荧光法测定小檗碱的新方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小檗碱(Berberine, BR),亦称黄连素,是一种重要的异喹啉生物碱。它是一种平面结构的药物,具有潜在抗癌功效,对其进行简单、灵敏的测定具有重要的临床医学意义。小檗碱的水溶液几乎不具有荧光,所以不能用常规荧光法直接测定小檗碱。本研究表明可以通过改善小檗碱的介质微环境,增强小檗碱的荧光,从而建立了测定小檗碱的荧光分析新方法,具体工作如下:
     一、以离子液体[Bmim][BF4]为微介质荧光法测定小檗碱
     离子液体(Ionic Liquid, IL)是指在室温或接近室温下呈现液态,完全由阴、阳离子所组成的低温熔融盐。与传统有机溶剂相比,离子液体具有不挥发、不可燃、导电性强、粘度很大、熔点低,溶解性好等优点。本研究发现将一定浓度的离子液体[Bmim][BF4]加入到小檗碱溶液时,小檗碱的荧光显著增强。据此现象,建立了一种简单测定小檗碱的新分析方法。详细考察了实验条件对此体系荧光强度的影响。在优化的实验条件下,小檗碱的浓度在1.0×10-6-1.0×10-4g/mL范围内与体系的荧光强度呈良好的线性关系(相关系数是0.9924,n=12)。本法检出限为0.13μg/mL。将此方法用于实际样品复方黄连素片中的小檗碱含量进行检测,结果令人满意。
     二、以G-四聚体DNA为微介质荧光法测定小檗碱
     G-四聚体DNA是指富含鸟嘌呤(G)的单链DNA在某些配体的诱导下通过G碱基间Hoogsteen氢键形成G-四链体,G-四链体进一步通过非共价的π-π堆积结合成的DNA分子的二级结构。本研究表明在钾离子存在下,小檗碱可以诱导富G单链DNA (G-rich DNA,5'-GGTTGGTGTGGTTGG-3')形成G-四聚体结构,此小檗碱-G-四聚体复合体具有很强的荧光。据此现象,建立了一种简单测定小檗碱的新分析方法。通过紫外-可见光谱、荧光光谱、圆二色光谱等手段,研究此体系荧光机理。在优化的实验条件下,小檗碱的浓度在1.0×10-8-1.0×10-5g/mL范围内与体系的荧光强度呈良好的线性关系(相关系数是0.9950,n=14)。本法检出限为1.2ng/mL。本法具有操作简单、灵敏度高、选择性高、线性范围宽等优点。
Berberine is an active substance of traditional eastern herbal medicine. It has multiple pharmacological effects, including inhibiting acetylcholinesterase, reducing cholesterol and glucose, lowering mortality in patients with chronic congestive heart failure, as well as immunomodulatory, antimicrobial, and anti-inflammatory. Berberine exhibits very weak fluorescence emission in aqueous solution, which means that berberine cannot be detected directly in aqueous solution by normal fluorimetric method. Herein, we proposed the two fluorescence methods for determination of berberine through optimizing the micro-environment of berberine.
     1. Fluoresence method for detection of berberine using ionic liquid [Bmim][BF4] as micro-environment medium
     In this work, the great increase of the fluorescence intensity of berberine was observed when ionic liquid [Bmim][BF4] was added into the aqueous solution of berberine. Based on the phenomenon, a spectrofluorimetric method with high sensitivity and selectivity was developed for the determination of berberine. At optimum conditions, the linear relationship was obtained in the range of1.0×10-6-1.0×10-4g/mL with the relative coefficient of0.9924, and the detection limit was0.13μg/mL. The proposed method was successfully applied for the determination of berberine in pharmaceutical dosage preparations.
     2. Fluoresence method for detection of berberine using G-quadruplex as micro-environment medium
     In this work, a novel fluorescent method for berberine is presented using G-rich DNA as probe. In the presence of K+, berberine could bind G-rich DNA to form berberine-G-quadruplex complex, and the berberine-G-quadruplex complex performed the strong fluorescence emission. The fluorescence intensity of the berberine-G-quadruplex complex increased linearly with increasing berberine concentration in the range of1.0×10-8-1.0×10-5g/mL with the relative coefficient of0.9950, and the detection limit was1.2ng/mL. The turn-on fluorescent assay is simple, inexpensive, and highly sensitive. The mechanisms, which produce strong fluorescence of berberine-G-quadruplex complex, were discussed.
引文
[1]H. Tian, L. Ip, H. Lu, D. Chang, K. Luo. A high throughput drug screen based on fluorescence resonance energy transfer (FRET) for anticancer activity of compounds from herbal medicine [J]. Brit. J. Pharmacol.,2007,150(3):321-334.
    [2]C. H. Chau, O. Rixe, H. McLeod, W. D. Figg. Validation of analytic methods for biomarkers used in drug development [J]. Clin. Cancer. Res.,2008,14(19): 5967-5976.
    [3]A. Shkilnyy, E. Munnier, K. Herve, M. Souce, R. Benoit, S. C. Jonathan, P. Limelette, M. L. Saboungi, P. Dubois, I. Chourpa. Synthesis and evaluation of novel biocompatible super-paramagnetic iron oxide nanoparticles as magnetic anticancer drug carrier and fluorescence active label [J]. J. Phys. Chem. C,2010, 114(13):5850-5858.
    [4]B. Tang, B. Y Ding, K. H. Xu, L. L. Tong. Use of selenium to detect mercury in water and cells:an enhancement of the sensitivity and specificity of a seleno fluorescent probe [J]. Chem. Eur. J.,2009,15(13):3147-3151.
    [5]J. F. Zhang, Y. Zhou, J. Y. Yoon, J. S. Kim. Recent progress in fluorescent and colorimetric chemosensors for detection of precious metal ions (silver, gold and platinum ions) [J]. Chem. Soc. Rev.,2011,40(7):3416-3429.
    [6]高霞,周凌云,席景砖.荧光分析法在环境有机污染物检测中的应用[J].光谱实验室,2011,28(4):2008-2016.
    [7]H. N. Joensson, C. Zhang, M. Uhlehn, H. A. Svahn. A homogeneous assay for protein analysis in droplets by fluorescence polarization [J]. Electrophoresis,2012, 33(3):436-439.
    [8]L. B. Poole, C. Klomsiri, S. A. Knaggs, C. M. Furdui, K. J. Nelson, M. J. Thomas, J. S. Fetrow, L. W. Daniel, S. B. King. Fluorescent and affinity-based tools to detect cysteine sulfenic acid formation in proteins [J]. Bioconjugate Chem.,2007, 18(6):2004-2017.
    [9]D. F. Saxe, D. L. Persons, D. J. Wolff, K. S. Theil. Validation of fluorescence in situ hybridization using an analyte-specific reagent for detection of abnormalities involving the mixed lineage leukemia gene [J]. Arch. Pathol. Lab. Med.,2012, 1(136):47-52.
    [10]P. Bragado, Y. Estrada, M. S. Sosa, A. A. Valderas, D. Cannan, E. Genden, M. Teng, A. C. Ranganathan, H. C. Wen1, A. Kapoor, E. Bernstein, J. A. A. Ghiso. Analysis of marker-defined HNSCC subpopulations reveals a dynamic regulation of tumor initiating properties [J]. PLoS One,2012,7(1):1-17.
    [11]S. L. Bulfer, T. J. Quade, M. J. Larsen, R. C. Trievel. Application of a high-throughput fluorescent acetyltransferase assay to identify inhibitors of homocitrate synthase [J]. Anal. Biochem.,2011,410(2):133-140.
    [12]牛艳山,马永健,孙慧斌.一种基于荧光衍生法的色氨酸自动分析的研究[J].现代科学仪器,2007,6(2):124-127.
    [13]许鑫华,傅英松,韩波,何淑兰,王遵,陈强.荧光标记法检测活细胞内游离钙离子浓度的改进[J].科技通报,2003,19(4):282-284.
    [14]傅丽,刘保生,曹冬林.四溴荧光素猝灭法测定司帕沙星[J].分析试验室,2006,25(10):62-64.
    [15]赵慧春,冯瑞琴,王晓斌,易琳.铽-敏化荧光测定妥舒沙星[J].分析试验室,2002,21(5):2-4.
    [16]F. J. Han, Y. F. Luo, J. Xu. A improved measurement of fluorescence resonance energy transfer to analyse protein-protein interaction in protein homdimer [J]. Chin. J. Biochem. Mol. Biol.,2008,24(7):619-629.
    [17]赵强,刘晓庆,赵二劳.荧光法直接测定环境水中的碱性玫瑰精[J].分析与检测,2009,9(1):159-161.
    [18]李满秀,张瑶,杨淑英.绿原酸的直接荧光分析法及其抗氧化性研究[J].分析科学学报,2011,27(2):203-206.
    [19]余家姮.直接荧光法测定盐酸普鲁卡因的研究[J].海峡药学,2007,19(10):40-42.
    [20]刘欣,黄汉国.高锰酸钾氧化-荧光分光光度法测定片剂中叶酸含量[J].分析化学,2000,28(11):1406-1409.
    [21]M. H. Ekram. Spectrophotometric and fluorimetric methods for the determination of meloxicam in dosage forms [J]. J Pharmaceut. Biomed. Anal.,2002,27(5): 771-777.
    [22]刘斌,王智,李培凡.直接荧光法测定槐胺碱的含量[J].中国中药杂志,2005,30(4):274-276.
    [23]M. Jaworska, M. Stanczyk, M. Wilk, G. Klaczkow, E. Anuszewska, J. Barzal, P. Rzepecki. New approach for amino acid profiling in human plasma by selective fluorescence derivatization [J]. Biomed. Environ. Sci.,2012,42(4):1243-1245.
    [24]潘祖亭,余军平.荧光光谱分析法测定针剂中的丙酸睾酮[J].分析科学学报,2004,20(1):84-86.
    [25]M. Algarra, B. B. Campos, E. R. Borges, F. G. Sanchez, J. L. Romero, J. C. G. Esteves da Silva. Niclosamide quantification in methyl-β-cyclodextrin after derivatization to aminoniclosamide [J]. J. Incl. Phenom. Macrocycl. Chem.,2012, 72(1-2):89-94.
    [26]B. C. Gonzalez, M. Lores, M. C. Casais, R. Cela. Simultaneous determination of neutral and acidic pharmaceuticals in wastewater by high-performance liquid chromatography-post-column photochemically induced fluorimetry [J]. J. Chromatogr. A,2003,993(1-2):29-37.
    [27]Z. X. Zhou, Y. Du, L. B. Zhang, S. J. Dong. A label-free, G-quadruplex DNAzyme-based fluorescentprobe for signal-amplified DNA detection and turn-on assay of endonuclease [J]. Biosensors Bioelectron.,2012,34(1):100-105.
    [28]T. Wu, X. J. Peng. A colorific and fluorescent dual signal probe for DNA [J]. Advan. Mater. Res.,2012,441(3):398-402.
    [29]Y. Yuan, J. Zhang, G. L. Liang, X. R. Yang. Rapid fluorescent detection of neurogenin3 by CdTe quantum dot aggregation [J]. Analyst,2012,137(28): 1775-1778.
    [30]M. G. Moritz, G. Clavier, J. Lulek, R. Schneider. Copper or manganese-doped ZnS quantum dots as fluorescent probes for detecting folic acid in aqueous media [J]. J. Luminesc.,2012,132(4):987-991.
    [31]M. Yamagata, J. R. Sanes. Transgenic strategy for identifying synaptic connections in micel by fluorescence complementation (Grasp) [J]. Front. Mol. Neurosci.,2012,5(18):1-9.
    [32]Y. Q. Cheng, Q. Du, L. Y. Wang, H. L. Jia, Z. P. Li. Fluorescently cationic conjugated polymer as anIndicator of ligase chain reaction for sensitive and homogeneous detection of single nucleotide polymorphism [J]. Anal. Chem.,2012, 84(8):3739-3744.
    [33]M. Bonn, A. Schmitt, E. Asan. Double and triple in situ hybridization for coexpression studies:combined fluorescent and chromogenic detection of neuropeptide Y(NPY) and serotonin receptor subtype mRNAs expressed at different abundance levels [J]. Histochemistry Cell. Biol.,2012,137(1):11-24.
    [34]E. Lonardi, A. M. Deelder, M. Wuhrer, C. I. A. Balog. Microarray technology using glycans extracted from natural sources for serum antibody fluorescent detection [J]. Meth. Mol. B.,2012,808(3):285-302.
    [35]X. F. Wang, D. F. Chi, D. J. Song, G. M. Su, L. Li, L. H. Shao. Quantification of glutathione in plasma samples by HPLC using 4-fluoro-7-nitrobenzofurazan as a fluorescent labeling teagent [J]. J. Chromatogr. Sci.,2012,50(2):119-122.
    [36]Y. Y. Liu, B. X. Li, D. M. Cheng, X. Y. Duan. Simple and sensitive fluorescence sensor for detection of potassium ion in the presence of high concentration of sodium ion using berberine-G-quadruplex complex as sensing element [J]. Microchem. J.,2011,99(2):503-507.
    [37]J. Panchompoo, L. Aldous, M. Baker, M. I. Wallace, R. G. Compton. One-step synthesis of fluorescein mdified nano-carbon for Pd (II) detection via fluorescence quenching [J]. Analyst,2012,137(9):2054-2062.
    [38]H. L. Fan, X. H. Jiang, T. Zhang, Q. H. Jin. Peptide-induced fluorescence quenching of conjugated polyelectrolyte for label-free, ultrasensitive and selective assay of protease activity [J]. Biosens. Bioelectron.,2012,34(1):221-226.
    [39]J. P. Xie, Y. G. Zheng, J. Y. Ying. Highly selective and ultrasensitive detection of Hg2+ based on fluorescence quenching of Au nanoclusters by Hg2+ -Au+ interactions [J]. Chem. Commun.,2010,46(6):961-963.
    [40]J. H. Kim, J. H. Ahn, P. W. Barone, H. Jin, J. Q. Zhang, D. A. Heller, M. S. Strano. A luciferase/single-walled carbon nanotube conjugate for near-infrared fluorescent detection of cellular ATP [J]. Angew. Chem.,2010,122(8):1498-1501.
    [41]X. Li, J. Qian, L. Jiang, S. L. He. Fluorescence quenching of quantum dots by gold nanorods and its application to DNA detection [J]. Appl. Phys. Lett.,2009, 94(6):1-3.
    [42]A. Narayanan, O. P. Varnavski, T. M. Swager, T. Goodson. Multiphoton fluorescence quenching of conjugated polymers for TNT detection [J]. J. Phys. Chem.,2008,112(4):881-884.
    [43]M. Kamruzzaman, A. M. Alam, S. H. Lee, Y H. Kim, S. H. Kim, G. M. Kim. Spectrofluorimetric determination of sparfloxacin using Europium(Ⅲ) as a fluorescence probe in micellar medium [J]. Bull. Korean Chem. Soc.,2012,33(1): 105-110.
    [44]席会平,董学芝,胡卫平,信建豪,李艳艳.表面活性剂增敏荧光光度法快速 测定残留牛奶中的环丙沙星[J].中国抗生素,2006,31(5):285-287.
    [45]F. Wang, W. Huang, S. Zhang, G. K. Liu, K. X. Li, B. Tang. Enhancing fluorescence intensity of Ellagic acid in Borax-HC1-CTAB micelles [J]. Spectrochim. Acta Pt. A:Mol. Bio.,2011,78(3):1013-1017.
    [46]K. Ngamdee, T. Noipa, S. Martwiset, T. Tuntulani, Wittaya Ngeontae. Enhancement of sensitivity of glucose sensors from alizarin-boronic acid adducts in aqueous micelles [J]. Sensor Actuator B:Chem.,2011,160(1):129-138.
    [47]C. C. Guo, L. Wang, Z. Hou, W. Jiang, L. H. Sang. Micelle-enhanced and terbium-sensitized spectrofluorimetric determination of gatifloxacin and its interaction mechanism [J]. Spectrochim. Acta Pt. A:Mol. Bio.,2009,72(4): 766-771.
    [48]N. A. Alafaj, F. A. Aly. Micelle-enhanced spectrofluorimetric method for determination of cholesterol-reducing drug ezetimibe in dosage forms [J]. J. Fluoresc.,2011,22(1):9-15.
    [49]M. Jamkratoke, G. Tumcharern, T. Tuntulani, B. Tomapatanaget. A selective spectrofluorometric determination of micromolar level of cyanide in water using naphthoquinone imidazole boronic-based sensors and a surfactant cationic CTAB micellar system [J]. J. Fluoresc.,2011,21(3):1179-1187.
    [50]F. Mouffouk, A. M. Rosa da Costa, J. Martins, M. Zourob, K. M. Abu-Salah, S. A. Alrokayan. Development of a highly sensitive bacteria detection assay using fluorescent pH-responsive polymeric micelles [J]. Biosens. Bioelectron.,2011, 26(8):3517-3523.
    [51]D. Y. Wu, W. Huang, C. Y. Duan, Z. H. Lin, Q. J. Meng. Highly sensitive fluorescent probe for selective detection of Hg2+ in DMF aqueous media [J]. Inorg. Chem.,2007,46(5):1538-1540.
    [52]S. Kumar, A. K. Singh, G. Krishnamoorthy, R. Swaminathan. Thioflavin T displays enhanced fluorescence selectively inside anionic micelles and mammalian Cells [J]. J. Fluoresc.,2008,18(6):1199-1205.
    [53]Y. Jin, H. Y. Li, J. Y. Bai. Homogeneous Selecting of a quadruplex-binding ligand-based gold nanoparticle fluorescence resonance energy transfer assay [J]. Anal. Chem.,2009,81(14):5709-5715.
    [54]S. T. Huang, Y. Shi, N. B. Li, H. Q. Luo. Sensitive turn-on fluorescent detection of tartrazine based on fluorescence resonance energy transfer [J]. Chem. Commun., 2012,48(4):747-749.
    [55]H. X. Chang, L. H. Tang, Y. Wang, J. H. Jiang, J. H. Li. Graphene fluorescence resonance energy transfer aptasensor for the thrombin detection [J]. Anal. Chem, 2010,82(6):2341-2346.
    [56]B. Tang, L. H. Cao, K. H. Xu, L. H. Zhuo, J. C. Ge, Q. L. Li, L. J. Yu. A new nanobiosensor for glucose with high sensitivity and selectivity in serum based on fluorescence resonance energy transfer (FRET) between CdTe quantum dots and Au nanoparticles [J]. Chem. Eur. J.,2008,14(12):3637-3644.
    [57]H. H. Cai, H. Wang, J. H. Wang, W. Wei, P. H. Yang, J. Y. Cai. Naked eye detection of glutathione in living cells using rhodamine B-functionalized gold nanoparticles coupled with FRET [J]. Dye Pigment,2012,92(1):778-782.
    [58]王良,闫永胜,侯延民,李华明,朱文帅.离子液体在分析化学中的应用进展[J].冶金分析,2007,27(12):21-27.
    [59]J. S. Wilkes, M. J. zaworotko. Air and water stable 1-ethyl-3-methylidazolinm based ionic liquids [J]. Chem. Commun.,1992,13(6):965-967.
    [60]J. Dupont, R. F. de Souza, Paulo A. Z. Suarez. Ionic liquid (molten salt) phase organometallic catalysis [J]. Chem. Rev.,2002,102(10):3667-3692.
    [61]李汝雄,王建基.绿色溶剂-离子液体的制备与应用[J].化工进展,2002,1(21):43-47.
    [62]T. Welton. Room-temperature ionic liquids solvents for synthesis and catalysis [J]. Chem. Rev.,1999,99(8):2071-2083.
    [63]J. F. Liu, J. A. Jonsson, G. B. Jiang. Application of ionic liquids in analytical chemistry [J]. Trend Anal. Chem.,2005,24(1):20-27.
    [64]H. X. Gao, B. X. Han, J. C. Li, T. Jiang, Z. M. Liu, W. Z. Wu, Y. H. Chang, J. M. Zhang. Preparation of room-temperature ionic liquids by neutralization of 1,1,3,3-tetramethylguanidine with acids and their use as media for mannich reaction [J]. Syn. Commun.,2004,34(7):3083-3089.
    [65]M. Hirao, H. Sugimoto, H. Ohno. Preparation of novel room-temperature molten salts by neutralization of amines [J]. J. Electrochem. Soc.,2000,147(11): 4168-4172.
    [66]蔡月琴,彭延庆,宋恭华,黄菲菲,陆凤.室温离子液体1-丁基-3-甲基咪唑六氟磷酸盐的合成研究[J].化学试剂,2005,27(1):1-2.
    [67]S. Pandey. Analytical applications of room-temperature ionic liquids:a review of recent efforts [J]. Anal. Chim. Acta,2006,556,1(18):38-45.
    [68]C. M. Gordon. New developments in catalysis using ionic liquids [J]. Appl. Catal. A:Gen.,2001,222(1-2):101-117.
    [69]胡育,张元勤,李晓燕,王应红,宋连香.一种新的离子液体表面活性剂软模板法合成碳酸锶纳米棒[J].化学研究与应用,2011,23(10):1374-1376.
    [70]Z. Miskolczy, K. S. Nagy, L. Biczok, S. Gokturk. Aggregation and micelleformation of ionic liquids in aqueoussolution [J]. Chem. Phys. Lett.,2004, 400(4-6):296-300.
    [71]M. Blesic, M. H. Marques, N. V. Plechkova, K. R. Seddon, L. P. N. Rebelo, A. Lopes. Self-aggregation of ionic liquids:micelle formation in aqueous solution [J]. Green Chem.,2007,9(5):481-490.
    [72]R. K. Heenan. Aggregation behavior of aqueous solutions of ionic liquids [J]. Langmuir,2004,20(6):2191-2198.
    [73]R. Vanyur, L. Biczok, Z. Miskolczy. Micelle formation of l-alkyl-3-methylimidazolium bromide ionic liquids in aqueous solution [J]. Colloid Surface A,2007,299(1-3):256-261.
    [74]J. Hao, T. Zemb. Self-assembled structures and chemical reactions in room temperature ionic liquids [J]. Curr. Opin. Colloid Interface Sci.,2007,12(3): 129-137.
    [75]R. Atkin, G. G. Warr. Self-assembly of a nonionic surfactant at the graphite/ionic liquid interface [J]. J. Am. Chem. Soc.,2005,127(34):11940-11941.
    [76]S. M. Mwongela, A. Numan, N. L. Gill, R. A. Agbaria, I. M. Warner. Separation of achiral and chiral analytes using polymeric surfactants with ionic liquids as modifiers in micellar electrokinetic chromatography [J]. Anal. Chem.,2003, 75(22):6089-6096.
    [77]Y. A. Gao, X. Y. Zhao, B. Dong, L. Q. Zheng, N. Li, S. H. Zhang. Inclusion complexes of β-cyclodextrin with ionic liquid surfactants [J]. J. Phys. Chem. B, 2006,110(17):8576-8581.
    [78]J. G. Huddleston, H. D. Willauer, R. P. Swatloski, A. E. Visser, R. D. Rogers. Room temperature ionic liquids as novel media for 'clean' liquid-liquid extraction [J]. Chem. Commun.,1998,16:1764-1765.
    [79]S. G. Cull, J. D. Holbrey, V. V. Mora, K. R. Seddon, G. J. Lye. Room-temperature ionic liquids as replacements for organic solvents in multiphase bioprocess operations [J]. Biotechnol. Bioeng.,2000,69(2):227-233.
    [80]G. T. Wei, Z. S. Yang, C. J. Chen. Room temperature ionic liquid as a novel medium for liquid/liquid extraction of metal ions [J]. Anal. Chim. Acta,2003, 488(2):183-192.
    [81]A. Arce, M. J. Earle, H. Rodriguez, K. R. Seddon. Separation of benzene and hexane by solvent extraction with 1-alkyl-3-methylimidazolium bis {(trifluoromethyl) sulfonyl} amide ionic liquids:effect of the alkyl-substituent length [J]. J. Phys. Chem. B,2007,111(18):4732-4736.
    [82]S. Chun, S. V. Dzyuba, R. A. Bartsch. Influence of structural variation in room-temperature ionic liquids on the selectivity and efficiency of competitive alkali metal salt extraction by a crown ether [J]. Anal. Chem.,2001,73(15): 3737-3741.
    [83]L. A. Blanchard, J. F. Brennecke. Recovery of organic products from ionic liquids using supercritical carbon dioxide [J]. Ind. Eng. Chem. Res.,2001,40(1): 287-292.
    [84]M. T. Reetz, W. Wiesenhofer, G. Francio, W. Leitner. Continuous flow enzymatic kinetic resolution and enantiomer separation using ionic liquid/supercritical carbon dioxide media [J]. Adv. Synth. Catal.,2003,345(11):1221-1228.
    [85]D. W. Armstrong, L. F. He, Y. S. Liu. Examination of ionic liquids and their interaction with molecules, when used as stationary phases in gas chromatography [J]. Anal. Chem.,1999,71(17):3873-3876.
    [86]A. Heintz, D. V. Kulikov, S. P. Verevkin. Thermodynamic properties of mixtures containing ionic liquids 1:Activity coefficients at infinite dilution of alkanes, alkenes, and alkylbenzenes in 4-methyl-n-butylpyridinium tetrafluoroborate using gas-liquid chromatography [J]. J. Chem. Eng. Data,2001,46(6):1526-1529.
    [87]A. Berthod, L. He, D. W. Armstrong. Ionic liquids as stationary phase solvents for methylated cyclodextrins in gas chromatography [J]. Chromatographia,2001, 53(1-2):63-68.
    [88]A. Heintz, D. V. Kulikov, S. P. Verevkin. Thermodynamic properties of mixtures containing ionic liquids 2:Activity coefficients at infinite dilution of hydrocarbons and polar solutes in 1-methyl-3-ethyl-imidazolium bis (trifluoromethyl-sulfonyl) amide and in 1,2-dimethyl-3-ethyl-imidazolium bis(trifluoromethyl-sulfonyl) amide using gas-liquid chromatography [J]. J. Chem. Eng. Data,2002,47(4):894-899.
    [89]L. J. He, W. Z. Zhang, L. Zhao, X. Liu, S. X. Jiang. Effect of 1-alkyl-3-methylimidazolium-based ionic liquids as the eluent on the separation of ephedrines by liquid chromatography [J]. J. Chromatog. A,2003,1007(1-2): 39-45.
    [90]X. X. Hua, Z. Liang, L. Xia, J. S. Xiang. Ionic liquids as additives in high performance liquid chromatography: Analysis of amines and the interaction mechanism of ionic liquids [J]. Anal. Chim. Acta,2004,519(2):207-211.
    [91]S. J. Liu, F. Zhou, L. Zhao, X. H. Xiao, X. Liu, S. X. Jiang. Immobilized 1,3-dialkylimidazolium salts as new interface in HPLC separation [J]. Chem. Lett., 2004,33(5):496-503.
    [92]A. Berthod, S. Carda-Broch. Use of the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate in countercurrent chromatography [J]. Chromatogr. Rel. Technol,2004,380(1):168-177.
    [93]S. H. Schofer, N. Kaftzik, P. Wasserscheid, U. Kragl. Enzyme catalysis in ionic liquids:lipase catalysed kinetic resolution of 1-phenylethanol with improved enantioselectivity [J]. Chem. Commun.,2001,4:425-426.
    [94]E. G. Yanes, S. R. Gratz, M. J. Baldwin, S. E. Robison, A. M. Stalcup. Capillary electrophoretic application of 1-alkyl-3-methylimidazolium-based ionic liquids [J]. Anal. Chem.,2001,73(16):3838-3844.
    [95]S. M. Mwongela, A. Numan, N. L. Gill, R. A. Agbaria, I. M. Warner. Separation of achiral and chiral analytes using polymeric surfactants with ionic liquids as modifiers in micellar electrokinetic chromatography [J]. Anal. Chem.,2003,75(22) 6089-6096.
    [96]W. Qin, S. F. Y. Li. Electrophoresis of DNA in ionic liquid coated capillary [J]. Analyst,2003,128(1):37-41.
    [97]T. F. Jiang, Y. L. Gu, B. Liang, J. B. Li, Y. P. Shi, Q. Y. Ou. Dynamically coating the capillary with l-alkyl-3-methylimidazolium-based ionic liquids for separation of basic proteins by capillary electrophoresis [J]. Anal. Chim. Acta,2003,479(2): 249-254.
    [98]C. Liang, C. Y. Yuan, R. J. Warmack, C. E. Barnes, S. Dai. Ionic Liquids:A new class of sensing materials for detection of organic vapors based on the use of a quartz crystal microbalance [J]. Anal. Chem.,2002,74(9):2172-2176.
    [99]M. C. Buzzeo, C. Hardacre, R. G. Compton. Use of room temperature ionic liquids in gas sensor design [J]. Anal. Chem.,2004,76(15):4583-4588.
    [100]R. Wang, S. Hoyano, T. Ohsaka. O2 gas sensor using supported hydrophobic room-temperature ionic liquid membrane-coated electrode [J]. Chem. Lett.,2004, 33(1):1-7.
    [101]R. Wang, T. Okajima, F. Kitamura, T. Ohsaka. A novel amperometric O2 gas sensor based on supported room-temperature ionic liquid porous polyethylene membrane-coated electrodes [J]. Electroanalysis,2004,16(1-2):66-72.
    [102]M. Erbeldinger, A. J. Mesiano, A. J. Russell. Enzymatic catalysis of formation of Z-aspartame in ionic liquid:an alternative to enzymatic catalysis in organic solvents [J]. Biotechnol. Progr.,2000,16(6):1129-1131.
    [103]N. Kaftzik, P. Wasserscheid, U. Kragl. Use of ionic liquids to increase the yield and enzyme stability in the β-galactosidase catalysed synthesis of N-acetyllactosamine [J]. Org. Proc. Res. Dev.,2002,6(4):553-557.
    [104]M. Eckstein, M. Sesing, U. Kragl, P. Adlercreutz. At low water activity a-chymotrypsin is more active in an ionic liquid than in non-ionic organic solvents [J]. Biotechnol. Lett.,2002,24(11):867-872.
    [105]Y. F. Zhao, Y. Q. Gao, D. P. Zhan, H. Liu, Q. Zhao, Y. Kou, Y. H. Shao, M. X. Li, Q. K. Zhuang, Z. W. Zhu. Selective detection of dopamine in the presence of ascorbic acid and uric acid by a carbon nanotubes-ionic liquid gel modified electrode [J]. Talanta,2005,66(1):51-57.
    [106]A. B. McEwen, H. L. Ngo, K. LeCompte, J. L. Goldman, J. Electrochemical properties of imidazolium salt electrolytes for electrochemical capacitor applications [J]. Elec-trochem. Soc.,1999,146(5):1687-1695.
    [107]P. Wang, S. M. Zakeeruddin, J. E. Moser, M. Gratzel. Enhance the performance of dye-sensitized solar cells by co-grafting amphiphilic sensitizer and hexadecylmalonic acid on TiO2 nanocrystals [J]. J. Phys. Chem. B,2003,107(51): 13280-13285.
    [108]F. Zhao, X. Wu, M. Wang, Y. Liu, L. Gao, S. Dong. Electrochemical and bioelectrochemistry properties of room-temperature ionic liquids and carbon composite materials [J]. Anal. Chem.,2004,76(17):4960-4967.
    [109]P. Y. Chen, C. L. Hussey. Electrodeposition of cesium at mercury electrodes in the tri-1-butylmethyl ammonium bis((trifluoromethyl) sulfonyl) imide room- temperature ionic liquid [J]. Electrochim. Acta,2004,49(28):5125-5138.
    [110]F. Y. Su, J. F. Huang, I. W. Sun. Galvanostatic deposition of palladium-gold alloys in a lewis basic EMI-Cl-BF4 ionic liquid [J]. J. Electrochem. Soc.,2004,151(12): 811-815.
    [111]Y. X. Sun, J. J Fei, J. Hou, Q. Zhang, Y. L. Liu, B. N. Hu. Simultaneous determination of dopamine and serotonin using a carbon nanotubes-ionic liquid gel modified glassy carbon electrode. Microchimica. Acta,2009,165(3-4): 373-379.
    [112]G. C. Zhao, M. Q. Xu, J. Ma, X. W. Wei. Direct electrochemistry of hemoglobin on a room temperature ionic liquid modified electrode and its electrocatalytic activity for the reduction of oxygen [J]. Elec. Commun.,2007,9(5):920-924.
    [113]Aurelie A. M. Santafe, B. Doumeche, L. J. Blum, Agnes P. G. Egrot, C. A. Marquette. 1-ethyl-3-methylimidazolium ethylsulfate/coppe catalyst for the enhancement of glucose chemiluminescent detection:effects on light emission and enzyme activity [J]. Anal. Chem.,2010,82(6):2401-2404.
    [114]陈晓惠.增强鲁米诺化学发光体系的分析应用研究[D].陕西:陕西师范大学,2011.
    [115]H. Wu, L. B. Zhang, L. M. Du. Ionic liquid sensitized fluorescence determination of four isoquinoline alkaloids [J]. Talanta,2011,85(1):787-793.
    [116]邓翔.离子液体用于荧光分析的初步研究[D].重庆:西南大学,2008.
    [117]S. J. Lin, H. H. Tseng, K. C. Wen, T. T. Suen. Determination of gentiopicroside, mangiferin, palmatine, berberine, baicalin, wogonin and glycyrrhizin in the traditional Chinese medicinal preparation by high-performance liquid chromatography [J]. J. Chromatogr. A,1996,730(1-2):17-23.
    [118]Y. R. Chen, K. C. Wen, G. RongHer. Analysis of coptisine, berberine and palmatine in adulterated Chinese medicine by capillary electrophoresis-electrospray ion trap mass spectrometry [J]. J. Chromatogr. A,2000,866(2): 273-280.
    [119]Z. H. Song, T. Z. Zhao, L. Wang, Z. Xiao. Chemiluminescence flow sensor for berberine with immobilized reagents [J]. Bioorgan. Med. Chem.,2001,9(7): 1701-1705.
    [120]迟家平,韩守智.紫外分光分度法测定桂林西瓜霜中盐酸小檗碱的含量[J].中成药,1991,13(11):17-18.
    [121]J. EBer, P. Wasserscheid, A. Jess. Deep desulfurization of oil refinery streams by extraction with ionic liquids [J]. Green Chem.,2004,6(7):316-322.
    [122]W. Sun, R. F. Gao, K. Jiao. Electrochemistry and electrocatalysis of hemoglobin in nafion/nano-CaCO3 film on a new ionic liquid BPPF6 modified carbon paste electrode [J]. J. Phys. Chem. B,2007,111(17):4560-4567.
    [123]D. R. MacFarlane, M. Forsyth, P. C. Howlett, J. M. Pringle, J. Z. Sun, G. Annat, W. Neil, E. I. Izgorodina. Ionic liquids in electrochemical devices and processes: managing interfacial electrochemistry [J]. Acc. Chem. Res.,2007,40(11): 1165-1173.
    [124]J. Ranke, K. Molter, F. Stock, U. B. Weber, J. Poczobutt, J. Hoffmann, B. Ondruschka, J. Filser, B. Jastorff. Biological effects of imidazolium ionic liquids with varying chain lengths in acute vibrio fischeri and WST-1 cell viability assays [J]. Ecotoxicol. Environ. Safety,2004,58(3):396-404.
    [125]R. Kaliszan, M. P. Marsza, M. J. Markuszewski, T. Baczek, J. Pernak. Suppression of deleterious effects of free silanols in liquid chromatography by imidazolium tetrafluoroborate ionic liquids [J]. J. Chromatogr. A,2004,1030(1-2):263-271.
    [126]A. Heintz, D. V. Kulikov, Sergey P. Verevkin. Thermodynamic properties of mixtures containing ionic liquids. Activity coefficients at infinite dilution of polar solutes in 4-methyl-N-butyl-pyridinium tetrafluoroborate using gas liquid [J]. The J. Chem. Thermodyn.,2002,34(8):1341-1347.
    [127]J. F. Liu, Y. G. Chi, G. B. Jiang, C. Tai, J. F. Peng, J. T. Hu. Ionic liquid-based liquid-phase microextraction, a new sample enrichment procedure for liquid chromatography [J]. J. Chromatogr. A,2004,1026(1-2):143-147.
    [128]J. Luczak, J. Hupka, J. Thoming, C. Jungnickel. Self-organization of imidazolium ionic liquids in aqueous solution [J]. Colloid Surface A,2008,329(3):125-133.
    [129]R. Karmaka, A. Samanta. Solvation dynamics of coumarin-153 in a room-temperature ionic liquid [J]. J. Phys. Chem. A,2002,106(18):6670-6675.
    [130]R. Karmaka, A. Samanta. Dynamics of solvation of the fluorescent state of some electron donor-acceptor molecules in room temperature ionic liquids, [BMIM][(CF3SO2)2N] and [EMIM][(CF3SO2)2N] [J]. J. Phys. Chem. A,2003, 107(38):7340-7346.
    [131]N. Ito, S. Arzhantsev, M. Maroncelli. The probe dependence of solvation dynamics and rotation in the ionic liquid 1-butyl-3-methyl-imidazolium hexafluorophosphate [J]. Chem. Phys. Lett.,2004,396(1-3):83-91.
    [132]赵长春,于俊生.介质环境对小檗碱荧光光谱影响的研究[J].药物分析杂志,2000,20(2):109-111.
    [133]W. Jiang, Y. Wang, G. A. Voth. Molecular dynamics stimulation of nanostructural organization in ionic liquid/water mixtures [J]. J. Phys. Chem. B,2007,111(18): 4812-4818.
    [134]潘正安,余晓捷.中华人民共和国药典(第二部)[M].北京:化学工业出版社,2005,1:465.
    [135]M. Alvaro, B. Ferrer, H. Garefa, M. Narayana. Screening of an ionic liquid as medium for photochemical reaction [J]. Chem. Phy. Lett.,2002,362(5-6): 435-440.
    [136]J. F. Liu, J. A. Jonsson, G. B. Jiang. Application of ionic liquids in analytical chemistry [J]. Trend Anal. Chem.,2005,24(1):20-27.
    [137]J. R. Williamson. Guanine quartets [J]. Curr. Opin. Struct. Biol.,1993,3(3): 357-362.
    [138]S. Balasubramanian, S. Neidle. G-quadruplex nucleic acids as therapeutic targets [J]. Curr. Opin. Chem. Biol.,2009,13(1):1-9.
    [139]L. Oganesian, T. M. Bryan, D. Yang, L. H. Hurley. Physiological relevance of telomeric G-quadruplex formation: A potential drug target [J]. BioEssays,2007, 29(2):155-165.
    [140]D. L. Ma, C. M. Che, S. H. Yan. Platinum (Ⅱ) complexes with dipyridophenazine ligands as human telomerase inhibitors and luminescent probes for G-quadruplex DNA [J]. J. Am. Chem. Soc.,2009,131(5):1835-1846.
    [141]J. T. Wang, X. H. Zheng, Q. Xia, et al.1,10-phenanthroline platinum (Ⅱ) complex: a simple molecule for efficient G-quadruplex stabilization [J]. Dalton Trans.,2010, 39(31):7214-7216.
    [142]M. K. Cheng, C. Modi, J. C. Cookson, et al. Search for DNA quadruplex binding selectivity in a series of 8,13-dimethylquino [4,3,2-k] acridinium salts: telomere-targeted agents [J]. J. Med. Chem.,2008,51(4):963-975.
    [143]H. Arthanari, S. Basu, T. L. Kawano, P. H. Bolton. Fluorescent dyes specific for quadruplex DNA [J]. Nucleic. Acids. Res.,1998,26(16):3724-3728.
    [144]A. Bugaut, K. Jantos, J. L. Wietor, R. Rodriquez, J. K. Sanders, S. Balasubramanian. Exploring the differential recognition of DNA G-quadruplex targets by small molecules using dynamic combinatorial chemistry [J]. Angew. Chem. Int. Ed.,2008,47(14):2677-2680.
    [145]C. Wei, G. Jia, J. Yuan, Z. Feng, C. Li. A spectroscopic study on the interactions of porphyrin with G-quadruplex DNAs [J]. Biochemistry,2006,45(21):6681-6691.
    [146]F. He, Y. L. Tang, S. Wang, Y. L. Li, D. B. Zhu. Fluorescent amplifying recognition for DNA G-quadruplex folding with a cationic conjugated polymer: a platform for homogeneous potassium detection [J]. J. Am. Chem. Soc.,2005,127 (35):12343-12346.
    [147]L. H. Fu, B. X. Li, Y. F. Zhang. Label-free fluorescence method for screening G-quadruplex ligands [J]. Anal. Biochem.,2012,421(1):198-202.
    [148]M. L. Duquette, P. Handa, J. A. Vincent, A. F. Taylor, N. Maizel. Intracellular transcription of G-rich DNAs induces formation of G-loops, novel structures containing G4 DNA [J]. Gene & Dev.,2004,18(23):1618-1629.
    [149]G. Ghosal, K. Muniyappa. Saccharomyces cerevisiae Mrell is a high-affinity G4 DNA-binding protein and a G-rich DNA-specific endonuclease:implications for replication of telomeric DNA [J]. Nucl. Acid Res.,2005,33(15):4692-4703.
    [150]E. C. Long, J. K. Barton. On demonstrating DNA intercalation [J]. Acc. Chem. Res.,1990,23(9):271-273.
    [151]李红,计亮年,李伟善.脱氧核糖核酸电化学研究进展[J].无机化学学报,2003,19(3):225-231.
    [152]A. Erdem, M. Ozsoz. Electrochemieal DNA biosensors based on DNA-drug interactions [J]. Electroanalysis,2002,14(14):965-974.
    [153]J. Nygren, N. Svanvik, M. Kubista. The interactions between the fluorescent dye thiazole orange and DNA [J]. Biopolymers,1998,46(1):39-51.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700