全相位FIR滤波器组
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
首先,本文基于全相位DFT数字滤波器的直接频域实现网络结构,对输入或输出数据加窗,导出了一种新型的加窗全相位DFT数字滤波器。它的频率特性比不加窗又有很大提高,幅频响应等于或逼近频率采样值,通带纹波极小,阻带衰减极大,过渡带陡峭,零相位,滤波性能和实现的简洁性超过其他传统方法。它除了可以采用通常的卷积结构外,也可以采用直接频域网络实现,本文给出了它的直接频域网络组成及其简化算法。这种网络具有实时自设计功能,可构成时变系统用于滤波器传递函数实时可变的场合,便于集成为频响和长度均可编程的通用零相位数字滤波器,是数字滤波器的一种新的设计理念和实现结构。
    其次,本文提出一种新型的半带滤波器—全相位半带滤波器(APHF),这种半带滤波器具有频率采样特性,通带和阻带纹波小,过渡带陡峭,频率响应没有过冲,可以直接进行谱分解用于设计二通道完全重建正交镜像滤波器(QMF)组。本文针对这种半带波器提出了新的高精度谱分解方法。与传统半带滤波器谱分解设计二通道完全重建QMF组相比,QMF组的重建精度由10?3dB提高到10?6dB,是半带滤波器和准确重建二通道QMF组的一种新的设计方法。
    最后,本文把加窗全相位DFT数字滤波器的设计方法用于设计具有上述优点的全相位M带滤波器,从而得到全相位均匀滤波器组。全相位均匀滤波器组可以用于时频分析—加窗傅里叶变换。小波变换是时频分析的有力工具,但不适合线性charp信号的分析。加窗全相位可以有效减小窗函数的旁瓣,特别适用于线性charp信号的时频分析。
First, based on the architecture of the APDFT filter, this paper brings out a newtype of zero-phase digital filter called the windowed all phase DFT (WAPDFT)digital filter, by windowing the input and/or output data of the DFT/IDFT blocks inthe APDFT filter network. The frequency characteristics of the APDFT filter areimproved greatly by this way. While the frequency response of the filter still passes orapproaches the desired frequency samples, it has much less pass-band and stop-bandripples, and sharp transition. The WAPDFT filter can be implemented with commonconvolution structure and the frequency domain direct network like the APDFT filter,and realized in a simplified structure also. This paper gives the network of the newstructure and the associate algorithm. This network is not sensitive to finite wordlength effect compared with traditional frequency sampling structures. It has real-timeself-design function and may constitute a time-variant system. It can be easilyintegrated into a universal zero-phase digital filter with frequency response and lengthprogrammable.
    Second, this paper proposes a new type of half band filter—the all phase halfband filter (APHF). It has the property of frequency sampling, i.e. the response curvepasses desired frequency samples. Its frequency response has very small pass-bandripple, great stop-band attenuation, sharp transition band and without overshootingwhether in stop-band or pass-band. It can be used to design two-channel perfectreconstruction QMF (quadrature mirror filter) banks by factorizing the spectrum forthe APHF directly. A new method is given to get the spectral factors of the APHFwith high precision. Compared with traditional spectral factorization method ofdesigning two-channel perfect reconstruction QMF banks, the QMF banks designedby factorizing APHF has better reconstruction precision that the error is decreasedfrom 10?3dB to10?6dB. It's a new method for designing half band filters andtwo-channel perfect reconstruction QMF banks.
    Finally, using the WAPDFT filter design method, this paper proposes an allphase M band filter with all the advantages mentioned above and an all phase uniformDFT filter bank. The uniform DFT filter bank can be used to time-frequencyanalysis—windowed fourier transform. Although wavelet transform is a useful toolfor time-frequency analysis, it is not suitable for analysing linear charp signals.
    Whereas, the all phase uniform DFT filter bank can do it very well duo to thewindowed all phase can efficiently reduce the side lobes of the window.
引文
[1] Sathe,V ., and Vaidyanathan, P.P. Effects of multirate systems on the statistical properties of random signals. IEEE Trans. on Signal Processing. 1993,41(1): 131-146
    [2] Bellanger, M., Bonnerot, G., and Coudreuse, M. Digital filtering by polyphase network: application to sample rate alteration and filter bank. IEEE Trans. on Acoust. Speech and Signal Proc. 1976, 24(4):109-114
    [3] Rabiner, L.R., and Gald, B. Theory and application of digital processing. Englewood Cliffs: Prince Hall, 1975.
    [4] Digital Audio, IEEE ASSP magazine, Special issue, 1985, 2 (10)
    [5] Bloom, P.J. High-quality digital audio in the entertainment industry: an overview of achievements and challenges. IEEE ASSP magazine, 1985, 2(10): 2-25
    [6] Jayant, N.S. and Noll, P., Digital coding of waveforms. Englewood Cliffs, Prentice Hall, 1984.
    [7] Crochiere, R.E., Webber, S.A. and Flanagan, J.L. Digital coding of speech in subbands. Bell Syst. Tech. J., 1976, 55(10): 1069-1085
    [8] Crochiere, R.E., On the design of subband coders for low bit rate speech communication. Bell System. Tech. J., 1977, 56(5-6): 747-771
    [9] Crochiere, R.E., Subband coding., Bell System. Tech. J., 1981, 60(9): 1633-1654
    [10] Woods, J.W., Subband image coding. Kluwer Academic Publishers, 1991.
    [11] Vetterli, M., Multidimensional sub-band coding : some theory and algorithms. Signal Processing, 1984, 6(4): 9-112
    [12] Safrranek, R.J. MacKay, K., Jayant, N.S., Image coding based on selective quantization of the reconstruction noise in the dominant subband . Proc. of the IEEE Int. Conf. on ASSP,1988,4: 765-768
    [13] Woods, J. W., and O'Neil, S. D. Subband coding of images. IEEE Tans. on Acoust. Speech and Signal Proc. 1986, 34(10): 1278-1288
    [14] Smith, M.J.T., and Eddins, S.L., Analysis/synthesis techniques for subband image coding. IEEE Trans. on Acoust. Speech and Signal Proc., 1990, 38(8): 1446-1456
    [15] Cox, R.V., Bock, D.E., and Bauer, K.B., The analog voice privacy system. ATGT Tech. J., 1987, 66(1-2):, 119-131
    [16] Bellanger, M. On computational complexity in digital transmultiplexer filters. IEEE Trans. on Comm., 1982, 30(7): 1461-1465
    [17] Vetterli, M. Perfect transmultiplexers. In: Tokyo, Japan. Proc. IEEE Int. Conf. Acoust. Speech and Signal Proc. 1986, 2567-2570
    [18] Widrow, B., and Stearns, S.D. Adaptive signal processing . Englewood Cliffs, Prentice Hall, 1985.
    [19] Haykin, S. Adaptive filter theory. Englewood Cliffs, Prentice Hall, 1991.
    [20] Gilloire, A. Experiments with subband acoustic echo cancellers for teleconferen-cing. In: Dallas. Proc. IEEE Int. Conf. Acoust. Speech and Signal Proc. 1987.4, 2141-2144.
    [21] Gilloire, A., and Vetterli, M. Adaptive filtering in subband with critical sampling: analysis, experiments, and applications to acoustic echo cancellation. IEEE Trans. on Signal Processing , 1992, 40(8): 1862 -1875
    [22] Sathe, V. and Vaidyanathan, P.P. Efficient adaptive identification and equalization of band-limited channels using multirate/ multistage FIR filters. Proc. of the Asilomar Conference on Signals, Systems and Computers. 1990.11
    [23] Sathe, V. and Vaidyanathan, P.P. Analysis of the effects of multirate filters on stationary random inputs, with application in adaptive filtering. In: Toronto, Canada. Proc. IEEE Int. Conf. Acoust. Speech and Signal Proc. 1991(5): 1681-16 84
    [24] Shynk, J.J. Frequency-domain and multirate adaptive filtering. IEEE Signal Processing Magazine. 1992, 9(1): 14-37
    [25] Mintzer, F. On half-band, third-band and Nth band FIR filters and their design. IEEE Tans. on Acoust. Speech and Signal Proc. 1982, 30(10): 734-738
    [26] Crochiere,R.E. and Rabiner, L.R. Multirate Digital Signal Processing. Englewood Cliffs, Preentice Hall,1983.
    [27] Vaidyanathan,P.P. Design and implementation of digital FIR filters. in handbook on Digital Signal Processing. New York, Academic,Press. 1987,55-172
    [28] Vaidyanathan P.P. and Nguyen, T.Q. A trick for the design of FIR half-band filters. IEEE Trans. Circuits Syst.,1987,34(5): 297-300
    [29] Ansari, R., and Liu, Bede. Interploators and decimators as periodically time varying filters. Proc. IEEE Int. Symp. Circuits and Systems.1981,447-450
    [30] Mueller, K.H. A new approach to optimum pulse shaping in sampled systems using time-domain filtering. Bell Syst. Tech. J., 1973, 52(5-6): 723-729
    [31] 侯正信,全相位 DFT 数字滤波器,电子学报,2003.4:539-543
    [32] Oppenheim, A.V. and Schafer, R.W. Discrete-Time Signal Processing. New Jersey, Prentice-Hall, 1989, 313-317, 444-488
    [33] Croisier, A., Esteban, D., and Galand, C. Perfect channel spltting by use of interpolation /decimation/tree decomposition techniques. In: Patras, Greece. Int. Symp. on Info., Circuit and Systems, 1976.
    [34] Johnston, J.D. A filter family designed for use in quadrature mirror filter banks. Proc. IEEE Int. Conf. Acoust. Speech and Signal Proc., 1988.4, 291-294
    [35] Jain, V.K., and Crochiere, R.E. Quadrature mirror filter design in the time domain. IEEE Trans. on Acoust. Speech and Signal Proc.. 1984, 32(4):353-361
    [36] Fettweis, A., Nossek, J.A., and Meerkotter, K. Reconstruction of signals after filtering and sampling rate reduction. IEEE Trans. on Acoust. Speech and Signal Proc.. 1985, 33(8):893-902
    [37] Galand, C.R., and Nussbaumer, H.J. New quadrature mirror filter structures. IEEE Trans. on Acoust. Speech and Signal Proc.. 1984, 32(6): 522-531
    [38] Galand, C.R., and Nussbaumer, H.J. Quadrature mirror filters with perfect reconstruction and reduced computational complexity. Proc. of the IEEE Int. Conf. on Acous. Speech and Signal Proc., 1985.4, 525-528
    [39] Smith, M.J.T., and Barnwell III, T.P. A procedure for designing exact reconstruction filter banks for tree structured subband coders. In: San Diego. Proc. of the IEEE Int. Conf. on Acous. Speech and Signal Proc., 1984.5, 27.1.1-27.1.4
    [40] Mintzer, F. Filters for distortion-free two-band multirate filter banks. IEEE Trans. on Acoust. Speech and Signal Proc.. 1985, 33(6): 626-630
    [41] Grenez, F. Chebyshev design of filters for subband coders. IEEE Trans. on Acoust. Speech and Signal Proc.. 1988, 36(2): 182-185
    [42] Nussbaumer, H.J. Pseudo QMF filter bank. IBM Tech. disclosure Bulletin. 1981, 24(11): 3081-3087
    [43] Rothweiler, J.H. polyphase quadrature filters, a new subband coding technique. In:Boston. Proc. of the IEEE Int. Conf. on ASSP. 1983.4, 1980-1983
    [44] Chu, P.L. quadrature mirror filter design for an arbitrary number of equal bandwidth channels. IEEE Trans. on Acoust. Speech and Signal Proc.. 1985, 33(2): 203-218
    [45] Masson, J. and Picel, Z. Flexible design of computationally efficient nearly perfect QMF filtr bnks. In: Tampa, FL. Proc. of the IEEE Int. Conf. on ASSP. 1985.5, 14.7.1-14.7.4
    [46] Cox, R.V. The design of uniformly and nonuniformly spaced pseudo QMF. IEEE Trans. on Acoust. Speech and Signal Proc.. 1986, 34(10): 1090-1096
    [47] Ramstad, T.A. Analysis/ synthesis filter banks with critical sampling. In: Florence. International conf. on Digital Signal Processing. 1984.9
    [48] Smith, M.J.T. and Barnwell III, T.P. A unifying framework for analysis/synthesis systems based on maximally decimated filter banks. In: FL. Proc. IEEE Int. Conf. Acoust. Speech and Signal Proc.. 1985.5, 521-524
    [49] Vetterli, M. Splitting a signal into subsampled channels allowing perfect reconstruction. In: Paris, France. IASTED Conf. Appl. Signal Proc. and dignal filtering. 1985.6
    [50] Princen, J.P. and Bradley, A.P. Analysis/synthesis filter bank design based on time domain aliasing cancellation. IEEE Trans. on Acoust. Speech and Signal Proc.. 1986, 34(10): 1152-1161
    [51] Wackersreuther, G. Some new aspects of filters for filter banks. IEEE Trans. on Acoust. Speech and Signal Proc.. 1986, 34(12): 1182-1200
    [52] Vaidyanathan, P.P. Theory and design of M-channel maximally decimated quadrature mirror filters with arbitary M, having perfet reconstruction property. IEEE Trans. on Acoust. Speech and Signal Proc.. 1987, 35(4): 476-492
    [53] Vaidyanathan, P.P. Quadrature mirror filter banks, M-band extensions and perfect-reconstruction technique. IEEE ASSP magazine, 1987, 4(6): 4-20
    [54] Nguyen, T.Q. and Vaidyanathan, P.P. Maximally decimated perfect-reconstruction FIR filter banks with pairwise mirror-image analysis (and synthesis) frequency response. IEEE Trans. on Acoust. Speech and Signal Proc.. 1988, 36(5): 693-706
    [55] Viscito, E., and Allebach, J. The design of tree-structured M-channel filter banks using perfect reconstruction filter blocks. In: New York. Proc. of the IEEE Int. Conf. on ASSP. 1988.4, 1475-1478
    [56] Malvar, H.S. Modulated QMF filter banks with perfect reconstruction. Electronics letters. 1990, 26(6): 906-907
    [57] Koilpillai, R.D. and Vaidyanathan, P.P. New results on cosine-modulated FIR filter banks satisfying perfect reconstruction. In: Toronto, Canada. Proc. IEEE Int. Conf. Acoust. Speech and Signal Proc.. 1991.5, 1793-1796
    [58] Koilpillai, R.D. and Vaidyanathan, P.P. Cosine-modulated FIR filter banks satisfying perfect reconstruction. IEEE Trans. on Signal Processing. 1992, 40(4):770-783
    [59] Ramstad, T.A. Cosine modulated analysis-synthesis filter bank with critical sampling and perfect reconstruction. In: Canada. Proc. IEEE Int. Conf. Acoust. Speech and Signal Proc.. 1991.5, 1789-1792
    [60] Cassereau, P. A new class of orthogonal transforms for image processing. In: Cambridge. S.M. thesis, Dept. EECS, Mass. Inst. Technol. 1985.5
    [61] Malvar, H.S. Lapped transforms for efficient transform/subband coding. IEEE Trans. on Acoust. Speech and Signal Proc.. 1990, 38(4): 969-978
    [62] Malvar, H.S., and Staelin, D.H. The LOT: Transform coding without blocking effects. IEEE Trans. on Acoust. Speech and Signal Proc.. 1989, 37(4): 553-559
    [63] Nayebi, K., Barnwell, III, T.P. and Smith, M.J.T. A general time domain analysis and design framework for exact reconstruction FIR analysis/synthesis filter banks. In: New Orleans. Proc. IEEE Int. Syme. Circuits and Sys.. 1990.5, 2022-2025
    [64] Hoang, P.H. and Vaidyanathan, P.P. Nonuniform multirate filter banks: theory and design. In: Portland, Oregon. Proc. IEEE Int. Symp. on Circuits and Systems. 1989.5, 371-374
    [65] Kovacevic′, J., and Vetterli, M. Perfect reconstruction filter banks with rational sampling rate changes. In: Toronto, Canada. Proc. IEEE Int. Conf. Acoust. Speech and Signal Proc.. 1991.5, 1785-1788
    [66] Nayebi, K., Barnwell, III, T.P. and Smith, M.J.T. The design of perfect reconstruction nonuniform band filter banks. In: Toronto, Canada. Proc. IEEE Int. Conf. Acoust. Speech and Signal Proc.. 1991.5, 1781-1784
    [67] Nayebi, K., Barnwell, III, T.P. and Smith, M.J.T. Design of low delay FIR analysis-synthesis filter bank systems. In: The Johns Hopkins Univ. Proc. 25th Annual Conf. on Information Sciences and systems. 1991,233-238
    [68] Padmanabhan, M. and Martin, K. Some further results on modulated/extended lapped transforms. In: San Francisco, CA. Proc. IEEE Int. Conf. Acoust. Speech and Signal Proc.. 1992.5, 265-268
    [69] Horng, B.R., Samueli, H. and Willson, A.N., The design of low-complexity linear phase FIR filter banks using powers-of-two coefficients with an application to subband image coding. IEEE Trans. Circuits and Syst. For Video Technology. 1991, 1(12): 318-324
    [70] Horng, B.R. and Willson, A.N. Lagrange multiplier approaches to the design of two-channel perfect reconstruction linear phase phase FIR filter banks. IEEE Trans. Signal Processing. 1992, 40(2): 364-374
    [71] Mian, G.A. and Nainer, A.P. A fast procedure to design equiripple minimum-phase FIR filters. IEEE Trans. on Circuits and Sys. 1982, 29(5): 327-331
    [72] Vetterli, M. Filter banks allowing for perfect reconstruction. Signal processing. 1986, 10(4): 219:244
    [73] Swaminathan, K. and Vaidyanathan, P.P. Theory and design of uniform DFT, parallel, quadrature mirror filter banks. IEEE Trans. on Circuits and Systems. 1986, 33(12): 1170-1191
    [74] Marshall, Jr., T.G. Structures for digital filter banks. In: Pairs. Proc. IEEE Int. Conf. Acoust. Speech and Signal Proc.. 1982.4, 315-318
    [75] Vaidyanathan, P.P. and Mitra, S.K. Polyphase networks, block digital filtering, LPTV systems, and alias-free QMF banks: a unified approach based on pseudocirculants. IEEE Trans. on Acoust. Speech and Signal Proc.. 1988, 36(5): 381-391
    [76] Koilpillai, R.D., Nguyen, T.Q., and Vaidyanathan, P.P. Some results in the theory of cross-talk free transmultiplexers. IEEE Trans. on Signal Processing. 1991, 39(10): 2174-2183
    [77] Brune, O. Synthesis of a finite two terminal network whose driving point impedance is a prescribed function of frequency. J. Math. and Phys., 1931,10: 191-235
    [78] Darlington, S. Synthesis of reactance four-ploes. J. Math. and Phys., 1939, 18(9):275-353
    [79] Antoniou, A. Digital filter: analysis and design. McGraw Hill Book Co. 1979
    [80] Deprettere, E., Dewilde, P. Orthogonal cascade realization of real multiport digital filters. Int. J. Circuit Theory and Appl., 1980, 8: 245-277
    [81] Vaidyanathan, P.P. and Mitra, S.K. Low passband sensitivity digital filters:A generalized viewpoint and synthesis procedures. Proc. of the IEEE. 1984, 72(4): 404-423
    [82] Vaidyanathan, P.P. A unified approach to orthogonal digital filters and wave digital filters, based on LBR two-pair extraction. IEEE Trans. on Circuits and Systems. 1985, 32(7): 673-686
    [83] Vaidyanathan, P.P. The discrete-time bounded-real lemma in digital filtering. IEEE Trans. on Circuits and Systems. 1985, 32(9): 918-924
    [84] Vaidyanathan, P.P. and Nguyen, T.Q. Eigenfilters: a new approach to least-squares FIR filter design and applications including Nyquist filters. IEEE Trans. on Circuits and Systems. 1987, 32(1):11-23
    [85] Karlsson, G., and Vetterli, M. theory of two-dimensional multirate filter banks. IEEE Trans. on Acoust. Speech and signal Proc., 1990, 38(6): 925-937
    [86] Golub, G.H. and Van Loan, C.F. Matrix computations. Johns Hopkins Univ. Press, 1989
    [87] Vaidyanathan, P.P. and Hong, P.Q. Lattice structures for optimal design and robust implementation of two-channel perfect reconstruction QMF banks. IEEE Trans. on Acoust. Speech and signal Proc., 1988, 36(1): 81-94
    [88] Press, W.H. Flannery, B.P. and Teukolsky, S.A. Numerical recipes. Cambridge, Univ. Press, 1989
    [89] Nguyen, T.Q., and Vaidyanathan, P.P. Two–channel perfect reconstruction FIR QMF structures witch yield linear phase FIR analysis and synthesis filters. IEEE Trans. on Acoustics, Speech and Signal Processing. 1989, 37 (5): 676-690
    [90] Vetterli, M., and Le Gall, D. Perfect reconstruction filter banks satisfying symmetry constrains. Proc. Princeton Conf. Inform. Sci. Syst., 1988.5. 670-675
    [91] Vetterli, M., and Le Gall, D. Perfect reconstruction FIR filter banks: some properties and factorizations. IEEE Trans. on Acoustics, Speech and Signal Processing. 1989, 37(6): 1057-1071
    [92] Nguyen, T.Q., and Vaidyanathan, P.P. Structures for M-channel perfect reconstruction FIR QMF banks witch yield linear-phase analysis filters. IEEE Trans. on Acoustics, Speech and Signal Processing. 1990, 38 (5): 433-446
    [93] Soman, A.K., and Vaidyanathan,P.P. Linear phase paraunitary filter banks: theory, factorizations and applications. Tech. report, California Institute of Technology, Pasadena, CA, 1992.5
    [94] Malvar, H.S. Extended lapped transform: fast algorithms and applications. In: Toronto, Canada. Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing. 1991, 1797-1800
    [95] Nguyen, T.Q. A class of generalized cosine-modulated filter bank,. In: San Diego. Proc. IEEE Int. Symp., Circuits and Sys., 1992.5, 943-946
    [96] Mau, J. Perfect reconstruction modulated filter banks. Proc. Of the IEEE Int. Conf. on ASSP,1992, 4(6):273-276
    [97] Malvar, H.S. The LOT: A link between block transform coding and multirate filter banks. In: Espoo, Finland. Proc. IEEE Int. Symp. Circ. And Syst., 1988.6. 835-838
    [98] Wilson, K.G. Generalized Wannier functions. Technical report, Cornell University, 1987
    [99] Gabor, D. Theory of communication. J. Inst. Elec. Eng., 1946, 93:429-457
    [100] Rabiner, L.R. and Schafer, R.W. Digital processing of speech signals. Englewood Cliffs: Prentice Hall, Inc. 1978
    [101] Portnoff, M.R. Time-frequency representation of digital signals and systems based on short-time Fourier Analysis. IEEE Trans. on Acoustics, Speech and Signal Processing. 1980, 28 (2): 55-69
    [102] Oppenheim, A.V. and Schafer, R.W. Discrete-time signal processing. Englewood Cliffs: Prentice Hall, Inc. 1989
    [103] 马拉特,信号处理的小波导引,北京:机械工业出版社,2003,30(英文版)
    [104] Joyce Van de Vegte, Fundamentals of Digital Signal processing. Beijing, Publishing House of Electronics Industry. 2003
    [105] Grossman, A. and Morlet, J. Decomposition of Hardy functions into square integrable wavelets of constant shape. SIAM J. Math. 1984, 15: 723-736
    [106] Meyer, Y. Ondelettes et functions splines Seminaire EDP, Eecole Polytechnique, Paris, 1986
    [107] Daubechies, I. Orthonormal bases of compactly supported wavelets. Comm. on Pure and Appl. Math., 1988, 4(11): 909-996
    [108] Mallat, S. A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. on Pattern Anal. And Machine Intell. 1989, 11(7): 674-693
    [109] Mallat, S. Multiresolution approximations and wavelet orthonormal bases of L2 ( ). Trans. of Amer. Math. Soc., 1989, 315(9): 69-87
    [110] Strang, G. Wavelets and dilation equations: a brief introduction. SIAM review. 1989, 31(12): 614-627
    [111] Daubechies, I. The wavelet transform, time-frequency localization and signal analysis. IEEE Trans. on Info. Theory. 1990, 36(12): 961-1005
    [112] Daubechies, I. Ten lectures on wavelets, SIAM, CBMS series, 1992.4
    [113] Coifmann, R.,Meyer, Y. and Quake, S. Signal processing with wavelet packets. Numerical Algorithm Research Group, Yale Univ., 1990
    [114] Chui, C.K. An introduction to wavelets. Academic Press,1992
    [115] Nelson, G.A. Pfeifer, L.L., and Wood, R.C. High speed octave band digital filtering. IEEE Trans. on Audio and Electroacoust. 1972, 20(5): 8-65
    [116] Schafer, R.W., Rabiner, L.R. and Herrmann, O. FIR digital filter banks for speech analysis. Bell Syst. Tech. J. 1975, 54(5): 531-544
    [117] McGee, W.F. and Zhang, G. Logarithmic filter banks. In: New Orleans. Proc. IEE Int. Symp. Circuits and Sys. 1990.5, 661-664
    [118] Flanagan, J.L. Speech analysis, synthesis and perception. Springer-Verlag, New York, 1972
    [119] 杨福生,小波变换的工程分析与应用,北京,科学出版社,1999
    [120] Meyer, Y. Wavelets and Operators. Advanced mathematics. Cambridge University Press, 1992
    [121] Mallat., S. Multiresolution approximation and wavelet orthonormal bases of L2 ( ). Trans. Amer. Math. Soc., 1989, 315(9): 69-87
    [122] Mallat, S. An efficient image representation for multiscale analysis. In: Lake Taho. Proc. of Machine Vision Conference. 1987.2
    [123] Mallat, S. A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Patt. Anal. And Mach. Intell. 1987, 1(7): 674-693
    [124] Vaidyanathan, P.P. and Hoang, P.Q. Lattice structures for optimal design and robust implementation of two-channel perfect reconstruction filter banks. IEEE Trans. Acoust. Speech and Signal Proc. 1988, 36(1): 81-94
    [125] Daubechies, I. Orthonormal bases of compactly supported wavelets. Commun. on Pure and Appl. Math., 1988, 41(12): 909-996
    [126] Cohen, A. Daubechies, I. and Feauveau, J.C. Biorthogonal bases of compactly supported wavelets. Commun. on Pure and Appl. Math., 1992,45: 485-560

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700