virus type 1-transgenic mice. J Infect Dis.2002(185):1094-1102.
    32. White, T.C., Miyasaki, S.H., and Agabian, N. Three distinct secreted aspartyl proteinases in Candida albicans. J Bacteriol.1993 (175):6126-6133.
    33. Schaller, M., Bein, M., Korting, H.C., Baur, S., Hamm, G., Monod, M., et al. The secreted aspartyl proteinases Sap1 and Sap2 cause tissue damage in an in vitro model of vaginal candidiasis based on reconstituted human vaginal epithelium. Infect Immun 2003 (71):3227.
    34. Cassone, A., Tacconelli, E., De Bernardis, F., Tumbarello, M., Torosantucci, A., Chiani, P., and Cauda, R. Antiretroviral therapy with protease inhibitors has an early, immune reconstitution-independent beneficial effect on Candida virulence and oral candidiasis in human immunodeficiency virus-infected subjects. J Infect Dis 2002 (185):188-195.
    35. Schofield, D.A., Westwater, C., Warner, T., Nicholas, P.J., Paulling, E.E., and Balish, E. Hydrolytic gene expression during oroesophageal and gastric candidiasis in immunocompetent and immunodeficient gnotobiotic mice. J Infect Dis 2003(188):591-599.
    36. Felk, A., Kretschmar, M., Albrecht, A., Schaller, M., Beinhauer, S., Nichterlein, T., et al. Candida albicans hyphal formation and the expression of the Efgl-regulated proteinases Sap4 to Sap6 are required for the invasion of parenchymal organs. Infect Immun.2002 (70):3689-3700.
    37. Staib, P., Kretschmar, M., Nichterlein, T., Hof, H., and Morschhauser, J. Differential activation of a Candida albicans virulence gene family during infection. Proc Natl Acad Sci USA.2000 (97):6102-6107.
    38. Garcia-Sanchez, S., Aubert, S., Iraqui, I., Janbon, G., Ghigo, J.M., and d'Enfert, C. Candida albicans biofilms:a developmental state associated with specific and stable gene expression patterns. Eukaryotic Cell 2004 (3):536-545.
    39. Riichel, R., Zimmermann, F., Boning-Stutzer, B., and Helmchen, U. Candidiasis visualised by proteinasedirected immunofluorescence. Virch Arch a Pathol Anat.1991(419):199-202.
    40. Schaller, M., Hube, B., Ollert, M.W., Schafer, W., Borg-von Zepelin, M., Thoma-Greber, E., and Korting, H.C. In vivo expression and localization of Candida albicans secreted aspartyl proteinases during oral candidiasis in HIV-infected patients. J Invest Dermatol.1999(112):383-386.
    41. De Bernardis, F., Boccanera, M., Adriani, D., Spreghini, E., Santoni, G., and Cassone, A. Protective role of antimannan and anti-aspartyl proteinase antibodies in an experimental model of Candida albicans vaginitis in rats. Infect Immun1997 (65):3399-3405.
    42. Vilanova, M., Teixeira, L., Caramalho, I., Torrado, E., Marques, A., Madureira, P., et al. Protection against systemic candidiasis in mice immunized with secreted aspartic proteinase 2. Immunology.2004 (111):34-342.
    43. Wyrick, J.J., and Young, R.A. Deciphering gene expression regulatory networks. Curr Opin Genet Dev.2002 (12):130-136.
    44. Levine, M., and Tjian, R. Transcription regulation and animal diversity. Nature 2003 (424):147-151.
    45. de Bruin, D., Zaman, Z., Liberatore, R.A., and Ptashne, M. (2001) Telomere looping permits gene activation by a downstream UAS in yeast. Nature.2001 (409):109-113.
    46. Brown, A.J., and Gow, N.A. Regulatory networks controlling Candida albicans morphogenesis. Trends Microbiol.1999 (7):333-338.
    47. Ernst, J.F. Transcription factors in Candida albicans-environmental control of morphogenesis. Microbiology.2000 (146):1763-1774.
    48. Korting, H., Hube, B., Oberbauer, S., Januschke, E., Hamm. G., Albrecht, A., et al. Reduced expression of the hyphal-independent Candida albicans proteinase genes SAP1 and SAP3 in the efgl mutant is associated with attenuated virulence during infection of oral epithelium. J Med Microbiol 2003 (52):623-632.
    49. Schweizer, A., Rupp, S., Taylor, B.N., Rollinghoff, M., and Schroppel, K. The TEA/ATTS transcription factor CaTeclp regulates hyphal development and virulence in Candida albicans. Mol Microbiol 2000 (38):435-445.
    50. Murad, A.M., Leng, P., Straffon, M., Wishart, J., Macaskill, S., MacCallum, D., et al. NRG1 represses yeasthypha morphogenesis and hypha-specific gene expression in Candida albicans. EMBO J.2001 (20):4742-4752.
    51. Ray, T.L., Payne, C.D., Ruchel, R., Ritter, B., and Schaffrinski, M. Comparative production and rapid purification of Candida acid proteinase from protein-supplemented cultures. Infect Immun.1990 (273):391-403.
    52. Ogrydziak, D.M. Yeast extracellular proteases. Crit Rev Biotechnol.1993 (13): 1-55.
    53. Colina, A.R., Aumont, F., Deslauriers, N., Belhumeur, P., and de Repentigny, L. Evidence for degradation of gastrointestinal mucin by Candida albicans secretory aspartyl proteinase. Infect Immun.1996 (64):4514-4519.
    54. Morschhauser, J., Virkola, R., Korhonen, T.K., and Hacker, J. Degradation of human subendothelial extracellular matrix by proteinase-secreting Candida albicans. FEMS Microbiol Lett.1997(153):349-355.
    55. Germaine, G.R., and Tellefson, L.M. Effect of pH and human saliva on protease production by Candida albicans. Infect Immun.1981(31):323-326.
    56. Ruchel, R., Zimmermann, F., Boning-Stutzer, B., and Helmchen, U. Candidiasis visualised by proteinasedirected immunofluorescence. Virch Arch a Pathol Anat. 1991 (419):199-202.
    57. Kaminishi, H., Tanaka, M., Cho, T., Maeda, H., and Hagihara, Y. Activation of the plasma kallikrein-kinin system by Candida albicans proteinase. Infect Immun 1990 (58):2139-2143.
    58. Tsushima, H., and Mine, H. Cleavage of human big endothelin-1 by Candida albicans aspartic proteinase. FEMS Immunol Med Microbiol.1995 (11):69-72.
    59. Tsushima, H., Mine, H., Kawakami, Y., Hyodoh, F., and Ueki, A. Candida albicans aspartic proteinase cleaves and inactivates human epidermal cysteine proteinase inhibitor, cystatin A. Microbiology.1994(140):167-171.
    60. Sanglard, D., Hube, B., Monod, M., Odds, F.C., and Gow, N.A. A triple deletion of the secreted aspartyl proteinase genes SAP4, SAP5, and SAP6 of Candida albicans causes attenuated virulence. Infect Immun 1997 (65):3539-3546.
    61. Hube, B., Monod, M., Schofield, D.A., Brown, A.J.P., and Gow, N.A.R. Expression of seven members of the gene family encoding secretory aspartyl proteinases in Candida albicans. Mol Microbiol.1994 (14):87-99.
    62. Borg-von Zepelin, M., Meyer, I., Thomssen, R., Wurzner, R., Sanglard, D., Telenti, A., and Monod, M. HIVProtease inhibitors reduce cell adherence of Candida albicans strains by inhibition of yeast secreted aspartic proteases. J Invest Dermatol 1999 (113):747-751.
    63. Kretschmar, M., Hube, B., Bertsch, T., Sanglard, D., Merker, R., Schroder, M., et al. Germ tubes and proteinase activity contribute to virulence of Candida albicans in murine peritonitis. Infect Immunl999 (67):6637-6642.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700