有机相微生物活细胞催化羰基还原反应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以有机相微生物活细胞催化不对称合成为背景,一方面考察了面包酵母对有机溶剂的耐受性,并建立了有机物存在时微生物的活力保留值模型,另一方面考察了面包酵母活细胞在有机介质中催化4-氯乙酰乙酸乙酯等含羰基化合物的不对称还原反应,对促进微生物活细胞生物转化法应用于手性有机合成领域具有一定的理论意义和实际价值。
     首先,考察了固定化面包酵母在有机溶剂中浸泡24h后的糖代谢活力保留值,结果表明,固定化面包酵母对有机溶剂的耐受性比游离面包酵母有所增强;随着溶剂logP_(oct)值的增大固定化面包酵母对其耐受性增强;温度和酵母的预培养时间等也影响固定化面包酵母的溶剂耐受性,30℃时固定化面包酵母的耐受性最强,预培养10h的酵母耐受性有所降低。
     其次,应用有机化合物定量结构—活性相关研究方法,根据“靶学说”理论,建立了有机物存在时微生物的活力保留值模型,分别得出了同一或同类有机物存在时细胞活力保留值与一些相关理化参数的关系式,并很好地关联了Rhizopus nigricans细胞的11α-羟化酶活力保留值和Monoraphidium braunii细胞的光合成活力保留值等数据。另外,考察了乙酸丁酯、仲丁醇、苯甲醛和4-氯乙酰乙酸乙酯等四种有机物存在时面包酵母的糖代谢活力保留值,结果表明,这四种有机物对面包酵母有毒害作用,随着其在水相中浓度的增大,对面包酵母的毒害作用增强。面包酵母的糖代谢活力保留值的实验测定值与模型计算值相符,进一步验证了微生物活力保留值模型的正确性。
     第三,考察了有机介质中Sigma公司生产的面包酵母(Type Ⅱ)催化4-氯乙酰乙酸乙酯不对称羰基还原反应的影响因素,如溶剂选择、固定化条件、反应温度和底物浓度等。以邻苯二甲酸二丁酯作为反应介质,面包酵母可催化较高浓度的有毒底物4-氯乙酰乙酸乙酯发生还原反应,得到具有光学活性的手性药物中间体R-4-氯-3-羟基丁酸乙酯(ee=58%)。
     第四,选用具有较高选择性的菌株——梅山酵母,固定化后在邻苯二甲酸二丁酯中催化4-氯乙酰乙酸乙酯的不对称还原反应,得到对映体过量值较高的R-4-氯-3-羟基丁酸乙酯(ee=76%)。不同缓冲体系、缓冲溶液pH值、温度等对梅山酵母和面包酵母(Type Ⅱ)在邻苯二甲酸二丁酯中催化4-氯乙酰乙酸乙酯不对称羰基还原反应的影响存在差异,不同来源的菌株表现出不同的反应特性。
     第五,在面包酵母(TypeⅡ)催化4-氯乙酰乙酸乙酯还原反应体系中,分别加入
    
    浙江大学博十学位论义 摘要
    磷酸戊糖途径抑制剂(Na少O*、糖酵解途径抑制剂(NaF)和三竣酸循环抑制剂(丙
    二酸人 结果使个氯乙酚乙酸乙酯的还原反应都受到了抑制,反应产率大大下降。表
    明糖酵解途径、磷酸戊糖途径和三竣酸循环的顺利进行对于面包酵母在有机介质中
    催化4-氯乙酚乙酸乙酯还原反应都是十分重要的。
     最后,考察了有机介质中面包酵母催化另两种含碳基化合物—一卜苯刁,2-丙二
    酮和苯甲醛的还原反应,反应产率和选择性受到有机溶剂、反应温度和固定化所用
    缓冲液pH值等因素的影响。
On the background of whole-cell biocatalysis for asymmetric synthesis in organic media, the solvent tolerance of baker's yeast was examined and a model for calculating activity retention of microbe in the presence of organic compounds was established. On the other hand, the asymmetric reductions of ethyl 4-chloroacetoacetate, l-phenyl-1,2-propanedione and benzaldehyde with baker's yeast in organic media were investigated in detail. The research work contributes to the application of whole-cell biocatalysis in the field of chiral synthesis in theory and practice.
    By determining the saccharide metabolic activity retention of baker's yeast after 24 h exposure to various organic solvents, the solvent tolerances of immobilized baker's yeast were studied. The results showed that the tolerance of immobilized baker's yeast was higher than that of free cells and increased with the increase of logP value of the organic solvent. The effects of temperature and pre-incubation time on the tolerance of immobilized baker's yeast were examined in detail. The tolerance of immobilized baker's yeast reached maximum at 30癈 and the activity retention of cells having been pre-incubated for 10 h decreased markedly.
    Using the method of Quantitative Structure-Activity Relationship of organic compounds, a new model for calculating activity retention of microbe in the presence of organic compounds was established on the basis of "target theory" and the relationship between the activity retention and relevant parameters was gained for the same compound or the homologous compounds. The new model successfully correlated the data of 11 a -hydroxylase activity retention of Rhizopus nigricans cells incubated in the presence of eight primary alcohols and photosynthetic activity retention of Monoraphidium braunii cells incubated in the presence of several alcohols. In addition, the saccharide metabolic activity retentions of baker's yeast incubated in the presence of butyl acetate, sec-butanol, benzaldehyde and ethyl 4-chloroacetoacetate were determined. It showed that these compounds were toxic to baker's yeast and the toxicity increased with the increase of the compound concentration in aqueous phase. The calculated data of the
    saccharide metabolic activity retention of baker's yeast using the new model accorded with the experimental data.
    The effects of some factors were examined in detail on the asymmetric carbonyl reduction of ethyl 4-chloroacetoacetate with baker's yeast(Type II ,Sigma) in organic media, including the selection of organic solvents, the immobilization conditions, the reaction temperature and the substrate concentration. Ethyl 4-chloroacetoacetate was reduced with baker's yeast to obtain ethyl (R)-4-chloro-3-hydroxybutyrate (ee=58%) when dibutyl phthalate was used as reaction media.
    
    
    Meishan yeast which showed higher stereoselectivity was used to catalyze the reduction of ethyl 4-chloroacetoacetate in dibutyl phthalate. As a result, (R)-4-chloro-3-hydroxybutyrate with higher ee value(ee=76%) was produced. The effects of the buffer used and its pH and the reaction temperature on the bioreductions with Meishan yeast or baker's yeast(Type II) were different.
    When Na3PO4, NaF and malonic acid was added to the reaction system respectively, the reduction of ethyl 4-chloroacetoacetat with baker's yeast(Type II) was inhibited and the yield decreased notably. This reflected that BMP and HMP pathways and the tricarboxylic acid cycle(TCA cycle) were very important to the bioreduction.
    Finally, the reductions of l-phenyl-l,2-propanedione and benzaldehyde with baker's yeast in organic media were investigated, too. The yield and chemical selectivity were influenced by organic solvents, temperature and pH of the buffer used for cell immobilization.
引文
1.居乃琥.21世纪酶工程研究的新动向,工业微生物,2001,31(1):37~45
    2.隋德新,姜涌明.有机介质中酶催化反应体系的构建原则.生物化学与生物物理进展,1991,18(2):106~109
    3.庄英萍,许建和,张嗣良,手性药物的酶法拆分研究近况.中国药学杂志,1998,33(4):197~201
    4. Faber K. Biotransformations in Organic Chemistry: A Textbook, 3rd, completely Rev. Ed., Spinger-Verlag, 1997
    
    
    5. Jones J B, Wong C H. Biocatalysis and biotransformation exploiting nature's magic. Curr. Opin. Chem. Biol., 1998, 2:67~69
    6. Duan G, Chen J Y. Effects of polar additives on the enzymatic enantioselectivity of an esterfication reaction in organic solvents. Biotechnol. Lett., 1994, 16:1065
    7. Xu J H, Kawamoto T, Tanaka A. Efficient kinetic resolution of dl-menthol by lipase-catalyzed enantioselective esterification with acid anhydride in fed-batch reactor. Appl. Microbiol. Biotechnol., 1995, 43:402~407
    8. Xu J H, Kawamoto T, Tanaka A. High-performance continous operation for enantioselective esterification of menthol by use of acid anhydride and free lipase in organic solvent. Appl. Microbiol. Biotechnol., 1995, 43:639~643
    9.王俊,李保安,陈长治.梨头霉菌在有机相中的最适固定化条件及其反应特性的研究.工业微生物,1996,26(1):12~16
    10.夏仕文,尉迟力,李树本.水-有机溶剂两相体系中甲基单胞菌 Z201 催化丙烯环氧化的初步研究.生物工程学报,1997,13(4):446~449
    11.夏仕文,尉迟力,李树本.单相和两相发酵体系中 Methylomonas Z201 细胞的生长和环氧丙烷的合成.微生物学报,1998,38(5):371~375
    12.Gu L-Q,Wei H-F,Zhang X-C,Xu G,Ma L.Bioreduction of quinone derivatives by immobilized baker's yeast in hexane.Chin. J. Chem.,1998,16(1):45~50
    13.何成,许建和,刘幽燕,庄英萍.固定化酵母非水相催化羰基不对称还原反应的研究.化学研究与应用,2001,13(6):632~635
    14.杜灿屏.生物合成和生物转化领域的研究.化学进展,1999,19(2):218~219
    15. Leon R, Femandes P, Pinheiro H M, Cabral J M S. Whole-cell biocatalysis in organic media. Enzyme Microb. Technol., 1998, 23:483~500
    16. Liu W H, Houng W C, Tsai M S. Bioconversion of cholesterol to cholestenone in aqueous/organic two-phase reactors. Enzyme Microb. Technol., 1996,18:184~189
    17. Steinert H J, Voriop K D, Klein J. Steroid side chain cleavage with immobilized cells in organic medium. In: Biocatalysis in Organic Media (Laane C, Tramper J, Lilly M DEds.) Elsevier Science, Amsterdam, 1987:51~63
    18. Dias A C P, Cabral J M S, Pinheiro H M. Sterol side-chain cleavage with immobilized Mycobacterium cells in water-immiscible organic solvents. Enzyme Microb. Technol., 1994, 16(8): 708~71
    19. Hocknull M D, Lilly M D. The use of free and immovilized Arthrobacter simplex in organic solvent/aqueous two-liquid-phase reactors. Appl. Microbiol. Biotechnol., 1990, 33: 148~153
    20. Houng J Y, Chiang W P, Chen K C, Tiu C. 11 α-hydroxylation of progesterone in biphasic media using alginate-entrapped Aspergillus ochraceus gel beads covered with polyurea. Enzyme Microb. Technol., 1994, 16:485~491
    21. Green K D, Gill I S, Khan J A, Vultson E N. Microencapsulation of yeast cells and their use as a biocatatyst in organic solvents. Biotechnol. Bioeng., 1996, 49(5): 535~543
    22. Nikolova P, Ward O P. Effect of the support matrix on biotransformation of benzaldehyde to benzyl alclhol by yeast cells in aqueous and aqueous-organic two phase systems.J. Ind. Microbiol., 1994,13(3): 172~176
    23. Kawakami K, Nakahara T. Importance of solute partitioning in biphasic oxidation of benzyl alcohol by free and immobilized whole cells of Pichia pastoris. Biotechnol. Bioeng., 1994, 43:
    
    918~924
    24. De Wulf O, Thonart P. Bioconversion of vanillin to vanillyl alcohol in a two-phase reactor. Appl. Biochem. Biotechnol., 1989, 20:165-180
    25. Seevaratnam S, Holst J O, Hj(?)rleifsdottir S, Mattiasson B. Extractive bioconversions for lactic acid production using solid sorbent and organic solvent. Bioproc. Eng., 1991, 6:35~41
    26. Minier M, Goma G. Production of ethanol by coupling fermentation and solvent extraction. Biotechnol. Lett., 1981, 3:405~408
    27. Molinari F, Villa R, Monzoni M, Aragozzini F. Aldehyde production by alcohol oxidation with Gluconobacter oxydans. Appl. Microbiol. Biotechnol., 1995, 43:989~994
    28. Molinari F, Aragozzini F, Cabral J M S, Prazeres D M F. Continuous production of isovaleraldehyde through extractive bioconversion in a hollow-fiber membrane bioreactor. Enzyme Microb. Technol., 1997, 20:604~611
    29. Aires Barros M R, Cabral J M S, Novais J M. Production of ethanol by immobilized Saccharonyces bayanus in an extractive fermentation system. Biotechnol. Bioeng., 1987, 24: 1097~1104
    30. Yabannavar V M, Wang D I C. Extractive fermentation for lactic acid production. Biotechnol. Bioeng., 1991, 37:1095~1100
    31. Solichien M S, Brien O, Hammond E G, Glatz C E. Membrane-based extractive fermentation to produce propionic and acetic acids: Toxicity and mass transfer considerations. Enzyme Microb. Technol., 1995, 17:23~31
    32. Hatzinikolaou D G, Wang H Y. Extractive fermentation systems for organic acids production. Can. J. Chem. Eng., 1992, 70:543~552
    33. Van Soonsbeek H M, Beeftink H H, Tramper J. Two-liquid phase bioreactors. Enzyme Microb. Technol., 1993, 15: 722~729
    34. Smolders A J J, Pinheiro H M, Noronha P, Cabral J M S. Steroid bioconversion in a microemulsion system. Biotechnol. Bioeng., 1991, 38:1210~1217
    35. Lilly M D, Dervakos G A, Woodley J M. Two-liquid phase biocatalysis: Choice of phase ratio. In: Opportunities in Biotransformations(Coppinng L G, Martin R E, Pickett J A, Bucke C, Bunch A W Eds.) Elsevier Science, New York, 1990:5~16
    36. Woodley J M, Brazier A J, Lilly M D. Lewis cell studies to determine reactor design for two-liquid-phase bacterial and enzymic reactions. Biotechnol. Bioeng., 1991, 37:133~140
    37. Kim M K, Rhee J S. Lipid hydrolysis by Pseudomonas putida 3SK cultured in organic-aqueous two-phase system. Enzyme Microb. Technol., 1993, 15: 612~616
    38. Ceen E G, Dunnill P, Herrmann J P R. Two-liquid phase reactor studies of Ⅱα-hydroxylation of progesterone by Aspergillus ochraceus. Biotechnol. Bioeng., 1988, 31:743~746
    39. Kataoka M, Hirakata M, Sakamoto K, Yamada H, Shinizus S. Optical resolution of racemic pantoic acid through microbial stereoselective lactonization in an organic solvent/water two-phase system. Enzyme Microb Technol., 1996, 19:307~310
    40. Boutoute P, Mousset G, Veschambre H. Regioselective or enantiogenic electrochemical and microbial reduction of 1,2-diketones. New J. Chem., 1998:247~251
    41.潘冰峰,施邑屏,李祖义.不对称生物还原制备手性药物.工业微生物,1998,28(4):42~45
    42. Servi S. Baker's yeast as a reagent in organic synthesis. Synthesis, 1990, 1:1~25
    43. Nakamura K, Inoue Y, Ohono A. Improvement of enantioselectivity of microbial reduction by
    
    using organic solvent redox coupler system. Tetrahedron Lett., 1995, 36(2): 265~266
    44. Nakamura K, Takano S, Ohno A. Diastereoselective reduction of ethyl α-methyl-β-oxobutanoate by immobilized Geotrichum candidum in an organic solvent. Tetrahedron Lett., 1993, 34(38): 6087~6090
    45. Molinari F, Occhiato E G, Aragozzini F, Guarna A. Microbial biotransformations in water/organic solvent system. Enantioselective reduction of aromatic β- and γ-nitro ketones. Tetrahedron: Asymmetry, 1998, 9(8): 1389~1394
    46. Nikolova P, Ward O P. Effect of organic solvent on biotransformation of benzaldehyde to benzyl alcohol by free and silicone-alginate entrapped cells. Biotechnol. Tech., 1993, 7(12): 897~902
    47. Nikolova P, Ward O P. Biotransformation of benzaldehyde to benzyl alcohol by whole cells and cell extracts of baker's yeast in two-phase systems. Prog. Biotechnol., 1992, 8(Biocatalysis in Non-Conventional Media): 667~673
    48. Naoshima Y, Nishiyama T, Munakata Y. Bioreduction of Ethyl 3-oxobutanoate with immobilized baker's yeast in organic-water solvent systems. Chem. Lett., 1989:1517~1518
    49. Naoshima Y, Munakata Y, Nishiyama T, Maeda J, Kamezawa M, Haramaki T, Tachibana H. Asymmetric bioreduction of keto esters by immobilized baker's yeast entrapped in calcium alginate beads in both water and organic/water solvent systems. World J. Microbiol. Biotechnol., 1991, 7(2): 219~224
    50. Cui J-N, Ema T, Sakai T, Utaka M. Control of enantioselectivity in the baker's yeast asymmetric reduction of γ-chloro-β-diketones to γ-chloro-(S)-β-hydroxy ketones. Tetrahedron:Asymmetry,1998, 9(15): 2681~2692
    51. Nakamura K, Kondo S, Kawai Y. Reduction by baker's yeast in benzene. Tetrahedron Lett., 1991, 32(48): 7075~7078
    52. Nakamura K, Inoue K, Ushio K, Oka S, Ohno A. Stereochemical control on yeast reduction of α -keto esters. Reduction by immobilized baker's yeast in hexane, J. Org. Chem., 1988, 53(11): 2589~2593
    53. Rupley J A ,Careri G. Protein hydration and function. Adv. Protein Chem., 1991, 41:37~172
    54. Affieck R, Haynes C A, Clark D S. Solvent dielectric effects on protein dynamics. Proc. Natl. Acad. Sci. U.S.A, 1992, 89(11): 5167~5170
    55. Jayasinghe L Y, Smallridge A J, Trewhella M A. The yeast mediated reduction of ethyl acetoacetate in petroleum ether. Tetrahedron Lett., 1993, 34(24): 3949~3950
    56. Griffin D R., Yang F X, Carta G, Gainer J L. Asymmetric reduction of acetophenone with calcium-alginate-entrapped baker's yeast in organic solvent. Biotechnol. Prog., 1998, 14:588~593
    57.胡忠策,郑晓冬.固定化细胞在有机相中的催化反应.生物技术,1999,9(3):39~41
    58. Medson C, Smallridge A J, Trewhella M A. Baker's yeast activity in an organic solvent system. J. Mol. Cat. B: Enzymatic, 2001, 11:897~903
    59. Naoshima Y, Nakamura A, Nishiyama T, Haramaki T, Mende M, Munakata Y. Asymmetric bioreduction of ethyl 3-oxobutanoate by immobilized Baker's yeast entrapped in calcium alginate beads. Application of the immobilized biocatalyst to the synthesis of (5Z,13S)-5-tetradecen-13-olide,aggregation pheromone of cryptolestes grain beetle. Chem. Lett., 1989:1023~1026
    60. Naoshima Y, Hasegawa H, Nishiyama T, Nakamura A. Synthesis of both the enantiomers of phoracantholideⅠ,a defensive secretion of the eucarypt longicorn(phoracantha synónyma),
    
    employing microbial asymmetric reduction with immobilized Baker's yeast. Bull. Chem. Soc. Jpn., 1989, 62:608~610
    61. Naoshima Y, Maeda J, Munakata Y. Bioreduction with immobilized baker's yeast in hexane using alcohols as an energy source. J. Chem. Soc., Chem. Commun., 1990, 14:964~965
    62. Haag T, Arslan T, Seebach D. Preparative β-ketoester reductions and ester hydrolyses by yeast, using free cells in organic media. Chimia, 1989, 43(11): 351~353
    63. Nakamura K, Kondo S, Nakajima N, Ohno A. Mechanistic study for stereochemical control of microbial reduction of α-keto esters in an organic solvent. Tetrahedron, 1995, 51(3): 687~694
    64. Naoshima Y, Maeda J, Munakata Y. Control of the enantioselectivity of the bioreduction with immobilized baker's yeast in a hexane solvent system. J. Chem. Soc., Perkin Trans. I,1992, 6: 659~660
    65. Dao D H, Okamura M, Akasaka T, Kawai Y, Hida K, Ohno A. Stereochemical control in microbial reduction. Part 31:Reduction of alkyl 2-oxo-4-arylbutyrates by baker's yeast under selected reaction conditions. Tetrahedron:Asymmetry, 1998, 9(15): 2725~2737
    66. Zaks A, Klibanov A M. Enzymatic catalysis in organic media at 100℃. Science, 1984, 224: 1249~1251
    67. Kirchner G, Scollar M P, Klibanov A M. Resolution of racemic mixtures via lipase catalysis in organic solvents,J. Am. Chem. Soc., 1985, 107:7072~7076
    68. Kazandlian R Z, Dordick J S, Klibanov A M. Enzymatic analyses in organic solvents. Biotechnol. Bioeng., 1986, 28:417~421
    69.邱树毅,姚汝华.有机溶剂中的酶催化——水和有机溶剂的影响,工业微生物,1996,26(3):40~45
    70.黄中祥.有机溶剂中的酶催化反应,生命的化学,1987,7:18~20
    71. Zaks A, Klibanov A M. Enzyme-catalyzed processes in organic solvents. Proc. Natl. Acad. Sci. U.S.A, 1985, 82(10): 3192~3196
    72. Vermüe M, Sikkema J, Verheul A, Bakker R, Tramper J. Toxicity of homologous series of organic solvents for the Gram-positive bacteria Arthrobacter and Nocardia sp. and the Gram-negative bacteria Acinetobacter and Pseudomonas sp. Biotechnol. Bioeng., 1993, 42:747~758
    73. Brink L E S, Tramper J. Optimization of organic solvent in multiphase biocatalysis. Biotechnol Bioeng., 1985, 27:1258~1269
    74. Laane C, Boeren S, Vos K, Veeger C. Rules for the optimization of biocatalysis in organic solvents. Biotechnol. Bioeng., 1987, 30:81~87
    75. Bruce L J, Daugulis A J. Solvent selection strategies for extractive biocatalysis. Biotechnol. Prog., 1991,7:116~124
    76. Inoue A, Horikoshi K. A pseudomonas putida thrives in high concentration of toluene. Nature, 1989, 338:264~266
    77. Bassetti L, Tramper J. Organic solvent toxicity in Morinda citrifolia cell suspensions. Enzyme Microb. Technol., 1994, 16:642~648
    78. Cruden D L, Wolfram J H, Rogers R D, Gibson D T. Physiological properties of a Pseudomonas strain which grows with p-xylene in a two-phase(organics-aqueous) medium. Appl. Environ. Microb., 1992, 58:2723~2729
    79. Le6n R, Garbayo I, Hernádez R, Vigara J, Vilchez C. Organic solvent toxicity in photoautotrophic unicellular microorganisms. Enzyme Microb. Technol., 2001, 29:173~180
    
    
    80.Rajagopal A N. Growth of Gram-negative bacteria in the presence of organic solvents. Enzyme Microb. Technol., 1996, 19 (8): 606~613
    81.Ogino H, Miyamoto K, Yasuda M, Ishimi K, Ishikawa H. Growth of organic solvent-tolerant Pseudomonas aeruginosa LST-03 in the presence of various organic solvents and production of lipolytic enzyme in the presence of cyclohexane. Biochemical Engineering Journal, 1999, 4:1~6
    82.Inoue A, Horikoshi K. Estimation of solvent tolerance of bacteria by solvent parameter logP. J. Ferm. Bioeng., 1991, 3:194~196
    83.Sikkema J, Weber F J, Heipieper H J, de Bont J A M. Cellular toxicity of lipophilic compounds: Mechanisms, implications, and adaptations. Biocatalysis, 1994, 10:113~122
    84.Bar R. Effect of interphase mixing on a water organic solvent two-phase microbial system: Ethanol fermentation. J. Chem. Tech. Biotechnol., 1988, 43: 49~62
    85.Bassetti L, Hagendoorn M, Tramper J. Surfactant-induced nonlethal release of anthraquinones from suspension cultures of Morinda citrifolia, J. Biotechnol., 1995, 39(2): 149~155
    86.Osborne S J, Leaver J, Turner M K. Solvent selection for whole cell biotransformation in organic media. In: Biocatalysis in Non-Conventional Media(Tramper J, Vermtüe M H, Beeftink H H, Von Stockar U Eds.), Elsevier Science, Amsterdam, 1992:31~36
    87.Osborne S J, Leaver J, Turner M K, Dunnill P. Correlation of biocatalytic activity in an organic-aqueous two-liquid phase system with solvent concentration in cell membrane. Enzyme Microb. Technol., 1990, 12:281~291
    88.Heipieper H J, de Bont J A M. Adaptation of Pseudomonas putida S12 to ethanol and toluene at the level of fatty acid composition of membranes. Appl. Environ. Microb.,1994, 60:4440~4444
    89.Weber F J, Ooijkaas L P, Schemen R M W, Hartmans S, de Bont J A M. Adaptation of Pseudomonas putida S12 to high concentrations of styrene and other organic solvents. Appl. Environ. Microb., 1993, 59:3502~3504
    90.Heipieper H J, Diefenbach R, Keweloh H. Conversion of cis unsaturated fatty acids to trans, a possible mechamism for the protection of phenol-degrading Pseudomonas putida P8 from substrate toxicity. Appl. Environ. Microb., 1992, 58:1847~1852
    91.Weber F J, Isken S, de Bont J A M. Cis/trans isomerization of fatty acids as a defense mechanism of Pseudomonas putida strains to toxic concentration of toluene. Microbiology, 1994, 140: 2013~2017
    92.Keweloh H, Weyracuch G, Rehm H J. Phenol-induces membrane changes in free and immobilized Escherichia coli. Appl. Microbiol. Biotechnol., 1990, 33:66~71
    93.Heipieper H J, Weber F J, Sikkema J, Keweloh H, de Bont J A M. Mechanisms of resistance of whole cells to toxic organic solvents. Trends Biotechnol., 1994, 12:409~415
    94.Ramos J L, Duque E, Rodriguez-Herva J-J, Godoy P, Haidour A, Reyes F, Fernández-Barrero A. Mechanisms for solvent tolerance in Bacteria. J. Biol. Chem., 1997, 272:3887~3890

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700