船舶迎浪中考虑波浪增阻影响的参数横摇预报
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
航行在波浪中的船舶,当横摇频率等于或接近遭遇频率的一半时,横摇运动最明显,这种横摇运动被称为参数横摇。参数横摇是船舶在波浪中三种典型倾覆现象——纯稳性丧失,参数横摇,横甩——之一,是波浪中船舶复原力变化引起的非线性现象。
     1998年,巴拿马型C11集装箱船APL CHINA号在北太平洋海域迎浪时遭遇严重参数横摇,横摇角甚至达40°,损失400个集装箱,其他货物几乎全部受到损坏。经过这次事故,参数横摇引起船舶界的重视,参数横摇是大型集装箱船在纵浪中最危险的现象之一。其后一艘汽车卡车专运船在北大西洋亚舒尔群岛也遭遇严重的迎浪参数横摇。这些严重的参数横摇事故促使人们要对国际海事组织(IMO)的完整稳性规范(Intact Stability Code (IS code))进行重新评估,研究制定基于性能的衡准代替现有的描述性衡准,这个新的基于性能的衡准中就包括三种典型倾覆现象之一的参数横摇。在现阶段,需要一个具有定量精确性的参数横摇预报方法。第24(2004)届和25(2008)届ITTC之波浪稳性委员会也把参数横摇预报研究作为其一个主要任务。因此,急需开发一个准确的方法来预报参数横摇。
     参数横摇是时变的复原力力臂导致的横摇运动,评估复原力变化是参数横摇预报的关键。一般采用和静水中复原力臂计算相似的原理来计算波浪中复原力臂,把排水量不变和纵倾平衡作为约束条件。也就是说船—波瞬时相对位置是由船舶重力—浮力平衡和纵倾力矩平衡来决定的。这种方法可以用来研究波浪中船舶复原力变化规律,然而在波浪中船舶横摇运动还伴随着垂荡和纵摇运动,尤其是在迎浪中更为明显。因此,在预报迎浪参数横摇时应该考虑用垂荡和纵摇运动确定船—波瞬时相对位置,以提高迎浪参数横摇预报精度。
     为提高参数横摇预报精度,首先,基于切片理论,求解出船舶无横倾时在波浪中时间序列垂荡和纵摇运动,用垂荡纵摇运动确定船—波瞬时相对位置,也就是说横摇复原力的Froude-Krylov部分是通过对波浪压力沿船长湿表面积分得到的,船长瞬时湿表面由无横倾时的垂荡纵摇运动确定的船—波瞬时相对位置确定。其次,考虑了由作用在横倾船舶上的辐射力和绕射力组成的动态复原力的影响。
     纵荡运动也影响时域内船—波瞬时相度位置,纵荡运动可能会调节复原力变化周期,这会在一定程度上影响参数横摇。在考虑垂荡、纵摇的基础上,进一步考虑了纵荡和波浪增阻对迎浪规则波中参数横摇数值预报的影响。随浪中,遭遇频率远低于垂荡和纵摇的固有频率,因此和垂荡纵摇的耦合不是很明显,另外随浪中波浪增阻通常很小但迎浪中,参数横摇预报很复杂,这是因为和垂荡纵摇的耦合很明显,同时波浪增阻不能忽视。本论文中,不仅研究了垂荡纵摇运动对参数横摇的影响,也进一步研究了波浪增阻对参数横摇的影响。本文尝试开发一个预报迎浪参数横摇的数值方法,在这个方法中复原力变化和波浪增阻的Kochin函数的计算都基于切片理论。
     在耐波性领域,目前有许多对波浪增阻计算方法的验证,主要集中在短波长情况,这是因为大型船的能量消耗依赖于这种短波长情况。其中之一,Kashiwagi等采用一艘modified Wigley船型对其计算波浪增阻的Enhanced Unified theory (EUT)方法的有效性作了一系列系统研究。本文采用了相同的Wigley船型,在计算波浪增阻时采用了不同的源密度分布函数,并和Kashiwagi的试验结果以及他的EUT计算结果进行了比较。通过比较,确认Maruo & Ishii的方法更适合迎浪规则波中参数横摇预报。
     另一方面,为找出迎浪规则波中参数横摇和波浪增阻的内在联系,应该研究参数横摇对波浪增阻的影响。波浪增阻主要是由船舶运动产生的辐射势以及入射波碰到船体后产生的绕射势导致的能量损耗造成的。Maruo公式在线性势流理论框架里作为完整的理论被广泛接受,其公式推导是基于动量和能量守恒定律。在线性船舶动力学里,船舶摇动频率等于遭遇频率,纵浪中没有横摇、横荡和艏摇运动发生。目前为止所有的波浪增阻计算方法都没有考虑迎浪参数横摇导致的辐射势,没有讨论参数横摇对波浪增阻的影响。基于Maruo波浪增阻理论,从理论上推导出迎浪规则波中考虑参数横摇时的波浪增阻新公式。同时把数值计算结果和发生迎浪参数横摇的自由航模试验做一比较。
     把规则波中参数横摇预报方法拓展到不规则波中,在考虑垂荡、纵摇的基础上,进一步考虑了纵荡和波浪增阻对迎浪长峰不规则波中参数横摇数值预报的影响。本文研究了三种计算迎浪不规则波中波浪增阻的方法,然后把考虑了迎浪不规则波中时变波浪增阻的Pinkster方法进一步延伸作了研究。前面已经确认每个谐波中的波浪增阻计算采用Maruo公式,其源密度分布函数采用Maruo & Ishii的方法。通过零航速的模型试验和数值模拟研究了迎浪不规则波中参数横摇的“实际非各态历经(practical non-ergodicity) "的特点,同时通过数值模拟研究了迎浪不规则波中波浪增阻对参数横摇的影响。
When a ship sails in the seas, in case the roll frequency of the ship is equal to or near to half of the encounter frequency, this roll motion could be most significant, and is called as parametric rolling. Parametric rolling is one of the three typical dangerous phenomena-pure stability loss, parametric rolling, and broaching to-that could result in capsizing or cargo damage. Parametric rolling is a nonlinear phenomena induced by time-varying restoring arm.
     In 1998, a post-Panamax C11 class containership suffered heavy parametric rolling in the North Pacific Ocean. The maximum roll angle reached about 40°in head seas, with the loss of 400 containers and damage to almost as many others. Parametric rolling in longitudinal waves has attracted practical attention as a most dangerous phenomenon for large containerships. Similar incident of head-sea parametric rolling was reported for a PCTC in the Azores Islands waters. These serious accidents triggered off a review of the Intact Stability Code (IS Code) of the IMO, and it has been discussed to set performance-based criteria as an alternative to the existing prescribed criteria. The new performance-based criteria are requested to cover three major capsizing scenarios including parametric rolling as one of roll restoring variation problems. In this stage, a prediction method for parametric rolling with quantitative accuracy is required. The 24th (2005) and 25th (2008) ITTC's Specialist Committee on Stability in Waves also makes parametric rolling prediction as one of main tasks. Therefore, it is urgency to develop an exact method to predict parametric rolling.
     Because parametric rolling is roll motion induced by time-varying restoring arm, the estimation of roll restoring variation is essential for parametric rolling prediction. Similar principle to calculate restoring arm in clam water is used to calculate restoring variation in waves with the constraint of volume remaining constant and the constraint of trim balance. That is to say, the balance between ship weight and buoyancy and the balance of trim are used to determine the simultaneous relative position of the ship to waves. This method can be used to study the rule of restoring variation in waves, however, the roll motion is coupled with heave and pitch motions in waves, especially in head seas, so for improving the estimation precision of parametric rolling in head seas, heave and pitch motions should be used to determine the simultaneous relative position of the ship to waves.
     For improving the estimation precision of roll restoring variation, firstly, heave and pitch motions obtained by a strip theory applied to an upright hull is used to determine the simultaneous relative position of the ship to waves in time domain, that is to say, the nonlinear Froude-Krylov component of roll restoring variation is calculated by integrating wave pressure up to wave surface with heave and pitch motion obtained by a strip theory applied to an upright hull; secondly, the dynamic effect which consists of radiation and diffraction components is taken into account.
     Surge motion also affects the simultaneous relative position of the ship to waves in the time domain, and surge motion could modulate periodic restoring variation so that the parametric rolling to some extent could be deteriorated. Base on the study of parametric rolling pediction cosidering heave and pith motions, surge motion and added resistance are also taken into account to predict parametric rolling in head regular seas. In case of following waves, the encounter frequency is much lower than the natural frequencies of heave and pitch so that coupling with heave and pitch is not significant. In addition, added resistance in following waves is generally small. In case of head waves, however, prediction of parametric rolling is not so easy because coupling with heave and pitch are significant and added resistance cannot be ignored. In this thesis, not only effect of dynamic heave and pitch motions on parametric rolling is investigated, but effect of added resistance on parametric rolling is also further investigated. The author attempts to develop a numerical prediction method for parametric roll in head seas in which both the restoring variation and the Kochin function for added resistance are calculated with a strip theory.
     In the field of seakeeping, many attempts for validating calculation methods of added resistance were reported focusing on the comparison in the case of short wavelength. This is because energy consumption of larger ships depends on such short wavelength cases. Among them, Kashiwagi executed a systematic validation study of his Enhanced Unified theory (EUT) using a modified Wigley model. The author calculated added resistance with different methods of source distribution for the modified Wigley model, and compared the calculated results with Kashiwagi's experiment data and EUT results. Based on the comparison, it can be concluded that Maruo and Ishii's method is the most appropriate for the purpose of prediction of parametric rolling in regular head seas.
     In the other hand, in order to find out the inner relation between the parametric rolling and added resistance in regular head seas, the effect of parametric rolling on the added resistance in regular head seas should be studied. Added resistance in waves is mainly caused by energy dissipation when a ship generates radiation waves by oscillations and diffraction waves by an incident wave on the ship hull. Maruo obtained an exact formula for added resistance in waves, within linear potential theory, based on the principle of momentum and energy conservation in 1963. In linear ship dynamics the frequency of ship oscillations is equal to encounter frequency, and no roll, sway and yaw motions occur in longitudinal waves. All calculation methods of added resistance so far do not include wave radiations due to parametric rolling in head seas, and the effect of parametric rolling on added resistance cannot be discussed. Here based on Maruo'theory, the authors attempt to theoretically obtain a new formula for added resistance in regular head seas with parametric rolling taken into account, and then to compare its numerical calculation with free running experiment when parametric rolling occurs in head seas.
     The method of parametric rolling predictionin head regular seas is entended to predict parametric rolling in head long-crest irregular seas. Base on the study of parametric rolling pediction cosidering heave and pith motions, surge motion and added resistance are also taken into account to predict parametric rolling in head long-creast irregular seas. Three methods of calculating added resistance in irregular head seas were investigated and then Pinkster's method which considers the time-varying added resistance in irregular head seas is extended for further investigations in this thesis. As validated for the case of parametric rolling, the added resistance in each harmonic wave is calculated by Maruo's formula, in which the source distribution is estimated with the Maruo and Ishii's method. The "practical non-ergodicity" of parametric roll in irregular head seas is investigated by the model experiment at zero forward speed and the simulation, and the effect of added resistance in irregular head seas is investigated by the simulation.
引文
[3]Jensen, J J. Efficient Estimation of Extreme Non-Linear Roll Motions Using the First-Order Reliability Method (FORM)[J]. Journal of Marine Science and Technology,2007,12:191-202.
    [4]Themelis N K and Spyrou K J. Probabilistic Assessment of Ship Stability.SNAME Marine Technology Conference,2007 [C].Fort Lauderdale,pp.18.1-18.19.
    [5]American Bureau of Shipping.Guid for the assessment of parametric roll resonance in the design of containercarriers. September 2004 (Updated June 2008).
    [6]France W.L., Levadou M., Treakle T.W., Paulling J.R.; Michel R.K.; Moore C. An investigation of head-sea parametric rolling and its influence on container lashing systems [J]. Marine Technology,2003,40(1):1-19.
    [7]Hua J, Palmquist M and Lindgren G. An Analysis of the Parametric Roll Events Measured Onboard the PCTC AIDA. Proceedings of the 9th STAB,2006[C].109-118.
    [8]ITTC Specialist Committee on Stability in Waves (Chaired by Umeda N). Final Report and Recommendations to the 25th ITTC and its Powerpoint. Proceedings of the 25th ITTC,2008,2:605-639.
    [9]Umeda N, Hamamoto M, Takaishi Y, Chiba Y, Matsuda A, Sera W, Suzuki S, Spyrou K and Watanabe K. Model Experiments of Ship Capsize in Astern Seas[J]. Journal of the Society of Naval Architects of Japan,1995,177:207-217.
    [11]Kerwin, J.E. Note on Rolling in Longitudinal Waves[J]. International Shipbuilding Progress, 1955,2(16):597-614.
    [12]Sanchez N E and Nayfeh A H. Nonlinear Rolling Motions of Ships in Longitudinal Waves[J]. International Shipbuilding Progress,1990,37(411):247-272.
    [14]Soliman M and Thompson J M T. Indeterminate Sub-Critical Bifurcations in Parametric Resonance.Proceedings of the Royal Society London,1992[C],438:511-518.
    [15]Oh I G, Nayfeh A H and Mook D T. A Theoretical and Experimental Investigation of Indirectly Excited Roll Motion in Ships. Philosophical Transactions of the Royal Society of London, 2000[C],358:1731-1881.
    [16]Umeda N, Hashimoto H, Vassalos D, Urano S and Okou K. Nonlinear Dynamics on a Parametric Roll Resonance with Realistic Numerical Modelling[J].International Shipbuilding Progress, 2004,51(2/3):205-220.
    [17]Hamamoto M and Akiyoshi T. Study on Ship Motions and Capsizing in Astern Seas-1st Report-[J].Journal of the Society of Naval Architects of Japan,1988,163:173-180.
    [18]De Kat J O and Paulling J R.The Simulation of Ship Motions and Capsizing in Severe Seas. SNAME transactions,1989[C],97:139-168.
    [19]Munif A and Umeda N. Modeling Extreme Roll Motions and Capsizing of a Moderate-Speed Ship in Astern Waevs [J]. Journal of the Society of Naval Architects of Japan,2000,187:51-58.
    [20]Matusiak J. Importance of Memory Effect for Capsizing Prediction. Proceedings of the 5th International Workshop on Stability and Operational Safety of Ships,2001 [C]:.6.3.1-6.3.6.
    [21]Umeda N and Renilson M R.Benchmark Testing of Numerical Prediction on Capsizing of Intact Ships in Following and Quartering Seas. Proceedings of the 5th International Workshop on Stability and Operational Safety of Ships,2001 [C]:6.1.1-6.1.10.
    [22]Ribeiro e Silva S Santos T and Guedes Soares C. Time Domain Simulations of a Coupled Parametrically Excited Roll Response in Regular and Irregular Head Seas. Proceedings of the 8th International Conference on the Stability of Ships and Ocean Vehicles,2003[C]:349-360.
    [23]Belenky V, Weems K M Lin W M and Paulling J R. Probabilistic Analysis of Roll Parametric Resonance in Head Seas. Proceedings of the 8th International Conference on Stability of Ships and Ocean Vehicles,2003[C]:325-340.
    [24]Neves M A S and Rodriguez C. A Non-Linear Mathematical Model of Higher Order for Strong Parametric Resonance of the Roll Motion of Ship in Waves [J]. Marine Systems and Ocean Technology,2005,1(2):69-81.
    [25]Brunswig J and Pereira R. Validation of Parametric Roll Motion Predictions for a Modern Containership Design. Proceedings of the 9th International Conference on Stability of Ships and Ocean Vehicles,2006[C]:157-168.
    [26]Spanos D and Papanikolaou A. Numerical Simulation of Parametric Roll in Head Seas. Proceedings of the 9th International Conference on Stability of Ships and Ocean Vehicles, 2006[C]:169-180.
    [27]Roberts J B. Effect of Parametric Excitation of Nonlinear Rolling Motion in Random Seas[J].Journal of Ship Research,1982,26:246-253.
    [28]Bulian G, Francescutto A and Lugni C. On the Nonlinear Modeling of Parametric Rolling in Regular and Irregular Waves. Proceedings of the 8th International Stability of Ships and Ocean Vehicles,2003[C]:305-323.
    [29]Levadou M and van't Veer R. Parametric Roll and Ship Design.Proceedings of the 9th International Conference on Stability of Ships and Ocean Vehicles,2006[C]:191-206.
    [30]Bulian G, Francescutto A. On the Effect of Stochastic Variations of Restoring Moment in Long-crested Irregular Longitudinal Sea. Proceedings of the 9th International Stability of Ships and Ocean Vehicles,2006[C]:131-146.
    [31]Themelis N and Spyrou K J. Probabilistic Assessment of Resonant Instability. Proceedings of the 9th International Stability of Ships and Ocean Vehicles,2006[C]:37-48.
    [32]Belenky V, Yu H C and Weems K. Numerical Procedures and Practical Experience of Assessment of Parametric Roll of Container Carriers. Proceedings of the 9th International Conference on Stability of Ships and Ocean Vehicles,2006[C]:119-130.
    [33]Paulling J R. Transverse Stability of Tuna Clippers. Fishing Boat of the World, edited by J.O.Traung, Fishing News Limited,1960,2:489-495.
    [34]Nechaev Y. Modelling of Ship Stability in Waves.Sudostroenie Publishing,1989.(in Russian).
    [35]Boroday I K. Ship Stability in Waves:On the Problem of Righting Moment Estimations for Ships in Oblique Waves. Proceedings of the 4th International Conference on Stability of Ships and Ocean Vehicles,1990[C]:441-451.
    [36]阳明盛,黄鼎良.船在随浪航行时的稳性检验计算[J].中国造船,1992.01:31-39.
    [37]林焰,纪卓尚.船舶在波浪中的横摇运动及其稳性[J].中国造船,1993.07:37-46
    [38]林焰,纪卓尚.船舶在波浪中运动的非线性耦合方程及其稳态解[J].大连理工大学学报,1993.11:690-697.
    [39]林焰,邢殿录,纪卓尚,杨栖.船舶随浪运动稳性仿真计算[J].海洋工程,1994.03:30-41.
    [40]李传兴.规则波浪中的船舶稳性研究.大连理工大学2005.硕士学位论文
    [41]丁勇、胡开业、邱敏芝、杨博.船舶非线性自由横摇运动的近似解析解[J].哈尔滨工程大学学报.2007.01:45-48.
    [42]胡开业.船舶在波浪中的非线性横摇运动及其稳定性分析.哈尔滨工程大学2006.硕士学位论文
    [43]戚增坤;孙尧;莫宏伟.非线性横摇导致船舶倾覆的突变研究[J].哈尔滨工程大学学报,2009,(09):1018-1021.
    [44]冯铁城,陶尧森.船舶横摇的参数激励及对安全性的影响[J].水动力学研究与进展A辑,1995.10(1):42-47.
    [45]欧阳茹荃,朱继懋.船舶非线性横摇运动与混沌[J].中国造船,1999.01:21-28.
    [46]盛振邦;黄祥鹿.船舶横浪倾覆试验及其数值模拟[J].中国造船,1996.03:13-22.
    [47]沈栋;黄祥鹿.随机波浪作用下的船舶倾覆.船舶力学,1999.05:7-14.
    [48]余音,胡毓仁,金咸定.船舶在波浪中非线性横摇研究的现状和发展[J].船舶力学,2000.01:73-77.
    [49]余音;朱航彬;夏利娟;R.Ajit Shenoi.基于小波理论的舰船非线性横摇运动特性分析[J].上海交通大学学报,2005.05:682-685.
    [50]付丽坤、蒋志鹏.纵向规则波中参数横摇的数值模拟[J].船海工程,2007.04:34-37.
    [51]付丽坤.纵向规则波中参数横摇的数值模拟.上海交通大学2006.硕士学位论文.
    [52]常永全.迎浪船舶参数横摇的理论研究。上海交通大学2008.硕士学位论文.
    [53]常永全,范菊,朱仁传,缪国平,黄祥鹿.迎浪船舶的参数横摇分析[J].水动力学研究与进展A辑,2008,3(2):204-211.
    [54]Fan J, Gu X, Miao G. and Chang, Y. Parametric Rolling of a Ship in Longitudinal Seas Under Random Waves.6th Osaka Colloquium on Seakeeping and Stability of Ships, Osaka, Japan,2008.
    [55]董艳秋,纪凯,黄衍顺.波浪中船舶横摇稳性的研究[J].船舶力学,1999,3(2):13-22
    [56]黄衍顺,徐慧,胡云昌.随浪中船舶参数共振倾覆的临界状态[J].船舶力学,1999,3(5)27-32
    [57]Tang You-Gang, Gu Jia-Yang, Zheng Hong-Yu, Li Hong-Xia, Study on the Ship Capsize in random beam seas using Melnikov method, Ship Mechanics,2004,8(5):27~34
    [58]李红霞.纵浪和斜浪中船舶非线性运动特性研究.天津大学2008.博士学位论文.
    [59]欧珊.船舶在波浪中的非线性横摇研究.武汉理工大学2010.硕士学位论文。
    [60]Yang S, Fan S, Nie J, Lu Z and YU Z. Experiment and Numerical Investigation on Parametric Rolling in Regular Head Waves for Large containership.6th Osaka Colloquium on Seakeeping and Stability of Ships, Osaka, Japan,2008.
    [61]余滋红裘明扬高杏章聂军 陆志妹.大型集装箱船参数横摇模型试验和数值模拟研究[J].船舶,2009,1:18-23。
    [62]孔祥金,曹振海.尾斜浪中船舶复原力计算[J].中国造船,1994,4(3):32-41.
    [63]蔡烽,石爱国,沈泓萃.不规则波浪激励下的船舶横摇运动动力学研究.2007年船舶航泊安全的新经验新技术研讨会论文集
    [64]蔡烽,张永胜,周波等.风浪中舰船横浪及随浪稳性计算[J],航海技术,2004,(4):8-10.
    [65]徐德嘉,熊鹰,董文才.船舶临界倾覆状态的功能分析[J],中国造船,1997,(04):45-52.
    [70]Hashimoto H, Umeda N, and Sakamoto G. Head-Sea Parametric Rolling of a Car Carrier. Proceedings of the 9th International Ship Stability Workshop,2007 [C]. Germanisher Lloyd.
    [71]Taguchi H, Ishida, S, Sawada H and Minami M. Model Experiment on Parametric Rolling of a Post-Panamax Containership in Head Waves. Proceedings of the 9th STAB,2006[C] 1:147-156.
    [72]Jensen, J.J., Vidic-Perunovic and Pedersen, P.J. Influence of Surge Motion on the Probability of Parametric Roll in a Stationary Seas State. Proceedings of the 9th International Ship Stability Workshop,2007[C]. Germanisher Lloyd,1-9.
    [73]Umeda N, Hashimoto H, Frederick S, Nakamura S, Seyed H S H, Matsuda A and Pablo C. Comparison Study on Numerical Prediction Techniques for Parametric Roll. Proceedings of the 27th Symposium on Naval Hydrodynamics, Seoul,2008[C],5-10.
    [74]Umeda N and Francescutto A. Performance-Based Ship Operation. Proceedings of the 2nd International Workshop on Risk-Based Approaches in Maritime Industry,2008[C],2.2.1-2.2.9.
    [75]Maruo, H. Resistance in Waves. Chap.5 in Researches on Seakeeping Qualities of Ships in Japan, Soc. Nav. Arch. Japan 60th Anniv. Ser.,1963,8:67-102.
    [76]#12
    [77]#12
    [78]#12
    [79]#12
    [80]#12
    [81]#12
    [82]Kashiwagi, M., Ikeda, T. and Sasagawa, T. Effect of Forward Speed of a ship on the Added Resistance in waves. Proc. Of 19th International Offshore and Polar Engineering Conference, Osaka, Japan,2009[C],3:818-825.
    [83]Kashiwagi M., Ikeda T. and Sasagawa T. Effect of Forward Speed of a ship on Added Resistance in waves[J]. International Journal of Offshore and Polar Engineering,2010,20(2):1-8.
    [84]Kashiwagi, M. Prediction of Surge and Its Effect on Added Resistance by Means of the Enhanced Unified Theory[J]. Trans. West-Japan Society of Naval Architects,1995,89:77-89.
    [85]Lee M.C. and Kim K.H. Prediction of Motion of Ships in Damaged Condition in Waves. Proceedings of the 2nd STAB,1982[C],The Society of Naval Architects of Japan,13-26.
    [86]梅田直哉,橘本博公,坂本玄太,浦野晋一.浪中での复原力变勤推定に关する研究.阴西造船协会春季讲演会,2005[C],24:17-19.
    [87]#12
    [88]#12
    [89]#12
    [90]Hsu, F.A. and Blenkarn, K.A. Analysis of Peak Mooring Forces by Slow Vessel Drift Oscillations in Random Seas, OTC paper,1970,1159:1135-1146.
    [91]Pinkster J.A. and van Oortmerssen G. Computation of the First and Second Order Wave Forces on Oscillating Bodies in Regular Waves, Proc 2nd Int Conf on Numerical Ship Hydrodynamics, 1977 (C):136-156.
    [92]Levadou, M. and van't Veer, R. Parametric Roll and Ship Design, Proceedings of the 9th International Conference of Ships and Ocean Vehicles, COPPE Univ Fed Rio de Janeiro,2006[C],191-206.
    [93]Sogawa Y, Umeda N and Hashimoto H. Parametric Roll of a Post Panamax Containership in Regular Waves:Experiment, Analytical Method and Simulation. Proc 5th APHydro Osaka, Japan, 99-102, July,2010.
    [94]Spanos D, Papanikolaou A. Benchmark Study on Numerical Simulation Methods for the Prediction of Parametric Roll of Ships in Waves.10th Inter. conf. on Stability of Ships and Ocean Vehicles, St. Petersburg, Russia,2009[C].
    [95]Bulian G, Francescutto A, Umeda N and Hashimoto H. Qualitative and Quantitative Characteristics of Parametric Ship Rolling in Random Waves in the Light of Physical Model Experiments[J]. Ocean Engineering,2008,35:1661-1675.
    [96]Tsukamoto I and Umeda N. Practical Non-Ergodicity of Parametric Rolling for a Car Carrier in Head Seas, Conf Proc of The Japan Spciety of Naval Architects and Ocean Engineers,2009[C],Vol.9K, 113-116.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700