低渗气藏水平井完井方式优化方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低渗透油气田在世界油气资源中占有极其重要的地位,低渗透油气田地质条件极其复杂、天然能量小、渗流阻力大、连通性差,地层稳定性差,开采难度很大,岩石的非均质、各向异性,储层底水或边水的影响,严重制约低渗透储层的开发。水平井则是实现低渗气藏经济、高效开发的重要技术手段。完井技术对充分发挥水平井在提高低渗气藏产能和采收率中的作用十分突出,不仅关系到后续生产作业能否顺利实施以及水平井的生产寿命,而且还直接影响着水平井的产能及低渗气藏的采收率及储量动用程度。从低渗气藏的储层地质特征出发,综合考虑气藏增产及开发方式,进行低渗气藏水平井完井优化研究,对低渗气藏提高单井产量、延长水平井寿命、提高经济效益有重要的意义。本文以岩石力学的基本理论、方法为基础,通过理论计算分析了地应力环境、增产措施及压力衰竭式开采对裸眼水平井临界井底流压及可采用完井方式的影响,进而综合储层地质、地质力学、工程需求等因素,利用模糊数学的相关理论开展完井方式优选方法研究及软件开发,并结合气藏资料进行了完井方法优选及相关工程应用,取得的主要成果及认识如下:
     (1)地应力状态是影响水平井完井方式选择的重要因素之一。在地应力三个主应力数值大小保持不变的条件下,通过改变应力大小的组合关系构建不同的应力状态,相同地层,水平井眼轨迹不同时,水平井临界井底流压、井壁地层起裂压力均会发生改变。不同的井眼轨迹中有不同的井底流压,对井底流压低于地层压力方位的水平井可采用裸眼完井,反之,则选用支撑井壁的完井方式。不同的井眼轨迹中有不同的起裂压力,对水平井储层渗透性的改善有很大影响。井眼轨迹的变化可能使地层的完井方式变得十分复杂,因此,钻井完井是一项系统工程,优化完井应从最基础的优化井眼轨迹开始,否则一旦井眼形成后,在进行完井方式优选会有很大的局限性。在本文研究工区储层应力场数值不变的前提下,对地层通常存在的三种应力状态研究分析了两只特殊的水平井:
     ①岩石强度相同下,应力状态及井眼方位发生改变,临界井底流压与井周地层起裂压力都将发生变化。当水平井井底液柱压力低于临界井底流压时,井壁将会发生垮塌,且当水平井临界井底流压高于地层孔隙压力时,不能采用裸眼完井方式,水平井若想获得产能,必须支撑井壁。水平井井底液柱压力高于井周地层起裂压力时,井壁就会发生破裂。
     ②潜在正断型地应力状态下,沿最大水平主应力方向延伸的水平井与沿最小水平主应力方向延伸的水平井相比,最小水平主应力方向延伸的水平井井周地层稳定性较好,但地层起裂压力较高,易于压裂形成在垂向应力和水平向最大主应力平面内横切水平井延伸方向的裂缝面。最大水平向应力方向延伸的水平井自身稳定性相对较差,可形成的缝为在垂向应力和水平向最大主应力平面内沿着水平井延伸的裂缝面。
     ③潜在逆断型地应力状态下,沿最大水平向应力方向延伸的水平井可在较低井底流压下生产并保持稳定,但地层起裂压力高;沿最小水平向应力方向延伸的水平井自身稳定性相对较差,两种应力状态下形成的缝均主要分布在水平向最大主应力和水平向最小主应力平面内,不利于储层垂向渗透性的改善。
     ④潜在走滑型地应力状态下,沿水平最大主应力、水平最小主应力方位水平井的自身稳定性及压裂难易表现出与潜在逆断型应力状态下相似的特点。两支水平井压裂形成的裂缝都将主要分布在水平向最大主应力和垂向最小主应力控制的平面内。所不同的是前者裂缝面平行于水平井轴线,后者则垂直于水平井的井眼轴线。且综合考虑地应力对地层中天然裂缝的发育方向的控制作用,后者将更有利于增产。
     (2)气藏的衰竭式开发方式和低渗气藏的酸化措施对低渗气藏水平井完井选择的影响不容忽视,酸化的主要目的是溶解近井地带储层矿物,解除储层损害,恢复和提高近井储层渗透率,不同类型酸液体系、酸作用时间和酸的作用量,对井壁岩石的影响程度不同,酸化改变了地层岩石结构,改善储层渗流能力,提高单井产能。然而,酸作用在提高渗流能力的同时,也会弱化地层岩石强度,导致井周岩石承载能力降低,进而影响到井壁的稳定性及能够采用的生产压差,这个过程可能会使完井方式发生改变。因此必须考虑酸化措施引起的岩石力学强度折减效应。酸化及孔隙压力衰竭综合作用时,会使基于原状地层条件建立起来的完井方式不能满足和保证气井的正常和长期安全生产。因此,低渗气藏完井不仅考虑是否需改造,还必须综合考虑改造对地层自身稳定性的影响。如在本文研究工区条件下,单独的酸化、地层流体压力降低和二者综合作用的结果都使水平裸眼井的临界生产压差大幅下降,在某些应力状态下,完井方式发生了从可以采用裸眼完井到必须进行井壁支撑完井的转变。
     (3)形成了以储层物性、地质力学、增产措施以及开采方式为评价因素进行完井方式初步选择,进而综合产能、经济效益、采气时间等因素,利用模糊综合评价理论进行完井方式优选的低渗气藏水平井完井方式优选方法。
     (4)基于形成的低渗气藏水平井完井方式优选方法,开发了低渗气藏水平井完井方法优选软件,并进行了现场完井优化应用。
Low permeability reservoir takes up large proportion in oil&gas reservoir of China and horizontal well is an important technique to develop it economically and efficiently. Completion not only influences the successful well operation and well life but also directly affects the production ratio of low permeability gas reservoir. Starting with the geological characters of low permeability gas reservoir and taking the specific requirements of drilling engineering and production engineering into account, this essay studied the completion optimization of low permeability gas reservoir, which has important significance in the improvement of production rate per well, lengthen of well life and the incensement of economic benefits. Based on the fundamental theories and methods of rock mechanics, the influence of in-situ stress environment, enhanced oil recovery operation, formation pressure failure and exploitation method to the critical bottom hole pressure and appropriate completion of open hole horizontal well is analyzed by theoretical calculation. Furthermore, by synthesizing various factors including reservoir geology, geo-mechanics and engineering requirements, completion optimization study and software development have been done using fuzzy mathematics theory. Combining on site gas reservoir data and completion optimizing method, the practical engineering application is also presented. Main results and achievements as follows:
     (1) In-situ stress states is one of the most important factors influent the well completion. In the same formation, critical bottom hold pressure and initial pressure of horizontal wells with different trajectories change with stress states. The completion could be very complex and effect of stimulation technologies could be ineffective due to inappropriate well trajectory. Therefore, drilling and completion should consider integratively and the completion optimization should start from trajectory optimization. Under the three types of in-situ stress conditions used in this thesis:
     ①Under the same rock strength, stress state and the orientation of the borehole is changed, the critical bottom hole flowing pressure from the wells of the strata fracturing pressure will change. When the horizontal well in bottom of the well fluid column pressure below the critical bottom hole flowing pressure, the borehole wall will collapse,When the horizontal well critical bottom hole flowing pressure is higher than the formation pore pressure, not open hole completion of horizontal wells To get the capacity, we must support the sidewall.
     ②Under the potential normal-fault stress states, horizontal well paralleled with maximum horizontal stress has relatively weak stability but likely to form fracture plane along with horizontal well. Horizontal well paralleled with minimum horizontal stress has relatively strong stability but initial pressure is much higher and the fracture plane intersects with plane of vertical stress and maximum horizontal stress.
     ③Under the potential reverse-fault stress states, horizontal well paralleled with maximum horizontal stress can keep stable in lower bottom well pressure fracture pressure is relatively high. Horizontal well paralleled with minimum horizontal stress shows contrary features. Under the stress states, horizontal fractures are formed parallel with well trajectory.
     ④Under the potential strike slip stress states, horizontal well paralleled with maximum or minimum horizontal stress shows similar features in self-stability of formation around horizontal wellbore and difficulty hydro fracture with wells under reverse fault stress states. Vertical fractures paralleled with well trajectory and intersect with minimum horizontal stress is likely to formed in horizontal well paralleled with maximum or minimum horizontal stress and vertical fractures perpendicular to well trajectory is easily to formed in horizontal well paralleled with minimum horizontal stress.
     (2) The impact of depletion and acidizing of low permeability gas reservoir on the completion optimization shouldn't be ignored. Different type of acidizing fluid system, acid functional time and effect degree have different effects on the completion. Acidizing and depletion can't guarantee the normal and long-term safety production of gas well. Therefore, the necessity of stimulation is not the only factor need to be considered in low permeability gas reservoir completion but also the impact of stimulation on formation self-stability should also be taken into account. As in this thesis research conditions, acidizing、depletion and the combined action reduce the critical drawdown pressure significantly in open hole horizontal well. In some cases, completion may change from unsupported to support way.
     (3) Based on the comprehensive analysis of completion influence factors, considering the feature that completion optimization involves many uncertain factors including engineering、 geology、economic benefits and production ration, an completion optimization method based on fuzzy comprehensive evaluation theory is established and a corresponding software is developed.A practical application is also presented in this thesis.
引文
[1]Jim B. Surjaatmadja and Leopoldo Sierra, Halliburton.New Alternative to Selectively Fracture Stimulate Extended-Reach,Horizontal Wells. SPE 119475,2009.
    [2]Baron, R. P. and Pearce, A. J.,1996, "Understanding the Performance of a Low-Permeability Gas Reservoir:Hyde Field, Southern North Sea" [C]. SPE Reservoir Engineering, August, p.210-214.
    [3]Teng, D., Nettleship, G., Hicking, S. and Hindmarsh, K.,1998, "High Rate Gas Well Design:Issues and Solutions-Goodwyn Gas Condensate, NWS, Australia" [C]. SPE paper 50081 presented at the SPE Asia Pacific Oil and Gas Conference and Exhibition, 12-14 October, Perth, Australia.
    [4]Veeken, C. A. M., Chin, H. V., Ross, R. W. and Newell, M. D.,2000, "Monitoring and Control of Water Influx in Strong Aquifer Drive Gas Fields Offshore Sarawak" [C]. SPE paper 64402 presented at the SPE Asia Pacific Oil and Gas Conference and Exhibition, Brisbane, Australia, Oct.16-18.
    [5]Lumsden, P.J., Balgobin, C. J., Bodnar, D., Brayshaw, A. C., Dyer, B. L., Gainski, M., Hennington, E. R., Burch, T. K., Farmer, C. L. and Saldana, M. A..2002, "The Kapok Field-A step change for Trinidad gas developments" [C]. SPE paper 75670 presented at the SPE Gas Technology Symposium, Calgary, Canada, April 30-May 2.
    [6]Kromah, M. J., Lumsden, P. J., Hennington, E. R. and Brayshaw, A. C.,2003, "Trinidad's First 500 MMscfd well:Fact or Fiction?" [C]. SPE paper 81045 presented at the SPE Latin America and Caribbean Petroleum Engineering Conference, Port-of-Spain, Trinidad, West Indies, April 27-30.
    [7]B.W. McDaniel and Keith Rispler, Halliburton. Horizontal Wells with Multistage Fracs Prove to be Best Economic Completion for Many Low-Permeability Reservoirs[C]. SPE-105733,2009.
    [8]Brekke K, Lien SC. New simple completion methods for horizontal wells improve production performance in high-permeability thin oil zones[J]. SPE Drilling & Completion,1994,9(3):205-209.
    [9]Borbas, T. Bratton,V. Bricout,et.al. Rock strength parameters from annular ressure while drilling and dipole sonic disppersion analysis[C]. SPE 2003-O.SPWLA 45 Annual Logging Symposium,2004.
    [10]Ali A. Garrouch,Haitham M.S. Lababidi, Abdullah S.Ebrahim. An integrated approach for the planning and completion of horizontal and multilateral wells[J]. Journal of Petroleum Science and Engineering(2004)282-301.
    [11]Ali A. Garrouch, Haitham M.S. Lababidi, Abdullah S.Ebrahim. A web-based expert system for the planning and completion of multilateral wells[J]. Journal of Petroleum Science and Engineering 49(2005) 162-181.
    [12]A. Garrouch, H.M.S. Lababzdi. Implementation of a Fuzzy Expert System for Multilateral Well Completion[A]. SPE93930,2005.
    [13]Morita Nobuo, Whitebay Lee. Rock Mechanics Aspects of Drilling and Completing Highly Inclined Wells in Weak Formations[C]. SPE 27982-MS.University of Tulsa Centennial Petroleum Engineering Symposium,29-31 August 1994,Tulsa,Oklahoma.
    [14]Larry K. Britt and Jerry Schoeffler. The Geomechanics Of A Shale Play:What Makes A Shale Prospective[C].SPE 125525-MS.SPE Eastern Regional Meeting,22-25 September 2009, Charleston,West Virginia,USA.
    [15]M.D. Erwin and D.O. Ogbe. Predicting Openhole Horizontal Completion Success on the North Slope of Alaska[C]. SPE 97121-MS.SPE Annual Technical Conference and Exhibition,9-12 October 2005, Dallas, Texas.
    [16]M.D. Erwin and D.O. Ogbe. Predicting Horizontal-Openhole-Completion Success on the North Slope of Alaska[C]. SPE 97121-PA.SPE Journal Paper,19 January 2008.
    [17]M.Y. Soliman, Reinhard Pongratz,Martin Rylance.et.al. Fracture Treatment Optimization for horizontal well Completions[C]. SPE 102616-MS.SPE Russian Oil and Gas Technical Conference and Exhibition,2-6 October 2006,Moscow,Russia.
    [18]BENNION, D. B., THOMAS, F. B., BIETZ, R. F., Low Permeability Gas Reservoirs: Problems, Opportunities and Solutions for Drilling, Completion, Stimulation and Productions[C]. SPE paper 35577,1996.
    [19]Surjaatmadja, J.B., Abass, H.H., and Brumley, J.L.1994. Elimination of Near-Wellbore Tortuosities by Means of Hydrojetting[C]. Paper SPE 28761 presented at the Asia Pacific Oil and Gas Conference, Melbourne, Australia,7-10 November.
    [20]HOCH, O., STROMQUIST, M., LOVE, G. AND ARGAN. Multiple Precision Hydraulic Fractures of Low Permeability Horizontal Openhole Sandstone Wells[C]. SPE 84163,2003
    [21]Don R. Watson, Doug G. Durst, and Jesus D. Contreras.One-Trip Multistage Completion Technology for Unconventional Gas Formations[C]. SPE 114973,2008.
    [22]Doug G. Durst,Jesus D. Contreras,Don R. Watson.Improved Single-Trip Multistage Completion Systems for Unconventional Gas Formations[C]. SPE 115260,2008.
    [23]Larry K. Britt,Michael B. Smith.Horizontal Well Completion, Stimulation Optimization, And Risk Mitigation[C]. SPE 125526,2009
    [24]Valdo Ferreira Rodrigues, Luis Fernando Neumann, Daniel Torres, et al. Horizontal Well Completion and Stimulation Techniques—A Review With Emphasis on Low-Permeability Carbonates[C]. SPE 108075,2007.
    [25]D.L. Fairhurst, S.Indriati, J.W.Reynolds, M.W.Holcomb,F.F.Starr. Advanced Technology Completion Strategies for Marginal Tight Gas Sand Reservoirs:A Production Optimization Case Syudy in South Texas[C]. SPE 109863.2007.
    [26]F.T. Al-Khelaiwi, V.M. Birchenko and M.R. Konopczynski, et al. Advanced Wells:A Comprehensive Approach to the Selection Between Passive and Active Inflow-Control Completions[C]. SPE 132976.2010
    [27]Drew Hembling, Adeyinka Soremi, Saudi Aramco.2009. A Case History:First Real-Time Digital Flow Profiling of a Passive Inflow Control Device (ICD) Completion[C]. SPE 122448 prepared for presentation at the 2009 SPE Asia Pacific Oil & Gas Conference and Exhibition held in Jakarta, Indonesia.
    [28]Garcia, G, Coronado, M. and Gavioli P. Identifying Well Completion Applications for Passive Inflow Control Devices[C]. SPE 124349 presented at the 2009 SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana, October 4-7.
    [29]Coronado, M., Garcia, L., Russell, R., Garcia, G. and Peterson, E.:"New Inflow Control Device Reduces Fluid Viscosity Sensitivity and Maintains Erosion Resistance" [C]. OTC 19811 presented at the 2009 Offshore Technology Conference, Houston, TX., May 4-7.
    [30]Elmer R. Peterson, Martin P. Coronado and Luis A. Garcia, et al. Well Completion Applications for the Latest-Generation Low-Viscosity Sensitive Passive Inflow Control Device[C]. IADC/SPE 128481,2010.
    [31]阮臣良,朱和明,冯丽莹.国外智能完井技术介绍[J].石油机械,2011,39(3):82-84.
    [32]窦宏恩.国外石油工程技术的最新进展[J].石油机械,2003,31(6):65-67.
    [33]Tubel, Paulo, Hopmann,etl. Intelligent Completion for Oil and Gas Production Control in Subsea Multi-lateral Well Applications[C]. SPE 36582-MS,1996.
    [34]张绍槐.多分支井钻井完井技术新进展[J].石油钻采工艺,2001(2):1-3.
    [35]Pascal Rump,Ronjoy Bairagi, John Fraser, etal.Multilateral/Intelligent Wells Improve Development of Heavy Oil Field-A Case History[C]. SPE 87207-MS,2004.
    [36]Abduldayem,Shafiq,Baluch.ntelligent Completions Technology Offers Solutions to Optimize Production and Improve Recovery in Quad-Lateral Wells in a Mature Field[C]. SPE110960-MS,2007.
    [37]袁进平,齐奉忠.国内完井技术现状及研究方向建议[J].钻采工艺,2007,30(3):3-6.
    [38]盛磊祥,许亮斌,蒋世全,等.智能完井井下流量阀液压控制系统设计[J].石油 矿场机械,2012,41(4):34-38.
    [39]Arashi Ajayi, Shawn Pace,Bryan Petrich.Managing Operational Challenges in the Installation of an Intelligent Well Completion in a Deepwater Environment[C], SPE 116133-MS,2008.
    [40]Jesse Constantine.Installation and Application of an Intelligent Completion in the EA Field, Offshore Nigeria[C]. SPE 90397-MS,2004.
    [41]Jackson V B,Tips T R. Case Study:First Intelligent Completion System Installed in the Gulf of Mexico[C]. SPE 68218-MS.2001.
    [42]Jackson V B,Tips T R. Case Study:First Intelligent Completion System Installed in the Gulf of Mexico[C]. SPE 81928-PA,2003.
    [43]吴康,马发明,石映.四川盆地采气工程技术现状及发展方向_上[J].天然气工业,2005:25(3)
    [44]刘飞,陈勇,李晓军,等.智能完井新技术[J].石油矿场机械,2010,39(2).
    [45]阮臣良,朱和明,冯丽莹.国外智能完井技术介绍[J].石油机械,2011,39(3).
    [46]张绍槐.智能油井管在石油勘探开发中的应用与发展前景[J].石油钻探技术,2004,32(4):1-4.
    [47]刘阳,马兰荣,郭朝辉,等.自膨胀封隔器技术在完井作业中的应用[J].石油矿场机械,2012,41(3):76-81.
    [48]余金陵,魏新芳.胜利油田智能完井技术研究新进展[J].石油钻探技术,2011,39(2):68-72.
    [49]李宾元,孙艾茵.辽河油田稠油水平井完井方法选择,92年水平钻井完井年会.
    [50]潘迎德,熊友明.水平井完井方式的优选[J].西南石油学院院报,1994,2
    [51]潘迎德,熊友明.砂岩地层完井方式的选择[J].石油钻探技术,1996,24(1):51-55.
    [52]熊友明,童敏,舒世洪.论完井优化问题[J].石油钻探技术,1997,25(2):50-52.
    [53]熊友明.碳酸盐岩及其他特殊岩性地层完井方式的优选[J].石油钻探技术,1996,24(3):46-48.
    [54]熊友明,童敏,余雷.稠油、高凝油侧钻水平井完井方法优选研究[J].西南石油学院学报,2002,22(1):30-35.
    [55]熊友明,童敏,潘迎德.疏松浅气层防砂完井方式的选择[J].天然气工业,1997,17(3):39-43.
    [56]熊友明,潘迎德.裸眼系列完井方式下水平井产能预测研究[J].西南石油学院学报,1997,19(2):42-44
    [57]吕晓光,张学文等.基于油藏特征的完井方法[J].石油勘探与开发,2008,35(4)
    [58]熊友明,罗东红,唐海雄,等.延缓和控制底水锥进的水平井完井新方法[J].西南石油大学学报(自然科学版),2009,31(1):103-106.
    [59]熊友明,刘理明,唐海雄,等.延缓和控制水平井底水脊进的均衡排液完井技术[J].石油钻探技术,2011,39(4):66-70.
    [60]熊友明,刘理明,张林,等.我国水平井完井技术现状与发展建议[J].石油钻探技术,2012,,40(1):1-6.
    [61]宋振云等.水平井筒机械隔离分段压裂技术[J].钻采工艺,2007,30(4):75-77
    [62]刘喆,李军.牛平17-14水平井机械隔离分段压裂技术[J].钻采工艺,2009,32(4):93-95
    [63]Wang Wenjun,Zhaoquan Liu,Zhongyu Lan, et al. Successful Refracturing Enhances Oil Production in Horizontal Wells:A Case Study from Daqing Oilfield, China. SPE 123210,2009
    [64]顾战宇.制约川西致密砂岩气藏高效开发主要因素探讨[J].石油天然气学报,2005,27(4):510-512
    [65]雷炜,张果,杜林,等.川西地区复合射孔技术的应用研究[J].天然气工业,2006,26(5):58-60
    [66]雷群,李熙喆,万玉金,等.中国低渗透砂岩气藏开发现状及发展方向[J].天然气工业,2009,29(6):1-3
    [67]李士伦,孙雷,杜建芬,等.低渗致密气藏凝析气藏开发难点与对策[J].新疆石油地质,2004,25(2):156-159
    [68]邹才能,陶士振,张响响,等.中国低孔渗大气区地质特征、控制因素和成藏机制[J].中国科学D辑:地球科学,2009,39(11):1607-1624
    [69]李海平,贾爱林,何东博,等.中国石油的天然气开发技术进展及展望[J].天然气工业,2010,30(1):5-7
    [70]Spencer CW. Review of characteristics of low-permeability gas reservoirs in Western United States[J]. AAPG Bulletin,1989,73(5):613-629
    [71]刘吉余,马志欣,孙淑艳.致密含气砂岩研究现状及发展展望[J].天然气地球科学,2008,19(3):316-319
    [72]舒勇,鄢捷年,熊春明,等.低渗致密砂岩凝析气藏液锁损害机理及防治[J].石油勘探与开发,2009,36(5):628-633
    [73]康毅力,罗平亚.中国致密砂岩气藏勘探开发关键工程技术现状与展望[J].石油勘探与开发,2007,34(2):239-245
    [74]苏生瑞.断裂构造对地应力场的影响及其工程应用[M].科学出版社,北京,2002:48
    [75]陈勉.金衍,张广清.石油工程岩石力学[M].科学出版社,北匕京,2007:59-83
    [76]常德玉,李根生,沈忠厚,等.考虑三向地应力差时不同钻井条件下井底应力场研究[J].岩土力学,2011,32(5):1546-1552
    [77]王东,刘长武,王丁,等.三向应力下典型岩石破坏预警及峰后特性[J].2012,47(1):90-96
    [78]向天兵,冯夏庭,陈炳瑞,等.三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J].岩土力学,2009,30(10):2908-2915
    [79]吴家龙.弹性力学[M].高等教育出版社,2001:152-163
    [80]徐芝纶.弹性力学[M].北京:高度教育出版社,2006:73-76
    [8l]王同涛,闫相祯,杨秀娟.适用于多夹层盐穴储气库的改进Mohr_Coulomb准则[J].石油学报,2010,31(6):1040-1043
    [82]贾善坡,陈卫忠,杨建平,等.基于修正Mohr_Coulomb准则的弹塑性本构模型及其数值实施[J].岩土力学,2010,31(7):2051-2058
    [83]黄炜,陈国新,姚谦峰,等.基于统一强度理论的密肋复合墙体开裂荷载计算[J].工程力学,2008,25(7):94-99
    [84]刘向君,罗平亚.岩石力学与石油工程[M].北京:石油工业出版社,2004
    [85]邓小英,李月.基于Ricker子波核的支持向量回归方法及其在地震勘探记录去噪处 理中的应用[J].吉林大学学报(地球科学版),207,37(4):821-827
    [86]蔡冬松.基于最小二乘支持向量机的数据挖掘应用研究[J].情报科学,2005,23(12):1877-1880
    [87]杨佳佳,姜琦刚,陈永良,等.基于最小二乘支持向量机和高分辨率遥感影像的大尺度区域岩性划分[J].中国石油大学学报(自然科学版),2012,36(1):60-67
    [88]陈华,范宜仁,邓少贵.支持向量机在钻井工程数据拟合中的应用[J].计算机工程与应用,2006,(21):178-179
    [89]王杰光,曾顺德.板分析的滑动最小二乘法插值函数残值法[J].应用力学学报,2002,19(4):143-146
    [90]王杰光.滑动最小二乘法插值在加权残值法中的应用[J].桂林工学院学报,2000,20(3):249-251
    [91]Lancaster P, Salkauskas K.Surface generated by moving least square method[J]. Mathematics of Computation,1981,37:141-158
    [92]金业权,周创兵.滑动最小二乘法深部地层应力场模拟计算中的应用研究[J].岩石力学与工程学报,2004,23(23):4028-4032
    [93]刘向君,申剑坤,梁利喜,等.孔隙压力变化对岩石强度特性的影响[J].岩石力学与工程学报,2011,30(2):3457-3462
    [94]冯永存,李晓蓉,蔚宝华,等.压力衰减储层直井井壁稳定性研究[J],长江大学学报(自然科学版),2011,8(10):50-53
    [95]葛洪魁,曲经文,黄荣樽.压力衰竭地层中水平井段的破裂压力[J],石油钻探技术1994,22(3):24-26
    [96]王学滨,赵福成,潘一山.孔隙压力对含随机缺陷岩石破坏过程及全部变形特征的影响[J].防灾减灾工程学报,2009,29(1):1-7
    [97]马慧,王刚COMSOL-Multiphysics基本操作指南和常见问题解答[M].科学出版社,北京,2009
    [98]仵杰,王昭,张辉辉,等.基于COMSOL Multiphysics的半空间阵列感应测井仪刻度校正仿真[J].石油工业计算机应用,2011,(4):11-13
    [99]盛金昌,廖秋林,刘继山,等.基于FEMLAB的钻井过程中流固热耦合响应分析[J].工程力学,2008,25(2):219-223
    [100]王小龙,冯宏,李萍,等.矿井电阻率超前探测正演模拟[J].煤炭科学技术,2011,39(11):112-117
    [101]盛金昌,刘继山,许孝臣,等.页岩钻孔过程中的流固热化学耦合模型[J].工程力学,2009,26(12):240-245
    [102]徐涛,宋力.真实破裂过程分析软件与多物理场耦合软件结构力学模块对比研究[J].大连大学学报,2007,28(6):66-71
    [103]刘先贵,刘建军.降压开采对低渗储层渗透性的影响[J].重庆大学学报(自然科学版),200023(增刊)
    [104]冉启全,李士伦.流固耦合油藏数值模拟中物性参数动态模型研究[J].石油勘探与开发,1997,24(3):61-65.
    [105]Tortike W S, Farouq Ali S M. Reservoir simulation integrated with geomechanics[J]. JCPT,1993,32(5):28-37
    [106]张新红,秦积舜.低渗岩心物性参数与应力关系的试验研究[J].石油大学学报(自然科学版),2001,25(4):56-60
    [107]代平,孙良田,李闽.低渗透砂岩储层孔隙度、渗透率与有效应力关系研究[J].天然气工业,2006,26(5):93-95
    [108]刘建军,刘先贵,胡雅扔,等.低渗透储层流-固耦合渗流规律的研究[J].岩石力学与工程学报,2002,21(1):88-92
    [109]董平川,徐小荷,何顺利.流固祸合问题及研究进展闭[J].地质力学学报,1999,5(3),17-25.
    [110]刘琦,卢耀如,李晓昭.孔隙水压力对岩石力学参数的影响[J].地球学报,2008,29(5),660-664.
    [111]薛世峰.非混溶饱和两相渗流与变形孔隙介质耦合作用的理论研究及其在石油工程中的应用[D].北京:中国地震局地质研究所,沈阳:东北大学,1998
    [112]Louis C. Rock Hydraulics. Rock Mechanics[M],1974
    [113]周维恒.高等岩石力学[M].北京:水利电力出版社,1990
    [114]何更生.油层物理.北京:石油工业出版社,1989
    [115]范学平,徐向荣.地应力对岩心渗透率伤害实验及机理分析[J].石油勘探与开发,2002.29(2):117-119
    [116]李闽,孙雷,李士伦.一个新的气井连续排液模型[J].天然气工业,2001.21(5):61-63
    [117]董平川,徐小荷,何顺利.流固耦合问题及研究进展[J].地质力学学报,1999,5(3),17-25
    [118]万仁溥.现代完井工程[M].北京:石油工业出版社,2008:129-139
    [119]吕渐江,唐海,段永刚.运用二级模糊多目标综合评判方法预测低渗透气藏水锁损害程度[J].岩性油气藏,2010,22(4):120-124.
    [120]张兴焰,樊继宗,陈天钢,等.模糊原理综合评判油田注水开发[J],特种油气藏,2002,9(1):34-36
    [121]爨莹,王中.基于模糊多属性决策的射孔方案选择模型研究[J].计算机工程与应用.2009,45(25):212-214
    [122]房灵太,陈月明,闫军,等.基于变权的模糊层次分析法在低渗油藏调剖选井中的应用[J].特种油气藏,2007,14(3):81-85
    [123]苏放,范英磊.一种基于Fuzzy丢包区分的TCP拥塞控制算法.系统仿真学报.20(7).2008:1904-1908,1911
    [124]Zhen Yanxiang, Su Fang, Kou Mingyan. A Fuzzy Packet Loss Differentiation Algorithm Based on Ack-Timeout Times Ratio in Heterogeneous Network[C]. In 2010 International Conference on Communications and Mobile Computing. Shenzhen China. Vol.1.2010.4:453-457
    [125]镇常青.多目标决策中的权重调查确定方法.系统工程理论与实践,1987,7(2):16-24
    [126]王应明,傅国伟.主成份分析法在有限方案多目标决策中的应用.系统工程理论方法应用,1993,2(2):43-48
    [127]严鸿和等.专家评分机理与最优评价模型.系统工程理论与实践,1989,9(2):19-23
    [128]宣家骥.多目标决策.长沙:湖南科技出版社,1989
    [129]谢全敏,夏元友.边坡治理多层次多目标优化决策方法研究[J].武汉理工大学学报.2002,24(10):21-24
    [130]唐庚,白璐,龙学,等.排水采气工艺方法优选的模糊决策研究[J].钻采工艺,2001,24(6):33-35
    [131]吴建发,赵金洲,郭建春.模糊综合决策优选压裂方案[J].断块油气田,2006,13(4):73-75.
    [132]李国锋,王德安,成勇.应用灰色关联分析法优选大牛地气田压裂井层[J].岩性油气藏,2011,23(1):114-117.
    [133]汪志明,李春艳.利用模糊综合决策方法优选水平井完井方式[J].石油钻探技术,2008,36(5):3-6
    [134]王海涛,李相方,隋秀香,等.综合测试结果在完井酸化选井中的应用[J].油气井测试,2009,18(4):23-25
    [135]祝厚勤,庞雄奇,姜振学,等.油气聚集系数的研究方法及应用[J].地球科学-中国地质大学学报,2007,32(2):260-265.
    [136]欧阳传湘,涂志勇,付蓉.灰色综合评判法优选压裂井[J].岩性油气藏,2009,21(3):101-104
    [137]张吉军.模糊层次分析法(FAHP)[J].模糊系统与数学,2000,14(2):80-88
    [138]刘树林,邱莞华.多属性决策基础理论研究[J].系统工程理论与实践,1998(1):38-43
    [139]马玉杰,郑西来,李永霞,等.地下水质量模糊综合评判法的改进与应用[J].中国矿业大学学报,2009,38(5):745-750
    [140]张晓慧,冯英浚.一种非线性模糊综合评价模型[J].系统工程理论与实践,2005,25(10):54-59.
    [141]Xu Xueyan, Xiao Ciyuan, Wu Xue. A linear fuzzy comprehensive assessment model with prominent impact factor[J]. Advances in Intelligent and Soft Computing,2010, 7(8):487-492.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700